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Summary. The paper provides numerical examples to illustrate the recent results
by the authors relating asymptotic stability and dissipativity of a linear differential
or difference inclusion to these properties for the corresponding dual linear differ-
ential or difference inclusion. It is shown how this duality theory broadens the ap-
plicability of numerical algorithms for stability and performance analysis that have
appeared previously in the literature.

1 Introduction

Perhaps the simplest pair of dual linear matrix inequalities for control systems
is

AT P + PA < 0, (1)

for a given matrix A and a symmetric and positive definite P , and

AQ + AT Q < 0, (2)

for a symmetric and positive definite Q. The two inequalities are equivalent
through Q = P−1, and then each of them characterizes the stability of both
the linear system ẋ(t) = Ax(t) and its dual system ẋ(t) = AT x(t). Another
pair of dual matrix inequalities is

[

AT P + PA + CT C PB
BT P −γ2I

]

< 0, (3)

and
[

AQ + QAT + BBT QCT

CQ −γ2I

]

< 0. (4)

They are equivalent through Q = γ2P−1, and then each characterizes the
finite L2-gain, bounded by γ, for the pair of dual systems (A,B,C) and
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(AT , CT , BT ). Further examples of pairs of dual matrix inequalities come
from characterizing other input-output performances of linear systems, such
as passivity or the Hankel norm.

The stated matrix inequalities arise from stability and performance anal-
ysis of linear systems through quadratic Lyapunov or storage functions. The
use of such functions in the analysis of differential inclusions, leading to ma-
trix inequalities like these in (1) to (4) but holding for all A (or all A, B, C)
in a certain set, is possible; see [3].

While quadratic Lyapunov functions lead to easily tractable linear matrix
inequalities and simplify computational issues a great deal, it has been realized
that they can yield conservative evaluation of stability for linear differential
inclusions (see, e.g., [3, 5, 6, 14, 16, 23]). It is now well established that convex
homogeneous – but not necessarily quadratic – Lyapunov functions are suf-
ficient to characterize the stability of linear differential/difference inclusions
(LDIs); see [15, 6]. Recent years have witnessed an extensive search for ho-
mogeneous Lyapunov functions. Particular types of functions looked at are:
piecewise quadratic Lyapunov functions ([15, 22]), polyhedral Lyapunov func-
tions ([2, 4]), and homogeneous polynomial Lyapunov functions ([5, 14, 23]).

Recently, more attention was given in ([7, 13, 11, 10]) to two particular
classes of convex homogeneous Lyapunov functions: the functions given as
the pointwise maximum of a family of quadratic functions, and those given
as the convex hull of a family of quadratic functions. For simplicity, we refer
to functions in these classes as max functions and convex hull functions. It
is shown with an example in [3] (page 73) that a max function may validate
the stability of an LDI even when all quadratics fail. The convex hull function
was first used for stability purposes in [11, 10] to estimate the domain of
attraction for saturated linear systems and systems with a generalized sector
condition (where it was called a “composite quadratic” function). Finally,
[7, 13] noted and explored the convex duality between the two classes, and
used it to enhance stability analysis of LDIs and saturated linear systems.

Furthermore, [7] established a set of important symmetric relationships
between dual linear differential inclusions. Stability of the LDI 1

ẋ(t) ∈ co{Ai}m
i=1x(t) (5)

was shown to be equivalent to stability of the dual LDI

ξ̇(t) ∈ co{AT
i }m

i=1ξ(t). (6)

Based on the max function and the convex hull function, the following matrix
inequalities are suggested:

AT
i Pj + PjAi ≤

l
∑

k=1

λijk(Pk − Pj) − γPj (7)

1 The LDI means that ẋ(t) is an element of the convex hull of points Aix(t),
i = 1, 2, . . . , m, for almost all t.
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for all i = 1, 2, ...m, j = 1, 2, ..l and

QjA
T
i + AiQj ≤

l
∑

k=1

λijk(Qk − Qj) − γQj (8)

for all i = 1, 2, ...m, j = 1, 2, ..l. If there exist positive definite and symmetric
matrices P1, P2, . . . , Pl and nonnegative numbers λijk solving (7) or matrices
Q1, Q2, ...Ql and numbers λijk ≥ 0 solving (8), then both (5) and (6) are
stable, similarly to what occurs for linear systems.

However, the matrix inequalities (7) and (8) are no longer equivalent. This
might be unexpected but can be explained since either (7) or (8) is only a
sufficient condition for stability of the LDIs. For linear systems, existence of
a solution to (1) or (2) is sufficient, but also necessary for stability.

Even though the dual matrix inequalities (7) and (8) may still be conser-
vative for stability analysis, numerical examples have shown that they may
significantly improve on what can be achieved by quadratics. Furthermore,
by duality, we can combine (7) and (8) to obtain a better estimate: if either
inequality is satisfied, then the stability of both LDIs is confirmed.

Similar matrix inequalities can be stated to evaluate the L2-gain, dissi-
pativity, and other input-output performance measures for LDIs. We give
several examples in this paper. As can be seen from (7) and (8), the matrix
inequalities based on max functions or convex hull functions are bound to be
more complicated than their counterparts derived from quadratic functions,
as a price for reducing conservatism. In fact, (7) and (8) are bilinear matrix
inequalities (BMIs) instead of LMIs. Despite the well-known fact that BMIs
are NP-hard, attempts have been made to make them more tractable; see,
e.g., [1, 8, 9]. By using the path-following method presented in [9], we have
developed a handful of algorithms to solve (7), (8) and other dual matrix in-
equalities arising from performance analysis. Our numerical experience shows
that the path-following method is very effective. (We used straightforward
iterative schemes in our earlier computation without much success.)

