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Abstract

For a linear system under a given saturated linear feedback, we propose feedback laws that achieve semi-global stabilization
on the null controllable region while preserving the performance of the original feedback law in a 4xed region. Here by
semi-global stabilization on the null controllable region we mean the design of feedback laws that result in a domain of
attraction that includes any a priori given compact subset of the null controllable region. Our design guarantees that the region
on which the original performance is preserved would not shrink as the domain of attraction is enlarged by appropriately
adjusting the feedback laws. Both continuous-time and discrete-time systems will be considered. c© 2001 Elsevier Science
B.V. All rights reserved.

Keywords: Actuator saturation; Semi-global stabilization; Performance

1. Introduction

We revisit the problem of semi-globally stabilizing
a linear system on its null controllable region with
saturating actuators. The null controllable region, de-
noted as C, is the set of states that can be steered to
the origin of the state space in a 4nite time using sat-
urating actuators. The problem of semi-global stabi-
lization on the null controllable region is, for any a
priori given set X that is in the interior of the null
controllable region C, to 4nd a stabilizing feedback
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law u = FX(x) such that the resulting domain of at-
traction includes X as a subset.

This problem has been well studied for systems
that are so-called asymptotically null controllable
with bounded controls (ANCBC). 2 In particular, it
is established in [6,7] that, in both continuous-time
and discrete-time, a linear ANCBC system is
semi-globally asymptotically stabilizable on its null
controllable region by saturated linear feedback. We
note that in this case, the null controllable region is
the entire state space. The key to the possibility of
achieving semi-global stabilization on C by linear

2 A continuous-time [resp. discrete-time] linear system is asymp-
totically null controllable with bounded controls if it is stabilizable
in the usual linear sense and has all its open loop poles in the
closed left-half plane [resp. the closed unit disc].
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feedback is that the open loop system is ANCBC.
In general saturated linear feedback cannot achieve
semi-global stabilization on C if the open loop sys-
tem is not ANCBC, although there have been many
attempts to enlarge the domain of attraction by appro-
priately choosing the linear feedback gains (see, for
example, [3] and the references therein).

Our objective in this paper is to construct nonlin-
ear feedback laws that semi-globally stabilize a lin-
ear system (not necessarily ANCBC) subject to actu-
ator saturation. This problem has been addressed be-
fore. In particular, it was established in [4,5] that, in
both continuous-time and discrete-time, a linear sys-
tem with only two exponentially unstable modes can
be semi-globally stabilized on its null controllable re-
gion by controllers that switch between two linear
feedback laws. By de4ning these two linear feedback
laws on an appropriately constructed invariant set, it is
guaranteed that switching would occur at most once.
In discrete-time, general systems have been consid-
ered in [1] and feedback laws were constructed that
achieve semi-global stabilization on the null control-
lable region. More speci4cally, a sequence of poly-
gons are constructed that approaches the null control-
lable region as the number of vertices increases. The
vertices divide the polygons into cones. The state feed-
back laws are then constructed based on the controls
that drive the vertices of a polygon to the origin ac-
cording to which cone the state belongs to.

In this paper we will 4rst consider a general linear
system subject to actuator saturation,

x(k + 1)=Ax(k)+B�(u(k)); x ∈ Rn; u ∈ Rm; (1)

where � is the standard saturation function. With
a slight abuse of notation, we use the same sym-
bol to denote both the vector saturation func-
tion and the scalar saturation function, i.e., if
v ∈ Rm, then �(v) = [�(v1); �(v2); : : : ; �(vm)]T and
�(vi) = sgn(vi)min{1; |vi|}. We also assume that a
feedback law u = F0(x) has been designed such that
the resulting closed-loop system in the absence of the
saturation function

x(k + 1) = Ax(k) + BF0(x(k)) (2)

has the desired performance. We need to study the
stability and performance of the actual system in the
presence of actuator saturation,

x(k + 1) = Ax(k) + B�(F0(x(k))): (3)

Let D0 be an invariant set of the closed-loop system
and be inside the linear region of the saturation func-
tion: {x ∈ Rn: ‖F0(x)‖∞ 6 1}. For example, a lin-
ear state feedback law u = F0x could be constructed
that places the closed-loop poles at certain desired lo-
cations and D0 can be a level set of the form {x ∈
Rn: xTP0x 6 1}, where P0¿ 0 satis4es

(A+ BF0)TP0(A+ BF0)− P0¡ 0: (4)

Suppose thatD0 is in the linear region, then it is an in-
variant set and within D0, the saturation function does
not have an eLect and hence the desired closed-loop
performance is preserved.

