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Reducing Power Loss in Magnetic Bearings by
Optimizing Current Allocation

Tingshu Hu, Senior Member, IEEE, Zongli Lin, Senior Member, IEEE, and Paul E. Allaire

Abstract—Conventional magnetic bearings control current or
flux by operating symmetrically about a bias current or bias flux.
This approach is known to be much easier to control than operating
without a bias but has the disadvantage of introducing additional
power loss. Although one obvious way to minimize the power loss is
to alternate activation of the two opposing electromagnetic actua-
tors, this single actuator allocation strategy has not been successful
in practical applications because it results in severe performance
degradation. In this paper, we investigate the fundamental reasons
behind the performance degradation under the single actuator al-
location strategy. One major reason is voltage saturation in the cir-
cuit systems. On the basis of this result, we formulate the problem
of minimizing the energy consumption by allocating the currents
under the constraint of bounded voltages. We establish necessary
conditions and properties for the optimal solution, which we use to
determine the optimal allocation strategy for some common force
signals. Since the optimal solution is very sensitive to the variation
of the force signal, we propose a simple static allocation strategy to
approximate the optimal solution.

Index Terms—Feedback control, magnetic bearings, optimal
current allocation, power loss.

I. INTRODUCTION

MAGNETIC bearings have several appealing advantages
over traditional bearings, such as very low power loss,

very long life, elimination of oil supply, low weight, reduction
of oil supply fire hazard, vibration control, and diagnostic ca-
pability [1]. Even though the power loss in magnetic bearings
is much lower than in traditional fluid film bearings, there is
still a significant potential for its further reduction. Conven-
tional magnetic bearings control current or flux by operating
symmetrically about a bias current or bias flux. This approach
is known to be much easier to control than operating without a
bias but has the disadvantage of introducing additional power
consumption. Much research has been carried out toward re-
ducing the bias or the power consumption (see, e.g., [2], [4]–[6],
[11], [12]). A simple way of reducing power consumption is to
use permanent magnets to generate the bias. For better control
performances, we may choose to use pairs of electromagnets to
generate the bias. In this case, the obvious way to minimize the
power loss is to activate only one of the pair of electromagnets
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at a time. This single actuator allocation strategy has not been
successful in practical applications because it results in severe
performance degradation. The objective of this paper is to find
a way to minimize the power loss while certain system perfor-
mances are maintained.

Our study will be based on a simple model which captures
the fundamental features of magnetic bearing systems. Consider
a rotor whose one-dimensional position is controlled by a pair
of opposing electromagnets. The dynamics of the rotor can be
typically modeled by the following differential equation (see,
e.g., [3], [7]):

(1)

where is the position (or the angular displacement) and is
the mass (or the moment of mass). and are the forces (or
torques) produced by the two electromagnets and is the dis-
turbance resulting from, for example, unbalance or aerodynamic
loads. The basic requirement is to stabilize the rotor at the equi-
librium point with net force . The
forces and are generated by two electromagnetic circuits
described by the following differential equations (see, e.g., [7]):

(2)

(3)

where and . The
forces are determined from the air gap fluxes in terms of
and as follows:

For simplicity, we assume in this paper that
, and .

Traditionally, there are two modes (or approaches) in the con-
trolling of the above magnetic bearing system: the current mode
and the voltage mode. In the current mode, the control inputs
are the currents and and the voltages are ignored. And it is
assumed that any desired currents and can be exactly pro-
duced without any delay and hence any desired net force can
be exactly produced. In the voltage mode, the control inputs are
the voltages and , and all the dynamics of the power am-
plifier, the circuit constraint, etc., are taken into account. The
control system model resulting from the current mode is much
simpler than that from voltage mode. However, because of the
ignored circuit dynamics, unpredicted performance degradation
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may occur during the operation of the practical system. The
voltage mode results in an exact model but is more difficult for
control design of real systems.

No matter which control mode is used, we have two objectives
in the control design: to enhance system performances and to
reduce power loss. Since the mechanical system (1) is very
simple and easy to control if any desired force can be
exactly generated (or if approximately generated, the error can
be considered as a small disturbance), the system performances
depend mainly on the tracking of a desired force signal by
the actual force generated by the electromagnets.

