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Output regulation of general discrete-time linear systems
with saturation nonlinearities

Tingshu Hu*,y and Zongli Lin

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22903, USA

SUMMARY

This paper studies the classical problem of output regulation for linear discrete-time systems subject to
actuator saturation and extends the recent results on continuous-time systems to discrete-time systems. The
asymptotically regulatable region, the set of all initial conditions of the plant and the exosystem for which
the asymptotic output regulation is possible, is characterized in terms of the null controllable region of the
anti-stable subsystem of the plant. Feedback laws are constructed that achieve regulation on the
asymptotically regulatable region. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There has been considerable research on the problem of stabilization and output regulation of
linear systems subject to actuator saturation. The problem of stabilization involves issues
ranging from the characterization of the null controllable region (or, asymptotically null
controllable region), the set of all initial conditions that can be driven to the origin by the
saturating actuators in some finite time (respectively, asymptotically), to the construction of
feedback laws that achieve stabilization on the entire or a large portion of the asymptotically
null controllable region. Recent years have witnessed extensive research that addresses these
issues. In particular, for an open loop system that are stabilizable and have all its poles in the
closed left-half plane, it was established in Reference [1] that the asymptotically null controllable
region is the entire state space. For this reason, a linear system that is stabilizable in the usual
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linear sense and has all its poles in the closed left-half plane is referred to as asymptotically null
controllable with bounded controls, or ANCBC. For ANCBC systems subject to actuator
saturation, various feedback laws that achieve global or semi-global stabilization on the
asymptotically null controllable region have been constructed (see, for example, References [2–
5]). For exponentially unstable open-loop systems subject to actuator saturation, the
asymptotically null controllable regions were recently characterized and feedback laws were
constructed that achieve semi-global stabilization on the asymptotically null controllable region
(see References [6–8]).

In comparison with the problem of stabilization, the problem of output regulation for
linear systems subject to actuator saturation, however, has received relatively less attention.
The few works that motivated our recent research [9] on continuous-time systems
were References [10,5,11,2]. In References [5,2], the problem of output regulation was
studied for ANCBC systems subject to actuator saturation. Necessary and sufficient
conditions on the plant/exosystem and their initial conditions were derived under which
output regulation can be achieved. Under these conditions, feedback laws that achieve
output regulation were constructed based on the semi-global stabilizing feedback laws of
Reference [4]. The recent work [10] made an attempt to address the problem of output
regulation for exponentially unstable linear systems subject to actuator saturation. The attempt
was to enlarge the set of initial conditions of the plant and the exosystem under which output
regulation can be achieved. In particular, for plants with only one positive pole and exosystems
that contain only one frequency component, feedback laws were constructed that achieve
output regulation on what was later characterized in Reference [9] as the asymptotically
regulatable region.

In Reference [9], we systematically studied the problem of output regulation for general
continuous-time linear systems subject to actuator saturation. In particular, we characterized
the regulatable region, the set of plant and exosystem initial conditions for which output
regulation is possible with the saturating actuators. We then constructed feedback laws that
achieve regulation on the regulatable region.

The objective of this paper is to extend the above results to discrete-time systems. In Section 2,
we formulate the problem of output regulation for linear systems with saturating actuators.
Section 3 characterizes the regulatable region. Sections 4 and 5, respectively, construct state
feedback and error feedback laws that achieve output regulation on the regulatable region.
Finally, Section 6 gives a brief concluding remark to our current work.

Throughout the paper, we will use standard notation. For a vector u 2 Rm, we use juj1 and
juj2 to denote the vector 1-norm and the 2-norm. For a vector sequence uðkÞ 2 Rm,
k ¼ 0; 1; 2; . . .; we define jjujj1 ¼ supk50 juðkÞj1. We use satð�Þ to denote the standard saturation
function satðsÞ ¼ sgnðsÞminf1; jsjg. With a slight abuse of notation and for simplicity, for a
vector u 2 Rm, we also use the same satðuÞ to denote the vector saturation function, i.e.
satðuÞ ¼ ½satðu1Þ satðu2Þ � � � satðumÞ�T.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we state the discrete-time version of the classical results on the problem of output
regulation for continuous-time linear systems [12] (see also Reference [13]). These results will

T. HU AND Z. LIN1130

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:1129–1143



motivate our formulation of as well as the solution to the problem of output regulation for
discrete-time linear systems subject to actuator saturation.