The purpose of this paper is to present several matrix inequalities, some of
which were previously stated in [7], for stability and performance analysis of
LDIs, and illustrate their applicability and effectiveness by way of examples.
Through this, we also justify the application of convex duality theory, and
motivate the interest in the class of convex functions given by a maximum of
quadratics or the functions given by a convex hull of quadratics.

The material is organized as follows. Section 2 is the theoretical one, and
outlines how the use of convex conjugate functions leads to a duality theory
for LDIs; the details are in [7]. The two classes of Lyapunov and storage
functions that our numerical tools are based on are described in Section 3.
Also there, various examples related to stability, and relying on (7) and (8) are
given. For further details, see [7, 13]. A general reference for convex analysis
materials we use is [17]; see also [18]. In Section 4, we discuss examples related
to dissipativity properties of LDIs, more specifically the L2-gain and passivity.
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General results for such properties are the topic of a forthcoming work by the
authors; for dissipativity concepts for linear systems, consult [20], [21]. Section
5 focuses on discrete-time systems, and includes an example of an application
of the matrix inequalities technology to estimation of domains of attraction
of nonlinear systems (for details on the continuous-time case, see [13]).

2 Duality of Lyapunov functions

In the analysis of linear differential and difference inclusions, in contrast to
equations, relying on quadratic Lyapunov functions is not sufficient. For ex-
ample, the linear differential inclusion (5) can be asymptotically (and then
in fact exponentially) stable when no quadratic Lyapunov function exists, i.e.
when for no symmetric and positive definite P we have AT

i P + PAi < 0 for
i = 1, 2, ..,m. 2 Existence of such a matrix leads to stronger stability of (5),
called quadratic stability. See Example 2. Consequently, in order to establish
a duality theory for linear differential and difference inclusions, for example
results stating that (5) is asymptotically stable if and only if (6) is asymp-
totically stable, one may need to look at Lyapunov functions that are not
quadratic, and moreover, to find a relationship for such functions correspond-
ing to that between P and P−1 for quadratic ones.

If (5) is asymptotically stable, then there exists γ > 0 and a differentiable,
strictly convex, positive definite, and homogeneous of degree 2 function V
such that

∇V (x)T Ax ≤ −γV (x) for all x, (9)

for all A ∈ co{Ai}m
i=1.

3 Homogeneity of degree 2 of V means that for all
λ ∈ IR, V (λx) = λ2V (x). In what follows, we will denote by L the class of all
differentiable, strictly convex, positive definite, and homogeneous of degree 2
functions. 4 Of course, every quadratic function 1

2
xT Px with a symmetric and

positive definite P is in L.
It turns out that the convex functions of class L are very well suited to

support a duality theory for linear differential and difference inclusions. More-
over, the key construction, leading from one such convex function to another
and reflecting the relationship between P and P−1 for quadratic Lyapunov

2 The Lyapunov inequality holding at each of Ai’s is sufficient for it to hold at each
element of co{Ai}

n
i=1.

3 The inequality (9) corresponds to the bound ‖x(t)‖ ≤ c‖x(0)‖e−

1

2
γt on solutions

of the LDI. Slightly abusing the notation, we will refer to γ as the convergence
rate, or the constant of exponential stability.

4 Asymptotic stability of (5) is equivalent to exponential stability. If (5) is expo-
nentially stable with a coefficient γ/2 > 0, then γ in (9) can be chosen arbitrarily
close, but smaller than, γ. If one does not insist on differentiability of V , a Lya-
punov inequality with γ can be written, using the convex subdifferential of V in
place of ∇V .
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functions, exists and is well appreciated in convex analysis and optimization.
It is the construction of a convex conjugate function. For any V ∈ L, its
convex conjugate is defined as

V ∗(ξ) = sup
x

{

ξT x − V (x)
}

. (10)

The function V ∗ is also convex, and in fact V ∗ ∈ L. For example, verifying
that it is homogeneous can be done directly: for any λ 6= 0, we have

V ∗(λξ) = sup
x

{

(λξ)T x − V (x)
}

= λ2 sup
x

{

1

λ
ξT x − 1

λ2
V (x)

}

= λ2 sup
x

{

ξT
(x

λ

)

− V
(x

λ

)}

= λ2 sup
x

{

ξT x − V (x)
}

.

The last expression is exactly λ2V ∗(ξ). Showing the other properties of V ∗

requires more elaborate techniques. 5 The relationship between V and V ∗ is
one-to-one, and in fact it is symmetric: the conjugate of V ∗ is V :

(V ∗)∗(x) = sup
ξ

{

xT ξ − V ∗(ξ)
}

= V (x) (11)

In particular, V ∈ L if and only if V ∗ ∈ L. This, in a sense, generalizes the
fact that P is symmetric and positive definite if and only if P−1 is.