Experience shows that the objective of tracking a desired
force signal and that of reducing power loss are conflicting. For
instance, in the current mode, there are infinitely many ways to
allocate the two currents for a given . Some allocations re-
sult in large power loss while others result in low power loss. It
is obvious that the minimal power loss allocation strategy is to
activate the two circuits alternatively, i.e., at least one of the cur-
rents and is zero at any time instant. However, this single
actuator allocation usually results in poor performance. Another
simple allocation strategy is to introduce a bias current and
let and , where for all time. This
strategy results in good performances but has the disadvantage
of introducing additional power loss.

To reach a good balance between these two objectives, we
consider the problem of minimizing power loss while certain
force tracking performance measures are maintained. As a first
step, we need to identify the fundamental reason behind the per-
formance degradation when the minimal power loss allocation
strategy is used. We will find out in Section II that the main
reason is that the single actuator allocation strategy may corrupt
the assumption of exact following of a desired current signal
by the one that is actually generated. This is in turn caused by
the saturation of the voltages. This result indicates that we must
take into account the saturation of the voltages in an effort to
achieve our objective, and first of all, in formulating our ob-
jective into a meaningful mathematical optimization problem.
In Section III, we formulate the problem of minimizing energy
consumption under the constraint of voltage saturation and then
establish the necessary conditions and some properties of the
optimal solution. With these necessary conditions and proper-
ties, we can determine the exact optimal solution for some class
of force signals. Since the optimal solution at a time instant de-
pends on the future value of the force and is very sensitive to the
change of the force signal, we will also propose a simple static
allocation strategy in Section IV, which will reduce power loss
to a level very close to the optimal one. Section V draws some
concluding remarks.

II. INVESTIGATION OF PERFORMANCE DEGRADATION

A. Force Tracking Performance for a Closed-Loop System

As we have discussed in the introduction, the mechanical
system (1) is simple and easy to control, and the performances
of the magnetic bearing system rely mainly on the performance
of tracking a desired force signal. Hence, in this paper, we will
focus on the force tracking performance. In the sequel, we will
use and to denote the desired force and current

signals and use and to denote the actual force and
currents.

The closed-loop design for the circuit systems (2)–(3) can be
divided into two parts:

Part 1) Design a current allocation algorithm

such that

Part 2) Design control laws for each circuit system

such that the error between and and the error
between and are sufficiently small.

As we can expect, the actual force generated by the above
designed circuit systems would not be exactly the same as .
One of our design objectives is to make the tracking error small
by properly choosing the functions and . The other
objective is to minimize the power loss. It appears that these
two objectives are independent: the force tracking performance
only depends on the current tracking performance, which is de-
termined by and ; and the power loss depends only on

and . But experience shows that these two objectives are
conflicting. This section is dedicated to investigating the funda-
mental reason that causes the conflict.

B. Observations on Performance Degradation

In our study, we will use a sinusoidal force signal to
demonstrate the performance degradation. For simplicity, we
consider the case where . This is meaningful
since it is the case when the system operates in its steady state
and we are mainly concerned about the power loss at steady
state. Let . Then, the two circuit systems are

(4)

To track the desired current signals and , we can use
simple feedback laws and

. Ideally, if there is no bound
on the voltage supply, then any periodic signal can be arbitrarily
closely tracked by choosing a sufficiently large gain . However,
because of the actual bounds on and , different current al-
location strategies will result in different tracking performances
when the same force signal is desired. We will compare the
following two allocation strategies.

1) Full Bias Allocation: Let be the magnitude of the
sinusoidal signal , then

In this case, both and are sinusoidal signals centered at
, the bias current. The minimum value of

and is 0 and their maximum value is .
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Fig. 1. Reason for bad tracking: voltage saturation and improper current
allocation.