2.1. Review of output regulation for linear systems

Consider a linear system

xðkþ 1Þ ¼AxðkÞ þ BuðkÞ þ PwðkÞ

wðkþ 1Þ ¼SwðkÞ

eðkÞ ¼CxðkÞ þQwðkÞ ð1Þ

The first equation of this system describes a plant, with state x 2 Rn and input u 2 Rm, subject to
the effect of a disturbance represented by Pw. The third equation defines the error e 2 Rq

between the actual plant output Cx and a reference signal �Qw that the plant output is required
to track. The second equation describes an autonomous system, often called the exosystem, with
state w 2 Rr. The exosystem models the class to disturbances and references taken into
consideration.

The control action to the plant, u, can be provided either by state feedback or by error
feedback. The objective is to achieve internal stability and output regulation. Internal stability
means that if we disconnect the exosystem and set w equal to zero then the closed-loop system is
asymptotically stable. Output regulation means that for any initial conditions of the closed-loop
system, we have that eðkÞ ! 0 as k ! 1.

The solution to these problems is based on the following three assumptions.

A1. The eigenvalues of S are on or outside of the unit circle;
A2. The pair ðA;BÞ is stabilizable;
A3. The pair

½C Q�;
A P

0 S

" # !

is detectable.
For continuous-time systems, complete solutions to the output regulation problems were

established in Reference [12] by Francis. These solutions can be adapted for discrete-time
systems as follows:

Proposition 1
Suppose Assumptions A1 and A2 hold. Then, the problem of output regulation by state
feedback is solvable if and only if there exist matrices P that G that solve the linear matrix
equations

PS ¼ APþ BGþ P

CPþQ ¼ 0 ð2Þ

Moreover, if in addition Assumption A3 also holds, the solvability of the above linear matrix
equations is also a necessary and sufficient condition for the solvability of the problem of output
regulation by error feedback.
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2.2. Output regulation for linear systems subject to actuator saturation

Motivated by the classical formulation of output regulation for linear systems, we consider the
following plant and the exosystem:

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ PwðkÞ

wðkþ 1Þ ¼ SwðkÞ

eðkÞ ¼ CxðkÞ þQwðkÞ ð3Þ

where u is the output of saturating actuators and is constrained by jjujj141. A control u that
satisfies this constraint is referred to as an admissible control. Because of the bound on the
control input, both the plant and the exosystem cannot operate in the entire state space. For this
reason, we assume that ðx0;w0Þ 2 Y0 for some Y0�Rn � Rr. Let

X0 ¼ fx0 2 Rn: ðx0; 0Þ 2 Y0g

The problem to be addressed in this paper is the following.

Problem 1
The problem of output regulation by state feedback for the system (3) is to find, if possible, a
state feedback law u ¼ fðx;wÞ, with jfðx;wÞj141 and fð0; 0Þ ¼ 0, such that

1. the equilibrium x ¼ 0 of the system

xðkþ 1Þ ¼ AxðkÞ þ BfðxðkÞ; 0Þ

is asymptotically stable with X0 contained in its domain of attraction;
2. for all ðx0;w0Þ 2 Y0, the interconnection of (3) and the feedback law u ¼ fðx;wÞ results in

bounded state trajectories xðkÞ and limk!1 eðkÞ ¼ 0.

If only the error e is available, the state ðx;wÞ can be reconstructed after a finite number of steps
if we further assume that the pair in A3 is observable. But the initial condition ðx0;w0Þ might
have to be constrained in a subset of Y0.

Our objective is to characterize the maximal set of initial conditions ðx0;w0Þ, the largest
possible Y0, on which the above problem is solvable and to explicitly construct feedback law
that actually solves the problem for Y0 as large as possible.

We will assume that ðA;BÞ is stabilizable. We will also assume that S is neutrally stable and all
its eigenvalues are on the unit circle. The stabilizability of ðA;BÞ is clearly necessary for the
stabilization of the plant. The assumption on S is without loss of generality. Since the
components corresponding to the asymptotically stable modes of the exosystem will tend to
zero, they will not affect the regulation of the output. On the other hand, if the exosystem has
unstable modes, either the disturbance Pw or the signal Qw will go unbounded. It is generally
impossible to drive the error e to zero asymptotically with a bounded control (see Reference
[11]).
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3. THE REGULATABLE REGION

In this section, we will characterize the set of all initial states of the plant and the exosystem on
which the problem of output regulation is solvable under the restriction that jjujj141. We will
refer to this set as the asymptotically regulatable region.

