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Abstract

We consider the problem of enlarging the basin of attraction for a linear system under saturated linear feedback. An
LMI-based approach to this problem is developed. For discrete-time system, this approach is enhanced by the lifting
technique, which leads to further enlargement of the basin of attraction. The low convergence rate inherent with the large
invariant set (hence, the large basin of attraction) is prevented by the construction of a sequence of invariant ellipsoids
nested within the large one obtained. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion of invariant set has played an important role in the analysis and design of dynamical systems
(see, e.g., [2,3,7,15] and the references therein). For a stable linear system, a simple and popular type of
invariant set is the level set 
(P) = {x: xTPx61}, associated with the Lyapunov function V (x) = xTPx.
Another type of well-studied invariant set is polyhedra (see, e.g., [1,7]).
For linear systems under saturated stabilizing linear state feedback, both the problem of estimating the

basin of attraction (the largest invariant set) for a speci�c feedback gain matrix and that of searching for
an appropriate feedback gain matrix to result in a large basin of attraction are of paramount importance and
have attracted a great deal of attention from the control research community. Although these problems are
still far from being completely solved, recent literature shows that they have been examined extensively from
various aspects (see, e.g., [1,6,9,11] and the recent survey paper [2]). In particular, in [9], we investigated
continuous-time linear systems under saturated stabilizing linear feedback. We showed that, if the system is
of second order and has both open-loop poles in the open right half-plane, the boundary of the basin of
attraction is the unique unstable limit cycle of the closed-loop system and can be easily obtained from its
time-reversed system. Moreover, a family of gain matrices can be designed to obtain a basin of attraction that
is arbitrarily close to the null controllable region, the largest possible basin of attraction under any bounded
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controls. Though complete for the second-order continuous-time systems, these results cannot be extended in
an obvious way to either general higher-order systems or discrete-time systems, which do not always have
time-reversed systems.
For general linear systems under saturated linear stabilizing feedback, usually only an estimate of the basin

of attraction can be obtained. A simple way of estimating the basin of attraction is the largest linear invariant
ellipsoid associated with a quadratic Lyapunov function. By linear invariant ellipsoid, we mean an invariant
ellipsoid that is completely within the linear region of the saturation function. This estimate, though often
conservative, can be improved by an appropriate choice of the Lyapunov function and the feedback gain
matrix. For example, in the case that the open-loop system is not exponentially unstable, the linear invariant
ellipsoid can be made large enough to cover any a priori given (arbitrarily large) bounded set [11].
The objective of this paper is to present a systematic approach to the design of the feedback laws that

result in large basin of attraction for general linear systems, both in continuous- and in discrete-time. More
speci�cally, we will present an LMI-based approach to maximizing the linear invariant ellipsoid. Given a
reference set XR, the maximization is in the sense that the linear invariant ellipsoid contains the set �XR with
� being maximized. In the case that the open-loop system is not exponentially unstable, our design results in
linear invariant ellipsoid that includes any a priori given (arbitrarily large) bounded set as a subset. This is
the so-called semi-global stabilization [11–13]. For discrete-time systems, we show that this approach can be
enhanced by the lifting technique, which leads to further enlargement of the basin of attraction. Finally, the
low convergence rate inherent with the large basin of attraction can be prevented by constructing a sequence of
invariant ellipsoids nested within the large one obtained and optimizing the convergence rate of the piecewise
linear controller of Wredenhagen and Belanger [15].
The remainder of this paper is organized as follows. In Section 2, we present an LMI approach to the

maximization of the linear invariant ellipsoid for both continuous- and discrete-time systems. In Section 3,
we show how the lifting technique can be used to further enlarge the basin of attraction for discrete-time
systems. In Section 4, we show how the closed-loop system convergence rate can be increased by switching
the feedback gains between nested sequence of linear invariant ellipsoids. Two examples are included in
Section 5 to demonstrate the e�ectiveness of the proposed design techniques. Concluding remarks are made
in Section 6.