2) Single Actuator Allocation: In this allocation strategy, at
least one of and is zero at any time, i.e.,

if
if

and

if

We also call it alternative allocation or no bias allocation.
In the following example, we compare the force tracking per-

formances under these two current allocation strategies.
Example 1: Consider the circuit system model of a beam bal-

ancing test rig [3]

where H and . The coef-
ficient of force is N/A and the desired force
signal is N. The voltage control laws are

and . Fig. 1
illustrates the difference of tracking performances between the
two allocation strategies. In Fig. 1, the first row plots the net
force (in solid curves) and the desired signal (in dashed
curves), the second row plots the current (in solid curves), and
the desired signal (in dashed curves) and the third row plots
the voltage . We do not plot and because they have
the same shapes as and but only with different phases.
In the first column are the simulation results for the full bias case
and the voltages are bounded by . Actually, for
this case, the bounds on the voltages have no effect since in the
steady state, both and are within the bound. The second
column shows the simulation results for the case of single actu-
ator allocation with no bounds on the voltages. The third column
shows the simulation results for the case of single actuator al-
location with the voltages bounded by 10 V. By comparing the
simulation results, we see that if there are no bounds on the volt-
ages, then there is no obvious difference on the tracking of the

Fig. 2. Fourier coefficients of I in case of single actuator allocation.

Fig. 3. Bode plot of (I )=(I ) and (V )=(I ).

desired net force between the two allocation strategies. The bad
tracking performance in the third column is a result of the com-
bined effects of the voltage bound and the allocation strategy.

C. Explanation Using Bode Plot

Given a sinusoidal signal , different current allocations
will result in different shapes of the desired current signals
and . In the case of full bias allocation, is also a sinusoidal
signal. In the case of single actuator allocation, is periodic
but has some higher frequency components. The coefficients

of the frequency components are plotted in Fig. 2 for
.

Let us use the circuit systems in Example 1 to explain the
effect of the higher frequency terms on the tracking performance
of the currents. The transfer function from to and that
from to are

The Bode plots of these transfer functions are shown in Fig. 3.
The cutoff frequency of is rad/s.
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In Example 1, the frequency of and is
rad/s. In the case of single actuator alloca-

tion, we have for . Hence, all the main
frequency components of are kept in if there are no
bounds on the voltages. This explains the close tracking
of by in the second column of Fig. 1. However, the
higher frequency terms do impose a larger requirement on the
voltage , as can be seen from the Bode plot of . The
magnitude of is about 10 dB at , 20 dB at , and
25 dB at . This explains why exceeds the upper and
lower bounds of 10 V in the second column of Fig. 1. In the
presence of voltage saturation, these high-frequency terms will
cause the degradation of the current tracking performance, and
consequently, the degradation of force tracking performance as
demonstrated in the third column of Fig. 1.

D. Interpretation in Terms of Slew Rate

From the first small figure in the third column of Fig. 1, we
observe that there is an obvious difference between the slew
rates of and in a neighborhood of . This cor-
responds to the big difference between and at the rising
edges and the falling edges of . At the rising edge, has
a slope equal to infinity, which requires an infinite value of the
voltage. The same thing happens at the falling edges.

Note that for the sinusoidal signal , the largest slew rate
occurs at . For , we have

In the ideal situation, at , we have
, since both and have infinite slope, the slew rate

of can still be guaranteed. In real life, we also have ,
but due to the bound on is bounded. Hence, there is no
contribution to the slew rate of from . As to , although
nonzero at , its contribution to the total force slew rate
is also less than the desired value.

In view of the above arguments, an indirect way to improve
the tracking performance is to ensure certain slew rate at .

III. POWER-LOSS REDUCTION BY OPTIMIZING

CURRENT ALLOCATION

The analysis results from last section indicate that voltage
saturation is a key factor causing performance degradation.
Therefore, in order to achieve the objective of minimizing
power loss while maintaining a desired force tracking perfor-
mance, we must take into account the bounds on the voltages.

A. Open-Loop Optimization Problem

In control theory, many fundamental problems are formulated
in terms of open-loop control, such as controllability, time-op-
timal control, optimal tracking, and linear quadratic regulation.
By open-loop control, we mean that the control signal in the
whole time interval of interest is determined off-line. Although
open-loop control has a lot of disadvantages and is rarely im-
plemented in practical systems, it provides a limit to the perfor-
mance that can be achieved with any kind of closed-loop control
and it also provides us with a guideline for approximating the
limit using closed-loop control. In this section, we will first for-

mulate the problem of minimizing power loss into an open-loop
problem. To do this, we need to assume full knowledge of the
desired force signal in certain time interval, say, .