To begin with, we observe from the classical output regulation theory (see Section 2.1) that
for this problem to be solvable, there must exist matrices P 2 Rn�r and G 2 Rm�r that solve the
matrix equations ð2Þ. Given the matrices P and G, we define a new state z ¼ x�Pw and rewrite
the system equations as

zðkþ 1Þ ¼ AzðkÞ þ BuðkÞ � BGwðkÞ

wðkþ 1Þ ¼ SwðkÞ

eðkÞ ¼ CzðkÞ ð4Þ

From these new equations, it is clear that eðkÞ goes to zero asymptotically if zðkÞ goes to
zero asymptotically. The latter is possible only if (see Reference [11] for the continuous-time
case)

sup
k50

jGSkw0j151 ð5Þ

For this reason, we will restrict our attention to exosystem initial conditions in the following
compact set

W0 ¼ fw0 2 Rr: jGwðkÞj1 ¼ jGSkw0j14r; 8k50g ð6Þ

for some r 2 ½0; 1Þ. For later use, we also denote d ¼ 1� r:We note that the compactness ofW0

can be guaranteed by the observability of ðG;SÞ. Indeed, if ðG;SÞ is not observable, then the
exosystem can be reduced to make it so.

We can now precisely define the notion of asymptotically regulatable region as follows.

Definition 1

1. Given K > 0, a pair ðz0;w0Þ 2 Rn �W0 is regulatable in K steps if there exists an admissible
control u, such that the response of ð4Þ satisfies zðKÞ ¼ 0. The set of all ðz0;w0Þ regulatable
in K steps is denoted as RgðKÞ.

2. A pair ðz0;w0Þ is regulatable if ðz0;w0Þ 2 RgðKÞ for some K51. The set of all regulatable
ðz0;w0Þ is referred to as the regulatable region and is denoted as Rg.

3. The set of all ðz0;w0Þ for which there exist admissible controls such that the response of ð4Þ
satisfies limk!1 zðkÞ ¼ 0 is referred to as the asymptotically regulatable region and is
denoted as Ra

g.

Remark 1
Note that the regulatable region is defined in terms of limk!1 zðkÞ ¼ 0 rather than
limk!1 eðkÞ ¼ 0. Requiring the former instead of the latter will also guarantee the closed-
loop stability in the absence of w. Like the continuous-time case [6,9], this will result in
essentially the same description of the regulatable region.
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We will describe RgðKÞ; Rg and Ra
g in terms of the asymptotically null controllable region of

the plant

vðkþ 1Þ ¼ AvðkÞ þ BuðkÞ; jjujj141

Definition 2
The null controllable region at step K , denoted as CðKÞ, is the set of v0 2 Rn that can be driven
to the origin in K steps and the null controllable region, denoted as C, is the set of v0 2 Rn that
can be driven to the origin in finite number of steps by admissible controls. The asymptotically
null controllable region, denoted as Ca, is the set of all v0 that can be driven to the origin
asymptotically by admissible controls.

Clearly,

C ¼
[

K2½0;1Þ

CðKÞ

and

CðKÞ ¼
XK�1

i¼0

A�i�1BuðiÞ : jjujj141

( )
ð7Þ

Some simple methods to describe C and Ca were developed in Reference [8] (see also Reference
[6]).