2. Maximizing the linear invariant ellipsoid

Consider the system

x(k + 1) = Ax(k) + B�(u(k)); x ∈ Rn; u ∈ Rm; (1)

where (A; B) is stabilizable. In this paper, we use �(·) to denote a standard saturation function of appropriate
dimensions. For example, in the above system, � :Rm → Rm, and �(u) = [�(u1); �(u2); : : : ; �(um)]T, where
�(ui) = sgn(ui)min{1; |ui|}. The closed-loop system under the feedback law u= Fx is given by

x(k + 1) = Ax(k) + B�(Fx(k)): (2)

Let fi be the ith row of F . Denote the linear region of system (2) as

L(F) := {x ∈ Rn: |fix|61; i = 1; 2; : : : ; m}:
Let F be such that A+ BF has all its eigenvalues inside the unit circle, then there exists P¿ 0 such that

(A+ BF)TP(A+ BF)− P¡ 0:

Denote the Lyapunov level set as 
(P):={x ∈ Rn: xTPx61}. If 
(P)⊂L(F), then 
(P) is an invariant set
and we call it a linear invariant ellipsoid.
Our design objective is to choose F and P such that 
(P)⊂L(F) is maximized in some sense. In the

literature, e.g., [4], the largeness of a set is usually measured by its volume. Here we will take its shape
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into consideration and will maximize 
(P) with respect to some reference set. To make the problem well
formulated, we introduce a reference set XR. Let XR be a bounded convex set, denote

� XR = {� x: x ∈ XR}:
The linear invariant ellipsoid 
(P) is said to be maximized over F and P if � is maximized such that
�XR ⊂
(P)⊂L(F). In practice, the shape of XR can be determined by the partial knowledge of the initial
states. It can also be chosen according to the shape of the null controllable region, as identi�ed in [9,8]. In
this paper, we will consider two types of XR:

• The polygon: XR = co{x1; x2; : : : ; xl} is the convex hull of a given set of states x1; x2; : : : ; xl ∈ Rn;
• The ellipsoid: XR = {x ∈ Rn: xTRx61}; R¿ 0.

Given system (1) and XR, the optimization problem can be described as follows:

sup
P¿0; F

�

s:t: (a) �XR ⊂
(P);
(b) 
(P)⊂L(F);
(c) (A+ BF)TP(A+ BF)− P¡ 0:

(3)

We also de�ne the supremum of � as �∗.
If XR is a polygon, then constraint (a) is equivalent to

�2xTi Pxi61; i = 1; 2; : : : ; l: (4)

If XR is an ellipsoid, then constraint (a) is equivalent to

�2P6R: (5)

On the other hand, constraint (b) is equivalent to

min{xTPx: fix = 1}¿1; i = 1; 2; : : : ; m: (6)

To see this, note that 
(P)⊂L(F) if and only if all the hyperplanes fix=±1; i= 1; 2; : : : ; m, lie completely
outside of 
(P) = {x ∈ Rn: xTPx61}, i.e., at each point x on the hyperplanes fix =±1, we have xTPx¿1.
The left-hand side of (6) is a convex optimization problem and has a unique minimum. By using the

Lagrange multiplier method, we obtain

min{xTPx: fix = 1}= (fiP−1fTi )
−1:

Consequently, constraint (b) is equivalent to

fiP−1fTi 61; i = 1; 2; : : : ; m: (7)

Thus, if XR is a polygon, then (3) can be rewritten as follows:

sup
P¿0;F

�

s:t: (a) �2xTi Pxi61; i = 1; 2; : : : ; l;
(b) fiP−1fTi 61; i = 1; 2; : : : ; m;
(c) (A+ BF)TP(A+ BF)− P¡ 0:

(8)

If XR is an ellipsoid, we just need to replace (a) with (5).
Constraints (a)–(c) are nonlinear and convex. The standard tool to transform such constraints into LMI is

Schur complements: Suppose Q¿ 0, then the LMI[
R S
ST Q

]
¿0
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if and only if R−SQ−1ST¿0. Let 
=1=�2; Q=P−1; Y =FP−1, then we can transform (8) into the following
LMI problem:

inf
Q;Y




s:t: (a)

[

 xTi

xi Q

]
¿0; i = 1; 2; : : : ; l;

(b)
[
1 yi
yTi Q

]
¿0; i = 1; 2; : : : ; m;

(c)
[

Q QAT + Y TBT

AQ + BY Q

]
¿ 0;

(9)

where we have used yi to denote the ith row of Y . For the case where XR is an ellipsoid, we can simply
replace (a) in (9) with 
Q¿R−1. We will denote the in�mum of 
 in the above optimization problem as

∗ = 1=(�∗)2.

Remark 1. When 
=
∗, there may not exist Q and Y that satisfy (a)–(c) in (9). In this case, we can choose

 = 
∗ + � with � arbitrarily small and solve for feasible solutions satisfying the constraints. For example,
suppose A has all its eigenvalues on or inside the unit circle, then 
∗ = 0 [11] and no Q¿ 0 satis�es (a) or
(5). By taking 
 arbitrarily small, we can make the set �XR ⊂
(P) ⊂L(F) arbitrarily large, i.e., semi-global
stabilization [12,13] can be achieved.