Even more importantly, the convex conjugate turns out to be exactly the
object one needs when passing from a Lyapunov inequality verifying stability
of a linear differential or difference inclusion to a Lyapunov function verifying
the stability of a dual inclusion. This is particularly striking for difference
inclusions; nothing more than the very definition of V ∗ is then needed. Indeed,
suppose that for some V ∈ L and some γ ∈ (0, 1) we have

V (Ax) ≤ γV (x) for all x. (12)

We will now show that this condition is equivalent to

V ∗(AT ξ) ≤ γV ∗(ξ) for all ξ. (13)

The argument is a direct computation. Suppose that (12) is true. Then

V ∗(AT ξ) = sup
x

{

(AT ξ)T x − V (x)
}

≤ sup
x

{

ξT Ax − 1

γ
V (Ax)

}

,

where the inequality comes from replacing V (x) by the bound coming from
(12). The expression on the right above can be rewritten as a supremum taken

5 In general, for finite convex functions, conjugacy gives an equivalence between
strict convexity of a function and differentiability of its conjugate, and vice versa.
Thus, the conjugate of a strictly convex and differentiable function is differentiable
and strictly convex.
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over the range of A, which is not greater than the supremum taken over the
whole space. That is,

V ∗(AT ξ) ≤ 1

γ
sup

z∈rgeA

{

(γξ)T z − V (z)
}

≤ 1

γ
sup

x

{

(γξ)T x − V (x)
}

.

The supremum on the right is exactly V ∗(γξ). As we already know that V ∗

is positively homogeneous of degree 2, we obtain V ∗(AT ξ) ≤ γV ∗(ξ), which
is the inequality in (13).

An immediate and important consequence of the fact that a Lyapunov
inequality (12) translates to the dual inequality (13) is that stability of a linear
difference inclusion is equivalent to stability of its dual. More specifically,

(i) the linear difference inclusion 6

x+ ∈ co{Ai}m
i=1x (14)

is exponentially stable with constant γ

if and only if

(ii) the dual linear difference inclusion

ξ+ ∈ co{AT
i }m

i=1ξ (15)

is exponentially stable with constant γ.

A corresponding result for continuous time relies on the relationship be-
tween ∇V and ∇V ∗. These mappings are inverses of one another; further
refinement of that fact for positively homogeneous functions leads to the de-
sired result: a function V ∈ L is such that the Lyapunov inequality (9) holds
if and only if V ∗ ∈ L is such that the dual Lyapunov inequality,

∇V ∗(ξ)T AT ξ ≤ −γV ∗(ξ) for all ξ, (16)

is satisfied. Consequently, as in discrete time, we have:

(i) the linear differential inclusion (5) is exponentially stable with constant γ

if and only if

(ii) the dual linear differential inclusion (6) is exponentially stable with con-
stant γ.

An immediate benefit of the equivalence of stability, for both differential
and difference inclusions, is that it doubles the number of numerical tools
one can use to establish stability. Given a particular numerical technique to
test whether a differential (or difference) inclusion given by A1, A2,..,Am is

6 The linear difference inclusion (14) means that x(k + 1) is an element of the
convex hull of points Aix(k), i = 1, 2, . . . , m, for all k.
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asymptotically stable, one can apply it as well to the transposes. If either test
– for the original matrices or for the transposes – shows stability, the theory
we described concludes that in fact both inclusions – the original one and the
dual one – are stable. This simple trick can lead to very surprising results.

Example 1. Consider

A1 =





0 1 0
0 0 1
−1 −2 −4



 , M =





−2 0 −1
1 −10 3
3 −4 2



 , A2 = A1 + aM, (17)

with a > 0. Then consider the LDI with the state matrix belonging to the
set co{A1, A2(a)}. One of the previously used numerical tests for stability of
LDIs, proposed in [5], searches for the existence of a homogeneous polyno-
mial Lyapunov function (HPLF). This test, when applied using fourth-order
HPLFs to A1, A2(a), shows that the LDI is stable for positive a up to 75.1071.
That same test, applied to AT

1 , AT
2 (a), and thus testing the stability of an LDI

given by co{AT
1 , A2(a)T }, shows it is stable for all positive a! By duality, the

original inclusion is also stable for all such a’s.

Another benefit is that duality helps in designing numerical tests and
identifying favorable classes of potential Lyapunov functions. We illustrate
this in the next section.

3 Classes of potential Lyapunov functions

A linear differential inclusion (5) is asymptotically, and then in fact expo-
nentially stable if and only if there exists a convex, positive definite, and
homogeneous of degree 2 function V such that the Lyapunov inequality (9)
holds for all A ∈ co{Ai}m

i=1.
7 To construct numerical tools that search for

functions verifying stability of a given LDI, one needs to restrict attention to
particular classes of potential Lyapunov functions. Here, we discuss two such
classes, general enough to approximate any convex, positive definite, and ho-
mogeneous of degree 2 function, while also amenable to numerical methods.

First we note that, as it could be expected from the discussion at the
beginning of Section 2, for quadratic functions we have

V (x) =
1

2
xT Px, V ∗(ξ) =

1

2
ξT P−1ξ,

7 From now on, we do not insist that V be differentiable. Consequently, inequality
(9) should be understood to hold at all points where V is differentiable, which is
almost everywhere. This is in fact equivalent to (9) being valid with ∇V replaced
by the subdifferential of V in the sense of convex analysis. The subdifferential may
be a set, and then (9) is understood to hold for every element of the subdifferential.
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when P is symmetric and positive definite. It can be verified by a direct com-
putation. Thus, quadratic functions given by symmetric and positive definite
matrices form a class that is conjugate to itself.