The objective of this paper is to construct feedback
laws that semi-globally stabilize the system (1) on its
null controllable region and in the mean time preserve
the desired closed-loop performance in the region D0.
The structure of our feedback laws is completely dif-
ferent from that of [1]. Instead of resorting to the cones
of the polygons which are not invariant sets, we design
our controller by combining a sequence of feedback
laws u=Fi(x); i=0; 1; : : : ; M , in a way that the union
of the invariant sets corresponding to each of the feed-
back laws is also an invariant set, which is shown to
be in the domain of attraction. By appropriately se-
lecting this sequence of feedback laws, the union of
the invariant sets can then be made large enough to
enclose any subset in the interior of the null control-
lable region. This idea was made feasible by the use
of the lifting technique, which was used in [2] to pro-
vide an alternative proof of the results of [7] men-
tioned earlier. We will also extend the above results
to continuous-time systems.

This paper is organized as follows. In Section 2 we
propose a method for expanding the domain of attrac-
tion by switching between a 4nite sequence of feed-
back laws. This switching design is then used in Sec-
tion 3 to show that the domain of attraction can be
enlarged to include any subset in the interior of the
null controllable region. Section 4 extends the results
of Section 3 to continuous-time systems. An exam-
ple is given in Section 5 to illustrate our design re-
sults. Finally, a brief concluding remark is made in
Section 6.

2. Expansion of the domain of attraction

Let u = Fi(x); i = 0; 1; : : : ; M , be a 4nite sequence
of stabilizing feedback laws. Among these feedback
laws, u=F0(x) can be viewed as the feedback law that
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was originally designed to guarantee certain desired
closed-loop performance in a given region and the
remaining feedback laws have been introduced for the
purpose of enlarging the domain of attraction while
preserving the regional performance of the original
feedback law u= F0(x).

For each i = 0; 1; : : : ; M , let Di be an invariant set
inside the domain of attraction of the equilibrium x=0
of the closed-loop system under feedback law u =
Fi(x),

x(k + 1) = Ax(k) + B�(Fi(x)): (5)

Denote

�i =
i⋃

j=0

Dj; i = 0; 1; : : : ; M:

Then, �0 ⊂ �1 ⊂ · · · ⊂ �M .

Theorem 1. For each i=0; 1; : : : ; M; �i is an invari-
ant set inside the domain of attraction of x=0 of the
closed-loop system

x(k + 1) = Ax(k) + B�(Gi(x(k)); (6)

where

Gi(x):=




F0(x); if x ∈ �0;

F1(x); if x ∈ �1\�0;

...
...

Fi(x); if x ∈ �i\�i−1:

(7)

Here we note that, for each i=1; 2; : : : ; M; �i\�i−1=
Di\

⋃i−1
j=0 Dj.

Proof. We prove the theorem by induction. The state-
ment is trivially true for i = 0. Suppose it is true for
i ¿ 0, we need to show that it is also true for i + 1.
Let us write Gi+1(x) as

Gi+1(x) =

{
Gi(x); if x ∈ �i;

Fi+1(x); if x ∈ �i+1\�i:
(8)

If x(0) ∈ �i, then under the feedback u=Gi(x); x(k) ∈
�i for all k and limk→∞ x(k) = 0. If x(0) ∈
�i+1\�i = Di+1\�i, since Di+1 is inside the domain
of attraction under the feedback u = Fi+1(x) and �i

is a neighborhood of the origin, x(k) will enter �i at
some k1¡∞. After that, the control is switched to
u = Gi(x) and by the foregoing argument, we also
have limk→∞ x(k)=0. This shows that �i+1 is inside
the domain of attraction.

It is also easy to see that �i+1 is an invariant set
under u= Gi+1(x).

From (7), we see that if x ∈ �0=D0, then u=F0(x)
is in eLect and hence the pre-designed performance is
guaranteed on D0.