We will consider the case where . As we have
mentioned earlier, this is simple and also meaningful since we
are mainly concerned about the power loss in the steady state.
To keep the mechanical system (1) in the steady state, we need
to use to cancel the disturbance , i.e., . In the
open-loop design, all the signals and are deter-
mined off-line such that the desired force is exactly pro-
duced. With all the above assumptions, the relation between the
force and the currents is

Given a desired force signal , our objective is to
generate two current signals and to satisfy

and to minimize the total energy during the
time interval

where is some constant of the magnetic bearing system. The
currents are generated by the circuit systems

subject to the bounds on the voltages . Assume
that the initial conditions of the circuit systems, and ,
are free to choose. This is reasonable since is usually much
greater than the transient period and we can take any measure to
bring the initial conditions to the desired values (the energy con-
sumption during this transient period can be neglected). The en-
ergy minimization problem subject to the constraint of bounded
voltages can be formulated as follows:

(5)

a)

b)

c)

d)

Here, we note that and are intermediate variables de-
pending on and from a) and b).

B. Conditions for the Optimal Solution

To solve (5), we introduce five auxiliary scalar functions
and , and form the

Hamiltonian function

The last three terms deal with the constraints c) and d). As to
constraints a) and b), they can be relaxed with
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and

respectively. We note from the above equations that and
are continuous signals under the constraint of bounded

voltages.
Define

We assume that all the variables and are
piecewise continuous functions.

Suppose that is an optimal solution to
(5), then there exist and which jointly result in
a stationary point of , where the variation of with respect to
each variable is zero. Let us use the variation of with respect
to to illustrate the idea. Let be a perturbation direction of

and consider for arbitrarily small . Define

The variation of with respect to along the direction is
defined as

The stationary property for the optimal solution requires that

(6)

In what follows, we transfer the above requirement to conditions
on the optimal solution.

Because of the linearity of the circuit systems, under
, we have , where

It follows that

(7)

From (7) and (6), we have

(8)

Similar analysis on the variation of with respect to other
variables results in

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

For simplicity of analysis, we make the following weak as-
sumptions on to exclude some special patterns in .

Assumption 1:

i) is continuously differentiable in and not
identically zero in any subinterval of .

ii) Let . There is no interval
such that for all

(17)

iii) There is no interval , where there exist
and such that for all

(18)

and

(19)

Without loss of generality, we also assume that
for all . Otherwise, we can reverse the sign of the voltage

when or starts to decrease from 0.
Based on the stationary condition (8)–(16), and since all the

signals are piecewise continuous, the interval can be di-
vided into subintervals , where all the optimal signals
are continuous, of the following three types:



1630 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 3, MAY 2004

— for all . Then,
for all , and we must

have by (12) and (13). From (8)
and (9), we obtain and

. Since and cannot
be both zero, we must have or
and or .

— for all .
Then, similar to the first type,
and . Since , it
is impossible to have (which means that

) in any subinterval of by Assumption
1. Hence in this case, both and are nonzero
and .

— for all . This
is similar to the second type. We have both and

nonzero and .
Note that we do not consider the possibility that

in any subinterval. This could only happen for
very special that satisfies (18) and (19). By rearranging
the above types of intervals, we can also obtain a classification
of interval types in terms of currents. For clarity and future ref-
erence, we put this classification in the following:

The above table means that if both and are strictly less
than , then one of the currents must be zero. On the other
hand, if both of the currents are nonzero, then one of the voltages
must take the maximum or the minimum value.

For the first two types, the currents are easy to determine.
For Type C and Type D, either or . So
the current , ( or ), corresponding to ,
can be determined and the other one can be computed from

. The function takes value or
in every subinterval. As we will see later in an example, may
contain impulses at some instant where one type of interval
is switched to another type. This results in a strictly nonzero
weight on the term in , indicating
the special significance of switching instants.

For a general force signal , the optimal allocated currents
and the corresponding voltage signals usually contain different
types of subintervals. Although the signals are easy to determine
for each given type, it is not a simple task to find out how many
subintervals are contained and to determine exactly the time in-
stants where one type is switched to another type. The optimal
signals would be practically impossible to determine if there are
too many subintervals. Further information about the optimal
signals can be revealed after more detailed examination. This
information will help to simplify substantially the procedure of
optimization. We will see that for a half cycle of a sinusoidal

, there are only three subintervals and we only need to search
for a single switching instant to determine the optimal signals
(the second switch depends on the first one).