The two classes of convex functions we want to use in stability analysis
are conjugate to one another. They are: the functions given by a pointwise
maximum of a family of quadratic functions and the functions given as the
convex hull of a family of quadratic functions. More specifically, given sym-
metric and positive definite P1, P2, . . . , Pl, by the max function we mean the
pointwise maximum of the quadratic functions given by Pj ’s, that is

Vmax(x) = max
j=1,2,..,l

1

2
xT Pjx. (18)

This function is strictly convex, positive definite, and homogeneous of degree
2.

With the help of the max function, and also the convex hull function
we discuss later, convenient bilinear matrix inequality conditions for stability
can be obtained. For example, suppose we want to verify the stability of an
LDI given by two matrices A1, A2, using the maximum of two quadratic
functions. That is, we want to find P1, P2 such that Vmax given by (18) is a
Lyapunov function for the LDI under discussion. Pick a point x where Vmax is
differentiable, and suppose that 1

2
xT P1x ≥ 1

2
xT P2x. Then ∇Vmax(x) = P1x,

and for Vmax to satisfy (9) at x, we need

xT
(

P1A
T
i + AiP1

)

x ≤ −γxT P1x

for i = 1, 2. On the other hand, we do not need xT
(

P2A
T
i + AiP2

)

x to be
negative. Symmetrically, at points where 1

2
xT P2x ≥ 1

2
xT P1x, we need

xT
(

P2A
T
i + AiP2

)

x ≤ −γxT P2x

for i = 1, 2. This suggests the following sufficient condition for Vmax given
by P1, P2 to be a Lyapunov function for ẋ(t) ∈ co{A1, A2}x(t): for some
nonnegative λ1, λ2, λ3, λ4,

P1A
T
1 + A1P1 ≤ λ1(P2 − P1) − γP1,

P1A
T
2 + A2P1 ≤ λ2(P2 − P1) − γP1,

P2A
T
1 + A1P2 ≤ λ3(P1 − P2) − γP2,

P2A
T
2 + A2P2 ≤ λ4(P1 − P2) − γP2.

In other words, if Pj ’s and λp’s solving the system above exist, ẋ(t) ∈
co{A1, A2}x(t) is stable. This can be easily generalized: if (7) has a solution,
then the linear differential inclusion (5) is exponentially stable (with constant
γ), and a Lyapunov function verifying it is the max function (18). We stress
that in general, existence of a solution to (7) is not necessary for stability of
(5). In the case of l = 2, by the S-procedure, the existence of a solution is
necessary for (18) to be a Lyapunov function, but this is still only necessary
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for stability. For a stable LDI, while there always exists a Lyapunov function
given by the pointwise maximum of quadratic functions, there may not exist
one given by the maximum of two such functions.

Example 2. Consider the linear differential inclusion ẋ(t) ∈ co{A1, A2(a)},
where

A1 =

[

−1 −1
1 −1

]

, A2(a) =

[

−1 −a
1/a −1

]

(19)

for a > 1. It was used in [6] to show that the existence of a common quadratic
Lyapunov function is not necessary to guarantee the exponential stability of
the LDI. The maximal a which ensures the existence of a common quadratic
Lyapunov function was found to be 3 +

√
8 = 5.8284. With the phase plane

method, it was confirmed that the LDI is still stable for a = 10. However, as
pointed out in [6], the analytical method is highly unlikely to be feasible for
general systems.

Here we illustrate how increasing the number of matrices defining the
maximum function (18) improves the estimates of parameter a for which the
LDI remains stable. In particular, our computation – that is, solving the
system of bilinear matrix inequalities (7) – carried out with 7 matrices Pj

verifies stability for a = 10.108. The following table illustrates the maximal
a (denoted amax) verified by Vmax,l given by l = 1, 2, · · · , 7 matrices, which
guarantees the stability of the LDI.

l 1 2 3 4 5 6 7

amax 5.8284 8.109 8.955 9.428 9.731 9.948 10.108

The 7 matrices defining Vmax,7 that verify the stability of the LDI at a =
10.108, listed for verification, are:

[

0.2854 −0.7282
−0.7282 7.6744

]

,

[

0.5899 −0.0010
−0.0010 5.9677

]

,

[

0.4925 −0.3298
−0.3298 6.7759

]

[

0.6699 0.3275
0.3275 4.9847

]

,

[

0.7257 0.5792
0.5792 3.9458

]

,

[

0.3900 −0.5799
−0.5799 7.3360

]

,

[

0.7592 0.7279
0.7279 2.8877

]

.

As a visual verification of stability for a = 10.108, we sketch in Fig. 1 the
vectors A1x and A2x at points x on the boundary of the 1-level set of Vmax,7;
that is, points where Vmax,7(x) = 1. By linearity and homogeneity, verifying
one level set is sufficient.

While Lyapunov functions, computed for example by solving (7) as de-
scribed above, verify stability, they can be also used to confirm instability.
We illustrate this below, where a Lyapunov function for an LDI with a cer-
tain parameter value is used to show instability when the parameter is varied.

Example 3. Recall the LDI from Example 2. In [6], it is pointed out that it
may be stable for a > 10 (while it is only verified for a up to 10). Here we
would like to estimate a lower bound on a’s which destabilize the LDI.
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Fig. 1. ẋ = A1x (left) and ẋ = A2x (right) on the boundary of a level set

Suppose that Vmax verifies stability of the LDI for a up to a. At each x, we
find the index i that maximizes ∇V T

max(x)Aix, use this to choose the “worst”
switching among the vertices of the LDI, and try to produce potentially di-
verging trajectories for values of a larger than a.