Remark 2. The above optimization method can be easily adapted to the continuous-time system by replacing
(c) in (8) with (A+ BF)TP + P(A+ BF)¡ 0 and (c) in (9) with QAT + AQ + Y TBT + BY ¡ 0.

3. Further enlargement of basin of attraction via lifting technique

The lifting technique has been used to improve the robust performance of discrete-time systems in [10] and
to design semi-global stabilizing controller in [5]. Here we will show that it can also be e�ciently used to
enlarge the basin of attraction. Let N¿1 be a positive integer. Denoting

�A= AN ; �B= [ AN−1B AN−2B · · ·B ]
and

�x(k) = x(kN ); u(k) =




u(kN )
u(kN + 1)

...
u(kN + N − 1)


 ;

we obtain the lifted N -step system

�x(k + 1) = �A �x(k) + �B�(u(k)); �x ∈ Rn; u ∈ RNm: (10)

Let u(k) = �F �x(k); �F ∈ RNm×n be a stabilizing feedback. The closed-loop system is

�x(k + 1) = �A �x(k) + �B�( �F �x(k)): (11)

Similar to the one-step case, the problem of maximizing the linear invariant ellipsoid can be described as

sup
P¿0; �F

�

s:t: (a) �XR ⊂
(P);
(b) 
(P)⊂L( �F) (or �f iP

−1 �f
T
i61; i = 1; 2; : : : ; Nm);

(c) ( �A+ �B �F)TP( �A+ �B �F)− P¡ 0

(12)
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which can be solved by the LMI approach proposed in the previous section. Denoting the supremum of � as
�∗(N ), we have the following theorem that justi�es the use of lifting technique.

Theorem 1. For any integers p;N¿1; �∗(p)6�∗(pN ).

Proof. Case 1: p= 1. Denote the set of feasible (�; P) satisfying constraints (a)–(c) as

�(N ) = {(�; P): ∃ �F s:t: (a); (b) and (c) are satis�ed}:
It su�ces to show that �(1)⊂�(N ).
Suppose that (�; P) ∈ �(1), then there exists an F ∈ Rm×n such that

fiP−1fTi 61; i = 1; 2; : : : ; m (13)

and

(A+ BF)TP(A+ BF)− P¡ 0 (14)

which is equivalent to[
P (A+ BF)T

A+ BF P−1

]
¿ 0

and to

(A+ BF)P−1(A+ BF)T − P−1¡ 0: (15)

Let

�F =




F
F(A+ BF)

...
F(A+ BF)N−1


 ;

then

�A+ �B �F = AN + AN−1BF + AN−2BF(A+ BF) + · · ·+ BF(A+ BF)N−1 = (A+ BF)N :
It then follows from (14) that

( �A+ �B �F)TP( �A+ �B �F) = ((A+ BF)T)NP(A+ BF)N ¡ ((A+ BF)T)N−1P(A+ BF)N−1¡ · · ·¡P

which shows that P and �F satisfy constraint (c).
Since �fj = fi(A+ BF)

q for some i6m; q6N − 1, we have
�fjP

−1 �f
T
j = fi(A+ BF)

qP−1((A+ BF)T)qfTi :

It follows from (13) and (15) that

�fjP
−1 �f

T
j 6fi(A+ BF)

q−1P−1((A+ BF)T)q−1fTi 6 · · ·6fiP−1fTi 61

which shows that P and �F also satisfy constraint (b). Hence (�; P) ∈ �(N ).
Case 2: p¿ 1. Let

Â= Ap; B̂= [Ap−1B Ap−2B · · ·B]
and

�A= ApN ; �B= [ApN−1B ApN−2B · · ·B];
then

�A= Â
N
; �B= [Â

N−1
B̂ Â

N−2
B̂ · · · B̂]:
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Suppose we �rst lift system (1) with step p to get x̂(k) = x(kp),

x̂(k + 1) = Âx̂(k) + B̂�(û(k));

then lift the above system with step N to get �x(k) = x̂(kN ) = x(kNp),

�x(k + 1) = �A �x(k) + �B�(u(k)):

Applying the result in Case 1, we immediately have �∗(p)6�∗(pN ).

Remark 3. The equality �∗(p) = �∗(pN ) with N ¿ 1 can occur in some special cases. For example, let
A= a¿ 1, B= 1, and XR = [− 1; 1]. It can be veri�ed that �∗(N ) = 1=(a− 1) for all N¿1.