Theorem 1: Let be a set of optimal signals.
Suppose that the first interval is of Type A .
The signals can switch to Type B at

only if . They can switch to Type D
at only if . Consider

the case that they switch to Type C (with )
at . Assume that . Then, the signals will not
switch to:

1) Type D before reaches or before reaches 0;
2) Type C (with ) before reaches

or before reaches 0;
3) Type B before reaches 0.
Remark 1: An optimal solution is expected to have Type A

or Type B intervals. If is periodic, then it does not matter
when we start the signal and it is without loss of generality to
assume that the optimal signals start with Type A interval.

Proof: The statement that the signals can switch to Type B
at only if is obvious since

both and are continuous. For the next statement, let us start
from the constraint . Differentiating both
sides, we have

and

(20)

Suppose that there is a switch from Type A to Type D at .
Then, and for . Since is
continuously differentiable, and is continuous, must also
be continuous at . Therefore, .

We next consider the more general case that the signals are
switched from Type A to Type C at , when starts to
increase at the maximum rate.

1) We use the signals in Fig. 4 to illustrate our proof. For
and at starts to increase under

(not since it is assumed that ). Suppose
on the contrary that the signals are switched to Type D at
and for all . Then, after

. Hence, there is a jump of at . Since
and the currents are continuous, it follows from

(20) and the continuity of its right-hand side (rhs) that there must
also be a jump of at . Hence, .

Let be a time instant in this Type D interval and .
We consider the problem of minimizing the energy over the in-
terval . Generally, the signals that minimizes the energy
over a subinterval needn’t be the same as the segments of sig-
nals that minimize the energy over the entire interval. But if we
impose a constraint on the initial and the final values of and
for the subinterval such that they are equal to the corresponding
optimal values for the entire interval, then the optimal signal
for the subinterval must also be optimal for the entire interval.
Here to disjoint from other subintervals, we only need to
impose a constraint on and : and

. What we will show in the following is that
the signals with a switch at are not optimal for the subin-
terval under the constraint, and

, and hence not optimal for the entire interval.
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Fig. 4. Illustration for the proof of Theorem 1.

We can choose such that on . If we increase
to for and keep

, then will be decreased to (see the dashed
curve). This can be seen as follows. From

we have

It is obvious that an increase of for will result
in a decrease of for . Meanwhile, will be increased to

(see Fig. 4). Let for , then
for all . Let satisfy , then

for all . For , let
, then the total energy over for and

is strictly less than that for and . This will indicate that
the signals and are not optimal if we can ensure that the
voltage corresponding to satisfies the bound
for .

Since is continuously differentiable, since and are
continuous and , it follows from (20) that if
there is a jump decrease of at , there must also be a jump
decrease of at . This shows that will not take the value

, but instead, it can only be after the switch to Type D.
Let be an arbitrarily small increase

of from and let and be the corresponding
increments of and , respectively. To keep the rhs of (20)
unchanged, we must have

(21)

where . Suppose that
is arbitrarily small, then for

and . Hence
for . Since

, we have for . As to

the subinterval , let on this interval. Since
is arbitrarily small, is also arbitrarily small. Hence,

from (21), we know that is arbitrarily small. Recalling that
, we have in this interval .

In view of these arguments, the energy over can be
further reduced without violating the constraint on the voltages.
This indicates that the signals with a switch to Type D before

reaches or reaches 0 is not optimal. This completes
the proof of 1).

2) This can be proven similarly to 1) by showing that the en-
ergy can be further reduced by increasing in a small interval
after .

3) This is obvious since and are continuous signals.
Similarly, we have the following theorem.
Theorem 2: Let be a set of optimal signals.

Suppose that the first interval is of Type B .
The signals can switch to Type A at
only if . They can switch to Type C

at only if . Consider the case that
they switch to Type D (with ) at .
Assume that . Then, the signals will not switch
to:

1) Type C before reaches or before reaches 0;
2) Type D (with ) before reaches

or before reaches 0;
3) Type A before reaches 0.

From Theorems 1 and 2, we conclude that, after the signals
have switched from Type A to Type C (or from Type B to Type
D), there will be no more switch before or
before one of the currents reaches 0.

C. The Optimal Solution: An Example

In this section, we use an example to illustrate how to
obtain the optimal solution using the stationary condition and
Theorems 1 and 2.