Below, Vmax,l denotes the max function given by l matrices, as obtained
in Example 2. By using Vmax,2, the lower bound on a’s (denoted as amin) that
guarantees instability of the LDI is detected as amin = 12.175. A closed limit
trajectory resulting from the worst switching law at a = 12.175 is plotted as
the outer curve in the right box in Fig. 2. The inner closed curve in the same
box is the boundary of the 1-level set of Vmax,2. With Vmax,7, the lower bound
for a that guarantees instability is amin = 11.292. The corresponding “worst”
switching leads to a closed limit trajectory plotted in the middle box in Fig. 2,
along with the 1-level set of Vmax,7.

Plotted in the right box in Fig. 2 is a diverging trajectory corresponding
to l = 7 and a = 11.5 (initial state marked with ′∗′. As we can see from the
left box and the middle box, the difference between the limit trajectory and
the boundary of the level set for l = 7 is smaller than that for l = 2. It is
expected that as l is increased, the boundary of the level set can be made
even closer to a limit trajectory, indicating that the Lyapunov function would
give a better estimation of stability. As expected, with an increased l, the
difference between amax and amin will get smaller.
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Fig. 2. Trajectories. Left: l = 2, a = 12.175; middle: l = 7, a = 11.292; left: l =
7, a = 11.5
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We now describe the conjugate of the max function (18). First, we need an
additional construction. Given symmetric and positive definite matrices Q1,
Q2,..,Ql, the minimum of the quadratic functions given by them needs not be
convex. The convex hull function (determined by Qj ’s),

Vco(ξ) = co min
j=1,2,..,l

1

2
ξT Qjξ, (20)

is the greatest convex function bounded above by the aforementioned mini-
mum (equivalently, by each of the quadratic functions). This function is con-
vex, differentiable, positive definite, and homogeneous of degree 2. The con-
jugacy relationship between the max function and the convex hull function is
as follows: if Qj = P−1

j , then

V ∗

max(ξ) = Vco(ξ), V ∗

co(x) = Vmax(x).

In other words, the conjugate of the maximum of quadratics is the convex hull
of quadratics given by the inverses of the original matrices. 8 If either Vmax or
Vco is quadratic, then both of them are, and their conjugacy reduces to the
conjugacy for quadratic functions as stated at the beginning of this section.

With the help of the convex hull function Vco and the duality theory of
Section 2, a condition for stability of an LDI, “dual” to matrix inequality
(7), can be derived. Note that as (7) leads to stability of the linear differ-
ential inclusion (5), verified through Vmax given by Pj ’s, the inequality (8)
leads to stability of the dual linear differential inclusion (6), verified through
Vmax given by Qj ’s. But by duality, this is equivalent to stability of (5), ver-
ified through Vco given by Q−1

j ’s. In short, existence of a solution to (8) is a
sufficient condition for stability of (5). We stress again that in general, this
condition is not equivalent to (7).

Just as using the same numerical test for a given LDI and its dual inclu-
sion may result in different stability estimates (recall Example 1), solving the
systems of inequalities (7) and (8) may lead to different conclusions.

Example 4. Recall the linear differential inclusion from Example 1. We used
both (7) and (8), with two unknown matrices, to estimate the range of the
parameter a for which the LDI is stable. Using (7), we verified stability for all
a > 0. Using (8), stability is verified for a up to 441. In other words, the matrix
inequality based on the max function performs better than the inequality
based on the convex hull function for this particular LDI. Conversely, the
convex hull function performs better than the max function for the dual LDI.
See also Example 7.

Example 5. Consider the differential inclusion ẋ(t) ∈ co{A1, A2, A3}x(t) where

8 A more general relationship is valid. The conjugate of a pointwise maximum of a
family of convex functions is the convex hull of their conjugates.
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A1 =

[

−2 −2
4 −2

]

, A2 =

[

−1 0
6 −1

]

, A3 =

[

−5 −3
2 −1

]

.

The system is not quadratically stable, but is asymptotically (and thus ex-
ponentially) stable. It can be confirmed with the convex hull function Vco,2

given by (20) with two matrices Qj . The convergence rate turns out to be
γ = 0.0902, that is

d

dt
Vco,2(x(t)) ≤ −0.0902Vco,2(x(t))

for all solutions to the LDI. However, stability can not be confirmed by any
of the max functions Vmax,2 given by (18) with two matrices. The maximal γ
satisfying

d

dt
Vmax,2(x(t)) ≤ −γVmax,2(x(t))

for some Vmax,2 is −0.1575. Note that this in particular verifies that the LDI
is not quadratically stable.

We carried out a similar experiment after doubling the dimension of the
state space. Solving the bilinear matrix inequalities of Example 5 took ap-
proximately 5 to 7 seconds, solving the corresponding ones for Example 6
took approximately twice that.

Example 6. Consider ẋ(t) ∈ co{A1, A2, A3}x(t) where

A1 =









−2 −2 1 0
4 −2 0 1
0 0 −2 −2

−1 −1 4 −2









, A2 =









−6 −3 0 0
2 −1 2 0
0 −2 −6 −3
0 −1 2 −1









, A3 =









−1 0 1 0
5 −1 4 1

−1 0 −1 0
−1 −1 5 −1









.

It is not quadratically stable. Stability can be confirmed with Vco,2, and the
convergence rate turns out to be γ = 0.1948. However, stability can not be
confirmed with any Vmax,2. The maximal γ satisfying

d

dt
Vmax,2(x(t)) ≤ −γVmax,2(x(t))

is −0.0428.