To simplify the characterization of Rg and Ra
g and without loss of generality, let us assume

that

z ¼
z1

z2

" #
; z1 2 Rn1 ; z2 2 Rn2

and

A ¼
A1 0

0 A2

" #
; B ¼

B1

B2

" #
ð8Þ

where A1 2 Rn1�n1 is semi-stable (i.e. all its eigenvalues are on or inside the unit circle) and
A2 2 Rn2�n2 is anti-stable (i.e. all its eigenvalues are outside of the unit circle). The anti-stable
subsystem

z2ðkþ 1Þ ¼ A2z2ðkÞ þ B2uðkÞ � B2GwðkÞ

wðkþ 1Þ ¼ SwðkÞ ð9Þ

is of crucial importance. Denote its regulatable regions as Rg2 ðKÞ and Rg2 , and the null
controllable regions for the system

v2ðkþ 1Þ ¼ A2v2ðkÞ þ B2uðkÞ

as C2ðKÞ and C2. Then, the asymptotically null controllable region of the system

vðkþ 1Þ ¼ AvðkÞ þ BuðkÞ
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is given by Ca ¼ Rn1 � C2 [14], where C2 is a bounded convex open set. Denote the closure of C2

as %CC2, then

%CC2 ¼
X1
i¼0

A�i�1
2 B2uðiÞ : jjujj141

( )

Theorem 1
Let V2 2 Rn2�r be the unique solution to the matrix equation

�A2V2 þ V2S ¼ �B2G ð10Þ

and let

VðKÞ ¼ V2 � A�KV2S
K

Then,

ðaÞ Rg2ðKÞ ¼ fðz2;wÞ 2 Rn2 �W0 : z2 � VðKÞw 2 C2ðKÞg ð11Þ

ðbÞ Rg2 ¼ fðz2;wÞ 2 Rn2 �W0 : z2 � V2w 2 C2g ð12Þ

ðcÞ Ra
g ¼ Rn1 �Rg2 ð13Þ

Proof
(a) Given ðz20;w0Þ 2 Rn2 �W0 and an admissible control u, the solution of (9) at k ¼ K is

z2ðKÞ ¼ AK z20 þ
XK�1

i¼0

A�i�1
2 B2uðiÞ �

XK�1

i¼0

A�i�1
2 B2GSiw0

 !
ð14Þ

Applying (10), we have

�
XK�1

i¼0

A�i�1
2 B2GSi ¼

XK�1

i¼0

A�i�1
2 ð�A2V2 þ V2SÞSi

¼
XK�1

i¼0

ð�A�i
2 V2S

i þ A�i�1
2 V2S

iþ1Þ

¼ � V2 þ A�K
2 V2S

K

¼ � VðKÞ ð15Þ

where the third ‘‘¼’’ is simply obtained by expanding the terms in the summation and cancelling
all the middle terms. Thus,

A�Kz2ðKÞ ¼ z20 � VðKÞw0 þ
XK�1

i¼0

A�i�1B2uðiÞ

By setting z2ðKÞ ¼ 0, we immediately obtain (a) from the definition of RgðKÞ and (7).
(b) and (c). The proof is lengthy and can be found in Reference [6]. &

Remark 2
Given ðz0;w0Þ, there exists an admissible control u such that limk!1 zðkÞ ¼ 0 if and only if
ðz0;w0Þ 2 Ra

g. Recalling that z ¼ x�Pw, we observe that, for a given pair of initial states in the
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original co-ordinates, ðx0;w0Þ, there is an admissible control u such that limk!1 ðxðkÞ �P
wðkÞÞ ¼ 0 if and only if x20 � ðP2 þ V2Þw0 2 C2, where P2 ¼ ½0 In2 �P.

4. STATE FEEDBACK CONTROLLER

In this section, we will construct a feedback law that solves the problem of output regulation
by state feedback for linear systems subject to actuator saturation. Our feedback law will
be based on a stabilizing feedback law u ¼ f ðvÞ; jf ðvÞj141 for all v 2 Rn, which makes the
system

vðkþ 1Þ ¼ AvðkÞ þ Bf ðvðkÞÞ ð16Þ

have an asymptotically stable equilibrium at the origin. Actually, any feedback of the form
u ¼ f ðvÞ ¼ satðFuÞ will stabilize the system locally at the origin as long as Aþ BF is
asymptotically stable. In References [6–8], we presented some methods for designing f ðvÞ to
enlarge the domain of attraction of the origin. Here, we assume that a stabilizing feedback law
u ¼ f ðvÞ has been designed and the equilibrium v ¼ 0 of the closed-loop system (16) has a
domain of attraction S�Ca.