Example 2: Consider the same circuit systems as in Example
1. Suppose that . Since the signal is
periodic and symmetric, we only need to consider a half period.
Here we have . Let us first plot
the optimal signals without considering the voltage constraint in
Fig. 5. The actual and are unbounded but we clipped off
from above and below . Between the interval

, either or exceeds the constraint.
It is clear that Type A or Type B intervals (either or

) must be outside of and Type A can only
occur between 0 and and Type B can only occur
between and . We assume that the first interval is Type A.

It is also obvious that the second interval cannot be of Type B
since must be covered with Type C or Type D intervals.
We first try the second interval with Type D

. By Theorem 1, the switching time must be at
when reaches V. Computation reveals that this switch
to Type D will result in for . Hence, we can
exclude this possibility and try to switch to Type C at certain .
By Theorem 1, there will be no switch to other types after
and before or . With different , we obtained
three outcomes.
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Fig. 5. Optimal signals without considering the voltage constraint.

1) . The signal will reach
V at some , where . Clearly, it
is impossible to switch to Type A or B at . The switch
to Type D at will cause to exceed the bound (see
Fig. 6, the upper small figure). Also, if there is no switch
at will exceed the bound after . Hence, this case
is infeasible.

2) . The signal will not reach and
will not reach 0 before at some
(see Fig. 6, bottom). At . No matter
which type is switched at or not switch, either
or will go out of the bound after . Hence, this case is
also infeasible.

3) . The signal will not reach before
reaches 0 at some . The switch to Type B at results in
feasible solution and Type B can be continued until
(see Fig. 7).

We see that the third case is the only solution, among other
possible optimal solutions, that are feasible for the interval

. After , switching to any other type will increase the
energy consumption. Hence it is the optimal solution. Fig. 7
plots the optimal currents and voltages, where the dashed
curves in the current figure are the optimal currents for the case
of no bound on the voltages. Fig. 8 plots the auxiliary signals

and . Note that has an impulse at the instant of the
second switch. The minimal energy over the half period
is found to be .

It can be expected that the optimal signals for all the sinu-
soidal force signals will have the same pattern as demon-
strated in Example 2, which completely depends on the first
switching time . It turns out that the signals are very sensi-
tive to . A small variation of from the optimal value will
cause nonfeasibility, not just nonoptimality, of the resulting sig-
nals. We can also expect that an optimal for a certain force
signal will cause nonfeasibility when the force signal has a tiny
change in magnitude or frequency. Because of this high sensi-
tivity of the optimal solution, we would like to find some static
relations and so that the energy consumption
is close to the minimal value achieved by the open loop design.

Fig. 6. Some nonfeasible solutions resulting from different t .

Fig. 7. Optimal allocation and the signals.

IV. STATIC ALLOCATION STRATEGIES

In this section, we will consider static allocation and
closed-loop circuit systems. We will again use and

to denote the desired current and force signals.

A. A Class of Simple Allocation Functions

By static allocation, we mean that the values of and
only depend on for any . We consider the fol-

lowing class of simple allocation functions with a design pa-
rameter :

if
if

if

(22)

and
if
if

if

(23)

Fig. 9 plots some functions from this class with
and and , respectively. For ,
the currents are affine in , and for , the currents
are square roots of or 0. If is sinusoidal and its
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Fig. 8. Auxiliary optimal signals.

Fig. 9. A class of allocation functions.

magnitude is , then and will both be sinusoidal and the
functions in (22) and (23) result in full bias allocation. If ,
then (22) and (23) result in single actuator allocation. Let

, then for , we have .
We also call this the current bias. It is clear that smaller
will result in smaller current bias and reduced power loss. The
following example will show that a suitable static allocation can
reduce the power loss to a level very close to that by the optimal
nonstatic allocation.

Example 3: We consider the same circuit systems and force
signal as in Example 2, . We use
static allocation functions from the class in (22) and (23) to de-
termine and . The voltages are determined from

(24)

This is possible if all the signals are determined off-line (open-
loop). The allocation function from this class that results in the
least energy consumption while keeping the voltages bounded
by 10 V is found to be the one with . Under this
allocation function, the energy consumption in a half period is

, slightly greater than the optimal value

Fig. 10. Static allocation as compared with the optimal one.