4 Dissipativity properties

The duality theory outlined in Section 2 and the tools for verifying stability
as discussed in Section 3 can be extended and applied to treat dissipativity
properties of linear differential inclusions with disturbances.

Consider the following LDI with external disturbance
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[

ẋ(t)
y(t)

]

= co

{[

A B
C D

]

i

}m

i=1

[

x(t)
d(t)

]

, (21)

It is called dissipative with (positive semidefinite) storage function V and
supply rate h if for all x, d,

∇V (x)T (Ax + Bd) ≤ h(Cx + Dd, d) (22)

for all
[

A B
C D

]

∈ co

{[

A B
C D

]

i

}m

i=1

.

For example, consider h(c, d) = − 1
2
‖c‖2 + 1

2
β2‖d‖2. Dissipativity with this

supply rate means exactly that the LDI (21) has finite L2-gain, bounded above
by β. Later, we also discuss passivity and passivity with extra feedforward.

Following the ideas of Section 3, one can state sufficient conditions for
dissipativity, based on considering storage functions given by a maximum of
quadratic functions (18) or by a convex hull function (20). For example, if there
exist symmetric and positive definite P1, P2, . . . , Pl and numbers λijk ≥ 0 for
i = 1, 2, . . . ,m, j, k = 1, 2, . . . , l such that

[

AT
i Pj + PjAi +

∑l
k=1 λijk(Pj − Pk) + CT

i Ci PjBi + CT
i Di

BT
i Pj + DT

i Ci −β2I + DT
i Di

]

< 0 (23)

then the LDI (21) has finite L2-gain of at most β. Furthermore, the max
function (18) is a storage function verifying this.

Example 7. Consider the LDI ẋ(t) ∈ co{A1, A2(a)} given by matrices (17).
The LDI is stable for all a > 0, see Example 1 or 4. Here, we illustrate how
considering the max function Vmax,l with different l yields better convergence
rate estimates, for the case of a = 10000. Furthermore, we introduce one-
dimensional disturbance and observation to the system, by considering B1 =
B2 = [1 1 1 ]T , C1 = C2 = [1 1 1 ], and D1 = D2 = 0 in (21). For this LDI, we
rely on (23) to estimate the L2-gain. The table below shows how broadening
the class of Lyapunov and storage functions improves the convergence rate
and L2-gain estimates.

l 1 2 3 4 5

γ -1.4911 0.0531 0.1416 0.1642 0.1772

L2-gain N/A 57.6956 21.6832 18.7191 17.3278

Duality of dissipativity properties can also be established, similarly to
what we outlined for stability. Consider the dual of (21):

[

ξ̇(t)
z(t)

]

= co

{[

AT CT

BT DT

]

i

}m

i=1

[

ξ(t)
w(t)

]

. (24)
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Suppose that the supply rate is given by

h(c, d) =
1

2

[

c
d

]T

M

[

c
d

]

for M =

[

−R Z
ZT S

]

,

with R and S symmetric, positive semidefinite and that M is invertible. Note
that this is the case, for example, for the supply rate corresponding to finite
L2-gain. Let the dual supply rate h] be given by 9

h](v, w) = −1

2

[

w
−v

]T

M−1

[

w
−v

]

.

If V is a convex, positive definite, and positively homogeneous of degree 2
function, then the LDI (21) is dissipative with storage function V and supply
rate h if and only if the dual LDI (24) is dissipative with the storage function
V ∗ and supply rate h], that is, for all ξ, w,

∇V ∗(ξ)T (AT ξ + CT w) ≤ h](BT ξ + DT w,w). (25)

A more general equivalence can be shown, where the terms −γV (x) and
−γV ∗(ξ) are added to the right-hand sides of inequalities (22) and (25). Thus,
the stated equivalence generalizes the one between the stability of the LDI (5)
and of its dual (6), as verified by inequalities (9), (16).

In particular, consider h(c, d) = − 1
2
‖c‖2 + 1

2
β2‖d‖2 corresponding to fi-

nite L2-gain. Then M =

[

−I 0
0 β2I

]

, M−1 =

[

−I 0
0 β−2I

]

, and h](v, w) =

1
2
‖w‖2 − 1

2
β−2‖v‖2. The general facts stated above imply that, for a convex,

positive definite and homogeneous of degree 2 function V ,

∇V (x)T (Ax + Bd) ≤ −1

2
‖Cx + Dd‖2 +

1

2
β2‖d‖2

for all x, d if and only if for all ξ, w

∇V ∗(ξ)T (AT ξ + CT w) ≤ −1

2
β−2‖BT ξ + DT w‖2 +

1

2
‖w‖2.

This equivalence suggests that a dual to the sufficient condition (23) for the
LDI (21) to have finite L2-gain can be stated. The dual condition relies on the
convex hull function (20) serving as the storage function; and corresponds to
(23) just as the dual stability condition (8) corresponds to (7). It is:
[

QjA
T
i + AiQj +

∑l
k=1 λijk(Qj − Qk) + BiB

T
i QjC

T
i + BiD

T
i

CiQj + DiB
T
i −β2I + DiD

T
i

]

< 0. (26)

We use these dual conditions in the following example.

9 Note that h is a function concave in one variable, convex in the other. A conjugacy
theory for such functions, extending that for convex functions, does exist. In
particular, a concave/convex function conjugate to h can be defined. The dual
supply rate h] is closely related to it.
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Example 8. Consider the differential inclusion

ẋ(t) ∈ co{A1, A2}x(t) + Bd(t), y(t) = Cx(t),

where

A1 =





0 1 0
0 0 1

−1 −2 −3



 , A2 =





0 1 0
0 0 1

−2 −3 −1



 , B =





0
−1

1



 , C =
[

1 0 1
]

.