From the above theorem, we see that

�∗(1)6�∗(2)6�∗(4)6�∗(8) · · · ;

�∗(1)6�∗(3)6�∗(6)6�∗(12) · · · :
But �∗(N1)6�∗(N2) does not necessarily hold for all N1¡N2. It should also be noted that, because of lifting,
the resulting 
(P) is not necessarily invariant for the original system at each step (see Fig. 2).

4. Performance improvement

Inherent with the achieved large basin of attraction is however the low convergence rate. To improve the
convergence performance, we can use the idea of piecewise linear control [15] to design a set of nested
ellipsoids 
(PM )⊂
(PM−1)⊂ · · ·⊂
(P1)⊂
(P0), such that when the state enters an inner ellipsoid, the
controller is switched to another feedback which makes this ellipsoid invariant with an increased convergence
rate. Here we would like to explore the possibility of further increasing the overall convergence rate by
maximizing the convergence rate in each of the nested ellipsoids. The nested invariant sets can be simply
chosen by setting

Pi = �iP0; 1¡�1¡�2¡ · · ·¡�M:

The convergence rate inside 
(P) under a feedback u=Fx can be measured by a positive number c¡ 1 such
that

(A+ BF)TP(A+ BF)− cP60: (16)

We note that such F and c always exist for any P = Pi since P0, F0 and c = 1 satisfy (16). Smaller c
indicates faster convergence rate. Now let P = �P0 be �xed, we need to design F such that c is minimized.
The problem can be stated as follows. For a given �,

min
F

c

s:t: (a) fiP−1
0 f

T
i 6�; i = 1; 2; : : : ; m; (
(�P0)⊂L(F));

(b) (A+ BF)TP0(A+ BF)− cP060:
(17)

We denote the minimum of c as c∗(�). For the lifted N -step controller design, we can replace A; B and F with
�A; �B and �F , respectively. As in the previous sections, this optimization problem can also be put into the LMI
framework. We note here that other performance criteria can also be formulated into a similar optimization
problem (see, e.g., [14]).

Proposition 1. c∗(�) is decreased as � is increased. If B has full row rank; then there exists a �0 such that
c∗(�) = 0 for all �¿�0.
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Table 1
The increase of �∗(N )

N 1 2 4 8 16 32

�∗(N ) 1.0650 1.0930 1.1896 1.4017 1.5164 1.5426

Proof. Constraint (b) in (17) is equivalent to

P−(1=2)
0 (A+ BF)TP0(A+ BF)P

−(1=2)
0 6cI:

Hence

c∗(�)= min �max[P
−(1=2)
0 (A+ BF)TP0(A+ BF)P

−(1=2)
0 ]

s:t: fiP−1
0 f

T
i 6�; i = 1; 2; : : : ; m:

As � is increased, the constraint fiP−1
0 f

T
i 6� becomes less restrictive, hence c

∗(�) will decrease.
If B has full row rank, then there exists F1 such that A + BF1 = 0. Let the ith row of F1 be f1i. Let

�0 = max{f1iP−1
0 f

T
1i : i = 1; 2; : : : ; m}, then for all �¿�0; c∗(�) = 0.

Usually, for system (1), B does not have full row rank. For the lifted system (10), if (A; B) is controllable,
then �B will have full row rank when N¿n. We will see in the examples that the lifting design method is
e�cient not only in enlarging the linear invariant ellipsoid, but also in increasing the convergence rate.
Now, let 1¡�1¡�2¡ · · ·¡�M be a sequence of numbers. Denote the optimal solution of (17) corre-

sponding to �i as c∗i and F
∗
i . A switching feedback law can be designed as

u(k) =



F0 x(k) if x(k) ∈ 
(P0)\
(�1P0);
F∗
1 x(k) if x(k) ∈ 
(�1P0)\
(�2P0);

...
F∗
Mx(k) if x(k) ∈ 
(�MP0):

In the set 
(�iP0) \ 
(�i+1P0), the convergence rate is c∗i . As the state enters the inner set 
(�i+1P0)\

(�i+2P0), the convergence rate is increased to c∗i+1.