. In Fig. 10, the current signals and the voltage
signals under this static allocation are plotted as compared to
the optimal signals (in dashed curves). We see that the two sets
of signals are very close.

This example shows that a static allocation can achieve almost
the same minimal energy consumption as that by the optimal
(nonstatic) allocation. Here, we should note that the situation in
Example 3 is still not a closed-loop type. It is not practical to
generate and from (24) on-line.

As we have discussed in Section II, there are two parts in a
closed-loop design. Apart from allocating the currents statically,
we also need to design feedback controls and

such that and will closely follow and
. One way is to first search for an allocation function, then

choose feedback laws for the circuit systems. The second way is
to first fix the feedback laws and then choose a proper allocation
strategy. Here, we take the second way for example.

Suppose that we are given the circuit control laws as
and . We can choose the smallest

that satisfy certain tracking performance by using frequency
analysis. It turns out that by increasing , the higher frequency
components of the signal can be reduced and hence the
voltage saturation can be avoided, resulting in better tracking
performance. The following table compares the Fourier coeffi-
cients of for different s (with ). The
last column in the table shows the energy consumption, where

:

From the table, we see that and are much smaller for
than for and the increase of total energy is not

obvious. This suggests that a good tracking performance could
be maintained by taking while the energy consumption
is significantly reduced. However, since the relation between the
Fourier coefficients and the magnitude of the voltage is hard to



1634 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 3, MAY 2004

characterize, it would be straightforward to find the minimal
which would avoid voltage saturation by simulation.

Example 4: Consider the same circuit systems as in Example
1 and . The circuit control laws are

and . The minimal that will
avoid voltage saturation is found to be , much smaller
than the magnitude of . Fig. 11 illustrates the tracking per-
formances under different . In the first column, ,
where the single actuator allocation strategy is used. In the third
column, , where a full bias allocation strategy is used.
The second column shows the tracking performance by using

. As we can see, the tracking performance is almost
the same as that in the third column. This shows that the tracking
performance can be well maintained by using a much smaller
biasing level. Since the power loss is proportional to ,
and has the same shape with , we see that the power loss is
much smaller than the case where . Exact computation
shows that the energy consumption (during a half period in the
steady state) corresponding to , are respectively,

and . Here,
we note that the energy consumption for is less than
the minimal value by open-loop design. This is not a contradic-
tion since there is a tracking error between and . Actually,
if we compute the energy from instead of , then the value
is .

Finally, we note that the minimal value of for the full
closed-loop design is 1.05, which is very close to the minimal
value of under the assumption of no tracking error.

As can be seen from optimization problem (5), the optimal
allocation strategy depends on the desired force signal. An al-
location strategy cannot be optimal for all the signals. Since the
steady state consumes most of the energy, we may use the steady
state desired net force signal for optimization. For system (1),

in the steady state.
Given , a guideline for choosing a static allocation from

(22) and (23) is to determine the smallest number such that
voltage saturation is avoided. It is clear that such an allocation
will also avoid voltage saturation if the magnitude of the desired
force is decreased or its frequency is decreased. To guarantee a
satisfactory force tracking performance, we need to choose the
force signal which has the largest magnitude and the highest
frequency.

B. Other Possible Allocation Functions

The allocation functions in (22) and (23) are not differentiable
at . This can be avoided by modifying them around

, as illustrated in Fig. 12, where is replaced with
in a neighborhood of . In the

case of , we choose .
The following is a comparison of the Fourier coefficients and

the total energy between the modified and the unmodified allo-
cation function:

Fig. 11. Tracking performances with respect to different current allocation.

Fig. 12. A modified allocation function.

As we can see from the table, the difference in the coefficients
and the energy is very small between the modified and unmod-
ified allocation functions.

There are many other choices of the allocation functions. The
principle is to keep energy consumption low while voltage sat-
uration is avoided.

V. CONCLUSION

Power loss reduction and performance improvement are
conflicting objectives. In this paper, we investigated the
fundamental reason behind performance degradation when
single actuator allocation strategy is adopted. Based on our
investigation results, we formulated the problem of minimizing
power loss under the constraint of bounded voltages. Optimal
solution was obtained for the class of sinusoidal force signals.
We also presented some static allocation strategies that would
result in a suboptimal power loss.
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