Now consider the system (4). Given a state feedback u ¼ gðz;wÞ; jgðz;wÞj141 for all
ðz;wÞ 2 Rn �W0, we have the closed-loop system

zðkþ 1Þ ¼ AzðkÞ þ BgðzðkÞ;wðkÞÞ � BGwðkÞ

wðkþ 1Þ ¼ SwðkÞ ð17Þ

Denote the time response of zðkÞ to the initial state ðz0;w0Þ as zðk; z0;w0Þ and define

Szw :¼ ðz0;w0Þ 2 Rn �W0 : lim
k!1

zðk; z0;w0Þ ¼ 0

� �

Since Ra
g is the set of all ðz0;w0Þ for which zðkÞ can be driven to the origin asymptotically, we

must have Szw�Ra
g. Our objective is to design a control law u ¼ gðz;wÞ such that Szw is as

large as possible, or as close to Ra
g as possible.

First we need a mild assumption which can be removed by modifying the controller (see
Reference [6]). Assume that there exists a matrix V 2 Rn�r such that

�AV þ VS ¼ �BG ð18Þ

This will be the case if A and S have no common eigenvalues (see e.g. p. 26 of Reference [16]).
With the decomposition in (8), if we partition V accordingly as

V1

V2

" #

then V2 satisfies �A2V2 þ V2S ¼ �B2G. Denote

Dzw :¼ fðz;wÞ 2 Rn �W0 : z� Vw 2 Sg ð19Þ

on which the following observation can be made.
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Observation 1
(a) The set Dzw increases as S increases, and if S ¼ Ca, then Dzw ¼ Ra

g; (b) In the absence of
w; x0 2 S ) ðz0; 0Þ 2 Dzw.

Proof
The fact that Dzw increases asS increases is easy to see. To see the rest of (a), we note that, for a
general plant, Ca ¼ Rn1 � C2. If S ¼ Ca, then S ¼ Rn1 � C2, and

Dzw ¼fðz;wÞ 2 Rn �W0 : z� Vw 2 Rn1 � C2g

¼ fðz1; z2;wÞ 2 Rn1 � Rn2 �W0 : z1 � V1w 2 Rn1 ; z2 � V2w 2 C2g

¼Rn1 �Rg2 ¼ Ra
g

Part (b) is also clear if we note that z0 ¼ x0 �Pw0 ¼ x0 for w0 ¼ 0. &

With this observation, we see that our objective of enlarging Szw is simply to design a feedback
law such that Dzw�Szw. We will reach this objective through a series of technical lemmas.

Lemma 1
Let u ¼ f ðz� VwÞ. Consider the closed-loop system

zðkþ 1Þ ¼ AzðkÞ þ Bf ðzðkÞ � VwðkÞÞ � BGwðkÞ

wðkþ 1Þ ¼ SwðkÞ ð20Þ

For this system, Dzw is an invariant set and for all ðz0;w0Þ 2 Dzw; limk!1 ðzðkÞ � VwðkÞÞ ¼ 0.

Proof
Substitute (18) into system (20), we obtain

zðkþ 1Þ ¼AzðkÞ þ Bf ðzðkÞ � VwðkÞÞ � AVwðkÞ þ VSwðkÞ

¼AðzðkÞ � VwðkÞÞ þ Bf ðzðkÞ � VwðkÞÞ þ Vwðkþ 1Þ

Define the new state v :¼ z� Vw, we have

vðkþ 1Þ ¼ AvðkÞ þ Bf ðvðkÞÞ

which has a domain of attractionS. This also implies thatS is an invariant set for the v-system.
If (z0;w0Þ 2 Dzw, then v0 ¼ z0 � Vw0 2 S. It follows that

vðkÞ ¼ zðkÞ � VwðkÞ 2 S

for all k50 and limk!1 ðzðkÞ � VwðkÞÞ ¼ limk!1 vðkÞ ¼ 0. &

Lemma 1 says that, in the presence of w, the simple feedback u ¼ f ðz� VwÞ will cause
zðkÞ � VwðkÞ to approach zero and zðkÞ to approach VwðkÞ, which is bounded. Our next step is
to construct a finite sequence of controllers

u ¼ f‘ðz;w; aÞ; ‘ ¼ 0; 1; 2; . . . ;N;
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all parameterized in a 2 ð0; 1Þ. By judiciously switching between these controllers, we can
cause zðkÞ to approach a‘VwðkÞ for any ‘. By choosing N large enough, zðkÞ will become
arbitrarily small in a finite number of steps. Once zðkÞ becomes small enough, we will use the
controller