The matrices A1 and A2 are taken from an example in [19].
With zero disturbance d, the system is stable, but not quadratically. Stabil-

ity is confirmed with both the max function (18) and the convex hull function
(20) with l = 2. The convergence rate verified by Vmax,2 and that with Vco,2

are both equal to 0.0339, that is, (9) holds with γ = 0.0339 for some max
function and some convex hull function given by two quadratics.

However, the estimates of the L2-gain of the full system, obtained by the
max function and the convex hull function with two quadratics differ. They
are, respectively, 16.7337 and 30.6556.

Now consider h(c, d) = cT d − 1
2
η‖d‖2. Then (22) represents passivity of

the inclusion with disturbance (21) when η = 0, and passivity with extra
feedforward when η > 0. Arguments as those outlined for the L2-gain show
that for a convex, positive definite and homogeneous of degree 2 function V ,

∇V (x)T (Ax + Bd) ≤ (Cx + Dd)T d − 1

2
η‖d‖2 (27)

for all x, d if and only if for all ξ, w

∇V ∗(ξ)T (AT ξ + CT w) ≤ (BT ξ + DT w)T w − 1

2
η‖w‖2.

Thus, passivity (with feedforward) of (21) is equivalent to passivity (with
feedforward) of (24). Similarly one obtains that the existence of symmetric
and positive definite P1, P2, . . . , Pl and numbers λijk ≥ 0 for i = 1, 2, . . . ,m,
j, k = 1, 2, . . . , l such that

[

AT
i Pj + PjAi +

∑N
k=1 λijk(Pj − Pk) PjBi − CT

i

BT
i Pj − Ci η − DT

i − Di

]

< 0 (28)

is a sufficient condition for passivity of (21). Of course, a dual condition can
be given. We do not state it explicitly, but apply it, and (28), in examples.

Example 9. Consider (21) given by

A1 =





0 1 0
0 0 1

−1 −2 −3



 , B1 =





0.6
0

0.6



 , C1 =
[

0 −1 1
]

, D1 = 2,
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A2 =





0 1 0
0 0 1

−1 −1 −3



 , B2 = B1, C2 =
[

0 −1 −1
]

, D2 = D1.

The matrices A1 and A2 are taken from [19], where it was shown that the
system (without disturbance) is quadratically stable. Passivity of the inclu-
sion, however, can not be confirmed with a quadratic function: the largest η
for which the passivity inequality (27) holds is −0.601. When the maximum
of two quadratic functions is used as a storage function, that is, the matrix
inequality (28) is solved, the maximal η is −0.0797. When the convex hull
function is used, the maximal η is 0.0891. This confirms passivity of the LDI,
in fact with feedforward.

Example 10. Consider the LDI (21) with m = 2, and with B2 and C2 depend-
ing on a parameter a. The matrices are

A1 = A2 =





0 1 0
0 0 1

−1 −2 −3



 , B1 =





0
0
1



 , B2 = B1 + a





0
−1

1



 ,

C1 =
[

1 0 0
]

, C2 = C1 + a
[

0 1 1
]

, D1 = D2 = 2.

For a = 0, the LDI reduces to a linear system, which is passive (and this can
be verified with a quadratic storage function). In fact, quadratic functions
verify passivity of the LDI for all a ∈ [0, 2.097]. Using the maximum of two
quadratic functions increases the upper limit to 2.3706, the convex hull of two
quadratics yields 2.3497.

5 Discrete time systems

As we showed in Section 2, convex conjugate functions also allow for establish-
ing a duality theory for linear difference inclusions, that is for discrete-time
counterparts of the systems discussed so far. The functions proposed in Section
3 can of course also be used as Lyapunov or storage functions in discrete time,
and they suggest matrix inequalities for stability and dissipativity properties.

First, consider the linear difference inclusion (14). If there exist symmetric

and positive definite P1, P2, . . . , Pl and numbers λijk ≥ 0 with
∑l

k=1 λijk = 1
for i = 1, 2, . . . ,m, j, k = 1, 2, . . . , l such that

AT
i PjAi < γ

l
∑

k=1

λijkPk

for all i = 1, 2, ...m, j = 1, 2, ..l, then the discrete time Lyapunov inequality
(12) holds for the max function (18), for all A ∈ co{Ai}m

i=1. Dually, if matrices
Pj and numbers λijk satisfy
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AiPjA
T
i < γ

l
∑

k=1

λijkPk,

the Lyapunov inequality (12) holds for the convex hull function (20) given by
Qj = P−1

j . Solution of either system of matrix inequalities verifies stability of
both (14) and (15).

Example 11. Consider the difference inclusion (14) given by

A1 =





0.3 1 0
0 0.6 1
0 0 0.7



 , A2 =





0.3 0 0
−0.5 0.7 0
−0.2 −0.5 0.7



 .

The smallest γ for which the Lyapunov inequality (12) holds with a quadratic
function is 1.2353, so a quadratic function does not verify stability of the
inclusion. (For stability, we need γ ∈ (0, 1).) The smallest such γ (i.e. the
convergence rate) estimated with the max function with two quadratics is
0.9570, a convex hull of two quadratics yields 1.0231. In this case, only the
max function verifies stability of the inclusion.