For later use in Section 4, it can be veri4ed in
a similar way that Theorem 1 is also true for a
continuous-time system ẋ(t)=f(x; u; t), in particular,

ẋ(t) = Ax(t) + B�(u(t)); (9)

with a set of stabilizing feedback laws u= Fi(x); i =
0; 1; : : : ; M . In the context of continuous-time systems,
the existence and uniqueness of the solution of the
closed-loop system equation is guaranteed by the fact
that �i’s are invariant sets and nested to each other.
In other words, a trajectory starting from a set �i will
remain in it. Once it enters a smaller set �j; j¡ i, it
will again remain in it.

3. A semi-global stabilization strategy

In this section, we utilize the lifting technique to
design a sequence of ellipsoids that cover any pre-
scribed compact subset of the null controllable region.
Each ellipsoid is invariant and in the domain of attrac-
tion for the lifted closed-loop system under an appro-
priately chosen linear feedback. This, by Theorem 1,
would achieve semi-global stabilization for the lifted
system, and hence for the original system.

The null controllable region of (1) at step K , de-
noted as C(K), is the set of states that can be steered
to the origin in K steps [5]. We see that x0 ∈ C(K)
if and only if there exists a control u(·); ‖u(k)‖∞ 6
1; k = 0; 1; : : : ; K − 1, such that

AKx0 +
K−1∑
i=0

AK−i−1Bu(i) = 0: (10)

The null controllable region, denoted as C, is the set
of states that can be steered to the origin in a 4nite
number of steps. Clearly, C=

⋃
K¿0 C(K) and it can

be shown by standard analysis that any compact subset
of C is a subset of C(K) for some K . For simplicity,
we assume that the pair (A; B) is controllable and A
is nonsingular. Then there is an integer n0 6 n such
that, for all K ¿ n0; C(K) contains the origin in its
interior and is bounded.

For a positive integer L, the lifted system of (1)
with step L is given by

xL(k + 1) = ALxL(k) + BL�(uL(k)); (11)
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where

xL(k) = x(kL); uL(k) =




u(kL)

u(kL+ 1)

u(kL+ L− 1)


 ;

AL = AL; BL = [AL−1BAL−2B · · · AB B]: (12)

We have more Pexibility in the design of a system by
using the lifting technique because it allows us to see
further the eLect of a control law and to consider the
combined eLect of the control action at several steps.

For a feedback matrix F ∈ RmL×n, denote the unsat-
urated region (linear region) of the closed-loop system

xL(k + 1) = ALxL(k) + BL�(FxL(k)) (13)

as

L(F):={x ∈ Rn: |fjx|6 1; j = 1; 2; : : : ; mL};
where fj is the jth row of F . If L ¿ n0, then there
exists an F such that AL + BLF = 0. For such an F ,
there is a corresponding L(F) and for all xL0 = x0 ∈
L(F), ALx0 + BL�(Fx0) = (AL + BLF)x0 = 0. Hence
L(F) is an invariant set of the lifted system (13) and
is inside the domain of attraction.

For a positive de4nite matrix P ∈ Rn×n, denote

E(P) = {x ∈ Rn: xTPx 6 1}:
Suppose that E(P) ⊂ L(F), then under the feedback
law uL = FxL, E(P) is also an invariant set inside the
domain of attraction. Here we are interested in the el-
lipsoids because they can be generalized to the Lya-
punov level sets for the case AL + BLF �= 0. We will
show that any compact subset of the null controllable
region can be covered by the union of a 4nite set of
such ellipsoids.

Lemma 1. Given an integer L ¿ n0 and a posi-
tive number �¡ 1; there exists a family of Fi ∈
RmL×n; i = 1; 2; : : : ; M; with corresponding positive
de8nite matrices Pi’s; such that AL + BLFi = 0,

E(Pi) ⊂ L(Fi); i = 1; 2; : : : ; M;

and

�C(L) ⊂
M⋃
i=1

E(Pi);

where �C(L) = {�x: x ∈ C(L)}.

Proof. Let @(�C(L)) be the boundary of �C(L).
Firstly, we show that, there exists an �¿ 0 such that,
for any x1 ∈ @(�C(L)), there exist an F ∈ RmL×n and

P¿ 0 that satisfy

AL + BLF = 0 and B(x1; �) ⊂ E(P) ⊂ L(F);

where B(x1; �) = {x ∈ Rn: ‖x − x1‖2 6 �}.
Let e‘ be the unit vector in Rn whose ‘th element is

1 and other elements are zeros. For simplicity, assume
x1=�e1, otherwise we can use a unitary transformation
x → Vx; V TV = I , to satisfy this. Note that a unitary
transformation is equivalent to rotating the state space
and does not change the shapes of B(x1; �);E(P) and
C(L).