u ¼ Gwþ d sat
Fz

d

� �

(F to be specified later) to make zðkÞ converge to the origin.
Let F 2 Rm�n be such that

vðkþ 1Þ ¼ AvðkÞ þ B sat ðFvðkÞÞ ð21Þ

is asymptotically stable. Let X > 0 be such that

ðAþ BFÞTXðAþ BFÞ � X50

and the ellipsoid E :¼ fv 2 Rn : vTXv41g be in the linear region of the saturation function,
i.e. jFvj141 for all v 2 E. Then E is an invariant set and is in the domain of attraction
for the closed-loop system (21). Similar to the continuous-time case, we have the following
lemma.

Lemma 2
Suppose that D�Rn is an invariant set in the domain of attraction for the system

vðkþ 1Þ ¼ AvðkÞ þ Bf ðvðkÞÞ ð22Þ

then for any a > 0; aD is an invariant set in the domain of attraction for the system

vðkþ 1Þ ¼ AvðkÞ þ aBf
vðkÞ
a

� �
ð23Þ

For any a 2 ð0; 1Þ, there exists a positive integer N such that

aN jX1=2Vwj25d; 8w 2 W0 ð24Þ

i.e. aNVw 2 dE, for all w 2 W0. Define a sequence of subsets in Rn �W0 as

D‘
zw ¼ fðz;wÞ 2 Rn �W0 : z� a‘Vw 2 a‘Eg; ‘ ¼ 0; 1; . . . ;N

DNþ1
zw ¼ fðz;wÞ 2 Rn �W0 : z 2 dEg

and, on each of these sets, define a state feedback law as follows:

f‘ðz;w; aÞ ¼ ð1� a‘ÞGwþ a‘ sat
Fðz� a‘VwÞ

a‘

� �
; ‘ ¼ 0; 1; . . . ;N

fNþ1ðz;wÞ ¼ Gwþ d sat
Fz

d

� �

It can be verified that, for each ‘ ¼ 0; 1; . . . ;N þ 1; jf‘ðz;w; aÞj141 for all ðz;wÞ 2 Rn �W0.
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Lemma 3
Let u ¼ f‘ðz;w; aÞ. Consider the closed-loop system

zðkþ 1Þ ¼ AzðkÞ þ Bf‘ðzðkÞ;wðkÞ; aÞ � BGwðkÞ

wðkþ 1Þ ¼ SwðkÞ ð25Þ

For this system, D‘
zw is an invariant set. Moreover, if ‘ ¼ 0; 1; . . . ;N, then for all ðz0;w0Þ 2 D‘

zw,
limk!1 ðzðkÞ � a‘VwðkÞÞ ¼ 0; if ‘ ¼ N þ 1, then, for all ðz0;w0Þ 2 DNþ1

zw , limk!1 zðkÞ ¼ 0.

Proof
With u ¼ f‘ðz;w; aÞ, ‘ ¼ 0; 1; . . . ;N, we have

zðkþ 1Þ ¼AzðkÞ þ ð1� a‘ÞBGwðkÞ þ a‘B sat
FðzðkÞ � a‘VwðkÞÞ

a‘

� �
� BGwðkÞ

¼AzðkÞ þ a‘B sat
FðzðkÞ � a‘VwðkÞÞ

a‘

� �
� a‘BGwðkÞ ð26Þ

Let v‘ ¼ z� a‘Vw, then by (18)

v‘ðkþ 1Þ ¼ Av‘ðkÞ þ a‘B sat
Fv‘ðkÞÞ

a‘

� �
ð27Þ

It follows from Lemma 2 that a‘E is an invariant set in the domain of attraction for the v‘-
system. Hence D‘

zw is invariant for the system (25) and if ðz0;w0Þ 2 D‘
zw, i.e.