For linear difference inclusions with disturbance
[

x+

y

]

∈ co

{[

A B
C D

]}m

i=1

[

x
d

]

, (29)

dissipativity properties can be verified through the following matrix inequal-
ities. Let γ > 0. If there exist symmetric, positive definite P1, P2, . . . , Pl and
numbers λijk ≥ 0 with

∑l
k=1 λijk = 1 for i = 1, 2, . . . ,m, j, k = 1, 2, . . . , l

such that
[

AT
i PjAi −

∑l
k=1 λijkPk + CT

i Ci AT
i PjBi + CT

i Di

BT
i PjAi + DT

i CT
i −γ2I + BT

i PjBi + DT
i Di

]

< 0 (30)

for all i = 1, 2, ...m, j = 1, 2, ..l, then γ is an upper bound for the l2-gain
of (29). This is verified by the max function Vmax given by (18), that is, for
V = Vmax and all x, d, x+, y satisfying (29), the following inequality holds:

V (x+) − V (x) < −1

2
‖y‖2 +

1

2
γ2‖d‖2.

Similarly, if there exist Pj ’s and λijk’s such that
[

AT
i PjAi −

∑l
k=1 λijkPk AT

i PjBi − CT
i

BT
i PjAi − Ci η + BT

i PjBi − DT
i − Di

]

< 0 (31)

then, for V = Vmax,

V (x+) − V (x) ≤ yT d − 1

2
η‖d‖2, (32)

and thus (29) is passive (if η = 0) and passive with feedforward (if η > 0).
Duality for discrete-time systems with disturbance can also be established,
and inequalities dual to (30) and (31) can be used.
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Example 12. Consider the inclusion (29) given by

A1 =





0 1 0
0 0 1

0.16 0 −0.32



 , B1 =





2.5
0

0.4



 , C1 =
[

1 0 0
]

,

A2 = A1 +





1 −1 −1
1 −3 0
0 −1.5 2



× a, B2 =





a
0

2.5



 , C2 =
[

a −a 1
]

,

where the parameter a ≥ 0. The maximal a ensuring stability verifiable by
quadratics is 0.3153. The maximal a ensuring stability verifiable by Vco,2 or
Vmax,2 is 0.4475. At a = 0.4475, the convergence rate, i.e., the minimal β
such that V (x+) ≤ βV (x), by quadratics is 1.3558, while that by Vco,2 or
Vmax,2 is 1. At a = 0.3153, the convergence rate by quadratics is 1, while
the convergence rate by Vco,2 or Vmax,2 is 0.6873. With Vco,2, the l2-gain is
bounded by 7.038, with Vmax,2, the l2-gain is bounded by 8.3615.

Example 13. Consider the inclusion (29) given by

A1 =





0 1 0
0 0 1

0.16 0 −0.32



 , B1 =





2.5
0

0.4



 , C1 =
[

1 0 0
]

, D1 = 5,

A2 =





0.4 0.6 −0.4
0.4 −1.2 1

0.16 −0.6 0.48



 , B2 =





0.4
0

2.5



 , C2 =
[

0.4 −0.4 1
]

, D2 = 6,

Stability is not confirmed by quadratics while Vco,2 and Vmax,2 both ensure
a convergence rate of 0.7530. With Vmax,2, the maximal η such that (32) is
−0.0148. With Vco,2, the maximal η is 0.5078.

In the concluding example, we outline an application of the dual BMIs
technology to estimation of the domain of attraction of a nonlinear system.

Example 14. Consider a second order saturated linear system

x+ = Ax + Bsat(Fx),

where

A =

[

0.8 0
0 1.2

]

, B =

[

0.6
−1

]

, F =
[

0.5 1
]

,

and sat is the standard saturation function, that is sat(s) = s when s ∈ [−1, 1]
and sat(s) = 1 (respectively, −1) when s > 1 (respectively, s < −1). We
want to estimate the domain of attraction of this system with contractively
invariant 1-level set of certain type of Lyapunov functions. For a given x0, the
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Lyapunov function is optimized so that its invariant level set contains αx0

with a maximal α.
We first consider quadratic functions. Using the algorithm from [12], the

maximal α for x01 =
[

1 0
]T

is α1 = 5.0581 and the maximal α for x02 =
[

0 1
]T

is α2 = 3.6402.
Next we consider Vco,2. An algorithm to maximize α so that αx0 is inside

an invariant level set of Vco,2 can be developed similarly to that in Section 3
of [13]. From this algorithm, the maximal α for x01 is α̃1 = 7.1457 and the
maximal α for x02 is α̃2 = 5. In the left box of Fig. 3, we plot the level set
(thick solid curve) as the convex hull of two ellipsoids (dash-dotted line). The
point on the thick curve marked with “ ∗ ” is α̃2x02. The inner ellipsoid in
solid line is the maximal invariant ellipsoid where the point marked with “ ∗ ”
is α2x02. To demonstrate that the level set is actually invariant, we plot the
image of the boundary under the next step map x 7→ Ax + Bsat(Fx) (see
the thin solid curve in the right box of Fig. 3). For comparison, we also plot
the image under the linear map x 7→ (A + BF )x in dashed curve. Parts of
the thin solid curve overlap with the thick solid curve. This means that some
trajectories overlap parts of the boundary of the level set. As a matter of fact,

for any α > α̃2, a trajectory starting from α
[

0 1
]T

will diverge.
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Fig. 3. Left: the invariant level set; right: the next step map.
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