5. Examples

Example 1. Consider a second-order system in the form of (1) with

A=
[

0:9510 0:5408
−0:2704 1:7622;

]
; B=

[
0:0980
0:5408

]
:

A has two unstable eigenvalues {1:2214; 1:4918}. The reference set XR = {x ∈ R2: xTRx61}, where

R=
[

1:2862 −1:0310
−1:0310 4:7138

]
;

is chosen according to the shape of the null controllable region. Table 1 shows the computational result for
�∗(N ); N = 1; 2; 4; 8; 16; 32.
Fig. 1 shows the e�ectiveness of the lifting design. The innermost curve is the boundary of �∗(1)XR. For

N =2; 4; 8; 16; 32, the set �∗(N )XR grows bigger. The outermost curve is the boundary of the null controllable
region obtained by the method proposed in [8].
We see that the increase from �∗(16) to �∗(32) is small so we take N = 16 as the lifting step. Now we

design for the 16-step lifted system a set of nested invariant ellipsoids to accelerate the convergence rate. The
optimal P0 corresponding to �∗(16) is

P0 =
[

0:5593 −0:4483
−0:4483 2:0497

]
= 0:4348R=

1
(�∗(16))2

R:
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Fig. 1. The sets �∗(N )XR.

Fig. 2. The deadbeat control.

So 
(P0) = �∗(16)XR. The optimal feedback is

�F
T
0 =

[
0:3504 0:4636 0:6129 0:7324 0:7279 0:6374 0:5467 0:4777

−1:4294 −1:3917 −1:2360 −0:8490 −0:2872 0:1679 0:4481 0:6167
0:4279 0:3918 0:3653 0:3454 0:3302 0:3185 0:3094 0:3021
0:7225 0:7924 0:8406 0:8750 0:9003 0:9193 0:9337 0:9447

]
:

The eigenvalues of �A+ �B �F are 0:2758± j0:8814, which indicates a low convergence rate.
We take � = 1:04; 1:08; 1:1, and get the corresponding c∗(�) as 0:2650; 0:005; 0. This shows that the con-

vergence rate is accelerated. The fact that c∗(1:1)=0 implies that all the states in 
(1:1P0) can be steered to
the origin in 16 steps (counted for the original unlifted system) by a linear feedback controller. The deadbeat
feedback matrix is

�F
T
0 =

[
0:3115 0:4671 0:6665 0:7789 0:7236 0:6235 0:5433 0:4864

−1:4990 −1:4655 −1:2419 −0:6839 −0:0779 0:3118 0:5342 0:6662
0:4461 0:4170 0:3953 0:3788 0:3659 0:3555 0:3470 0:3398
0:7494 0:8047 0:8428 0:8697 0:8887 0:9020 0:9110 0:9164

]
:

Fig. 2 illustrates this design result, where the innermost ellipsoid is 
(1:1P0) and the larger ellipsoid is

(P0) = �∗(16)XR. The outermost curve is the boundary of the null controllable region. The initial states
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Fig. 3. The vertices of XR.

Table 2
The increase of �∗(N )

N 1 2 4 8 16 32

�∗(N ) 0.4274 0.4382 0.4593 0.4868 0.5564 0.6041

Fig. 4. �∗(1)XR and the null controllable region.
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Fig. 5. �∗(32)XR and the null controllable region.

on the boundary of 
(1:1P0) are marked with “∗”. They are all driven to the origin by the linear feedback
control in 16 steps. Fig. 2 also shows some trajectories of the unlifted system under this 16-step control law.

Example 2. Consider a third-order system in the form of (1) with

A=


 1:1972 1:0775 0
0 1:1972 0
0 0 1:4333


 ; B=


 1:44310:9861
1:0833


 :

All of the eigenvalues of A are unstable. For the purpose of comparison, we choose 18 points on the boundary
of the null controllable region as the vertices of XR (see Fig. 3), where the vertices of XR are marked with ‘∗’
and the vertices of the null controllable region are marked with ‘.’. Table 2 shows the computational result
for �∗(N ); N = 1; 2; 4; 8; 16; 32.
We also see that �∗(N ) increases signi�cantly as N is increased. (See Fig. 4 for the vertices of �∗(1)XR

and Fig. 5 for the vertices of �∗(32)XR, both in comparison with the null controllable region.)

6. Conclusions

We have proposed an LMI-based approach to the maximization of the linear invariant ellipsoid for linear
systems under saturated linear feedback. The proposed approach applies to both continuous- and discrete-time
systems. For discrete-time systems, we also showed that the lifting technique can be used to further enlarge
the basin of attraction. Finally, the low convergence rate inherent with the large basin of attraction is increased
by switching feedback laws between a sequence of nested invariant ellipsoids. Two examples are worked out
to demonstrate the e�ectiveness of the proposed design techniques.
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