v‘0 ¼ z0 � a‘Vw0 2 a‘E

then

lim
k!1

ðzðkÞ � a‘VwðkÞÞ ¼ lim
k!1

v‘ðkÞ ¼ 0

With u ¼ fNþ1ðz;wÞ ¼ Gwþ d satðFz=dÞ, we have

zðkþ 1Þ ¼ AzðkÞ þ dB sat
FzðkÞ
d

� �

and the same argument applies. &

Based on the technical lemmas established above, we construct our final state feedback law as
follows:

u ¼ gðz;w; a;NÞ

¼

fNþ1ðz;wÞ if ðz;wÞ 2 ONþ1 :¼ DNþ1
zw

f‘ðz;w; aÞ if ðz;wÞ 2 O‘ :¼ D‘
zw

SNþ1
j¼‘þ1 D

j
zw; ‘ ¼ 0; 1; . . . ;N

/
f ðz� VwÞ if ðz;wÞ 2 O :¼ Rn �W0

SNþ1
j¼0 Dj

zw

/

8>>>><
>>>>:

ð28Þ
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Since O;O0; . . . ;ONþ1 are disjoint and their union is Rn þW0, the controller is well defined on
Rn �W0. What remains to be shown is that this controller will accomplish our objective if the
parameter a is properly chosen.

Let

a0 ¼ max
w2W0

jX1=2Vwj2
jX1=2Vwj2 þ 1

It is obvious that a0 2 ð0; 1Þ.

Theorem 2
Choose any a 2 ða0; 1Þ and let N be specified as in (24). Then for all ðz0;w0Þ 2 Dzw; the solution of
the closed-loop system

zðkþ 1Þ ¼ AzðkÞ þ BgðzðkÞ;wðkÞ; a;NÞ � BGwðkÞ

wðkþ 1Þ ¼ SwðkÞ ð29Þ

satisfies limk!1 zðkÞ ¼ 0, i.e. Dzw�Szw

Proof
The control u ¼ gðz;w; a;NÞ is executed by choosing one from f‘ðz;w; aÞ, ‘ ¼ 0; 1; . . . ;N þ 1, and
f ðz� VwÞ: The crucial point is to guarantee that ðz;wÞ will move successively from O, to O0;
O1; . . . ; finally entering ONþ1, in which zðkÞ will converge to the origin.

Without loss of generality, we assume that ðz0;w0Þ 2 O \ Dzw, so the control u ¼ f ðz� VwÞ
is in effect at the beginning. By Lemma 1, limk!1 ðzðkÞ � VwðkÞÞ ¼ 0. Hence there is a finite
step k050 such that zðk0Þ � Vwðk0Þ 2 E, i.e. ðzðk0Þ;wðk0ÞÞ 2 D0

zw. The condition
ðzðkÞ;wðkÞÞ 2 D‘

zw, ‘ > 0, might be satisfied at a smaller step k14k0. In any case, there is a
finite step k150 such that

ðzðk1Þ;wðk1ÞÞ 2 O‘ ¼ D‘
zw

[Nþ1

j¼‘þ1

Dj
zw

-

for some ‘ ¼ 0; 1; . . . ;N þ 1. After that, the control u ¼ f‘ðz;w; aÞ will be in effect.
We claim that, for any ðzðk1Þ;wðk1ÞÞ 2 O‘, under the control u ¼ f‘ðz;w; aÞ, there is a finite

integer k2 > k1 such that ðzðk2Þ;wðk2ÞÞ 2 D‘þ1
zw .

Since O‘�D‘
zw, by Lemma 3, we have that, under the control u ¼ f‘ðz;w; aÞ,

lim
k!1

ðzðkÞ � a‘VwðkÞÞ ¼ 0

Since a 2 ða0; 1Þ, we have

ð1� aÞjX1=2Vwj5a; 8w 2 W0

Therefore, for ‘5N

jX1=2ðz� a‘þ1VwÞj4 jX1=2ðz� a‘VwÞj þ a‘ð1� aÞjX1=2Vwj

5 jX1=2ðz� a‘VwÞj þ a‘þ1 ð30Þ
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Since the first term on the right-hand side goes to zero asymptotically, there exists a finite k2 > k1
such that

jX1=2ðzðk2Þ � a‘þ1Vwðk2ÞÞj4a‘þ1

This implies that zðk2Þ � a‘þ1Vwðk2Þ 2 a‘þ1E, i.e. ðzðk2Þ;wðk2ÞÞ 2 D‘þ1
zw .

If ‘ ¼ N, then, by (24)

jX1=2zj4 jX1=2ðz� aNVwÞj þ aN jX1=2Vwj

5 jX1=2ðz� aNVwÞj þ d

Also, the first term goes to zero asymptotically, so there exists a finite integer k2 such that
jX1=2zðk2Þj4d, i.e. ðzðk2Þ;wðk2ÞÞ 2 DNþ1

zw .
Just as before, ðz;wÞ might have entered D‘þq

zw , q > 1, before it enters D‘þ1
zw . In any case, there is

a finite k such that

ðzðkÞ;wðkÞÞ 2 O‘þq ¼ D‘þq
zw

[Nþ1

j¼‘þqþ1

Dj
zw

-

for some q51. After that, the controller will be switched to f‘þqðz;w; aÞ.
It is also important to note that, by Lemma 3, D‘

zw is invariant under the control
u ¼ f‘ðz;w; aÞ. Once ðz;wÞ 2 O‘�D‘

zw, it will never go back to Oq, q5‘ (or O) since Oq, q5‘ and
O have no intersection with D‘

zw, (but O
q, q > ‘, might have intersection with D‘

zw). In summary,
for any ðz0;w0Þ 2 Dzw, suppose ðz0;w0Þ 2 O‘, the control will first be f‘ðz;w; aÞ and then switch
successively to f‘1 ; f‘2 ; . . . ; with ‘1; ‘2; . . . ; strictly increasing until ðz;wÞ enters DNþ1

zw and remains
there. Hence, limk!1 zðkÞ ¼ 0. &

From the proof of Theorem 2, we see that for all ðz0;w0Þ 2 Dzw, the number of switches is at
most N þ 2.

5. ERROR FEEDBACK

In the continuous-time case [9], the set of initial conditions on which limk!1 zðkÞ ¼ 0 is achieved
by an error feedback can be made arbitrarily close to that by a state feedback. This is
because the observer error can be made arbitrarily small in an arbitrarily short time
interval. However, for discrete-time systems, this is impossible. Suppose that the pair in
Assumption A3 is observable, then there is a minimal number of steps for any observer to
reconstruct all the states. Let this minimal number of steps be n0. We also assume that a
stabilizing state feedback law u ¼ f ðvÞ, jf ðvÞj141 for all v 2 Rn, has been designed such that the
origin of the closed-loop system (16) has a domain of attraction S�Ca. By using the design of
Section 4, the set

Dzw :¼ fðz;wÞ 2 Rn �W0 : z� Vw 2 Sg

can be made a subset of Szw with a state feedback u ¼ gðz;w; a;NÞ.
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Now for the case where only the tracking error e is available for feedback, a simple strategy is
to let the control u be zero before the states are completely recovered, and after that we let
u ¼ gðz;w; a;NÞ as in (28) i.e.

u ¼
0 if k5n0

gðz;w; a;NÞ if k5n0

8<
: ð31Þ

The question is: what is the set of initial states on which limk!1 zðkÞ ¼ 0 under the control of
(31)? The answer is very simple. With u ¼ 0, we have

zðkþ 1Þ ¼ AzðkÞ � BGwðkÞ

wðkþ 1Þ ¼ SwðkÞ

By applying (18), we have

ðz� VwÞ ðkþ 1Þ ¼ Aðz� VwÞ ðkÞ

Hence,

ðz� VwÞ ðn0Þ ¼ An0 ðz� VwÞ ð0Þ ¼ An0ðz0 � Vw0Þ

For ðz0;w0Þ to be inSzw, it suffices to have ðzðn0Þ;wðn0ÞÞ 2 Dzw, i.e. zðn0Þ � Vwðn0Þ 2 S. This is in
turn equivalent to

ðz0;w0Þ 2 D̂Dzw :¼ fðz;wÞ 2 R�W0 :A
n0ðz� VwÞ 2 Sg

In summary, we have D̂Dzw�Szw under the control of (31).
The set D̂Dzw is close to Dzw if An0 is close to the identity matrix.

6. CONCLUSIONS

In this paper, we have studied the problem of output regulation for linear discrete-time systems
subject to actuator saturation. The plants considered here are general and can be exponentially
unstable. We first characterized the regulatable region, the set of initial conditions of the plant
and the exosystem for which output regulation can be achieved. We then constructed feedback
laws, of both state feedback and error feedback type, that achieve output regulation on the
regulatable region.
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