Since x1 = �e1 ∈ �C(L), it follows from (10) and
(12) that there exists a uL1; ‖uL1‖∞ 6 �, such that

AL�e1 + BLuL1 = 0: (14)

De4ne

" =
max{‖x‖2: x ∈ @C(L)}
min{‖x‖2: x ∈ @C(L)} :

Since L ¿ n0, C(L) includes the origin in its inte-
rior and "¡∞. It follows that �e‘ ∈ "�C(L) for all
‘ ¿ 2. Therefore, for each ‘ ¿ 2, there exists a
uL‘; ‖uL‘‖6 "�, such that

AL�e‘ + BLuL‘ = 0: (15)

Let F = {fj‘} be chosen as

F =
1
�
[uL1 uL2 · · · uLn];

then |fj1| 6 �=� and |fj‘| 6 "�=� for ‘ = 2; : : : ; n
and j = 1; 2; : : : ; mL. From (14) and (15), we have

(AL + BLF)e‘ = ALe‘ +
1
�
BLuL‘ = 0; ‘ = 1; 2; : : : ; n:

This shows that AL + BLF = 0.
Let

P =

[
p1 0

0 p2In−1

]
;

where

p1 =
1
�2

(
2�
� + 1

)2
;

p2 = (n− 1)
(
�"
�

)2(
1− (� + 1)2

4

)−1

:

Let �min = min{‖x‖: x ∈ @(�C(L))} and

�=
(
1− 2�

� + 1

)
�min

{
max

(
2�
� + 1

;

2
√
n− 1)�"√

4− (� + 1)2

)}−1

:
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Then ‖P1=2‖2�6 1− 2�=(�+1). Note that � is inde-
pendent of � and a particular x1.

We also have

fjP−1fT
j =

1
p1
f2
j1 +

1
p2

n∑
‘=2

f2
j‘

6
1
p1

(
�
�

)2
+
n− 1
p2

(
�"
�

)2
= 1; (16)

which implies that E(P) ⊂ L(F). To see this, we
verify that, for any x ∈ E(P),

|fjx| = |fjP−(1=2)P1=2x|
6 (fjP−1fT

j )
1=2(xTPx)1=2 6 1:

For x ∈ B(x1; �), we have

‖P1=2x‖26 ‖P1=2x1‖2 + ‖P1=2(x − x1)‖2

6
2�
� + 1

+ ‖P1=2‖2�6 1:

This shows that xTPx 6 1 and hence B(x1; �) ⊂
E(P) ⊂ L(F).

Because @(�C(L)) is a compact set, there exists a
4nite set of xi ∈ @(�C(L)); i = 1; 2; : : : ; M , such that
@(�C(L)) ⊂ ⋃M

i=1 B(xi; �). By the foregoing proof,
we know that for each xi ∈ @(�C(L)), there exist an
Fi and Pi such that AL + BLFi = 0 and

B(xi; �) ⊂ E(Pi) ⊂ L(Fi):

Hence,

@(�C(L)) ⊂
M⋃
i=1

E(Pi):

It then follows that

�C(L) ⊂
M⋃
i=1

E(Pi):

To see this, for any x ∈ �C(L), let y be an intersec-
tion point of @(�C(L)) with the straight line passing
through the origin and x. Hence, y ∈ E(Pi0 ) for some
i0. Since E(Pi0 ) is convex and contains the origin, x ∈
E(Pi0 ).

Remark 1. Wewould like to point out that, the family
of Fi’s may contain repeated members with diLerent
Pi’s. This is the case, for example, when the system
has a single input (m = 1) and the lifting step L is
the same as n, the dimension of the state space. In
this case, we have only a unique Fi = −B−1

L AL with
C(L) ⊂ L(Fi).

Lemma 1 shows that �C(L) can be covered by a
4nite number of ellipsoids and within each ellipsoid
there is a corresponding linear feedback law such that
the state of (11) will be steered to the origin the next
step, or equivalently, the state of (1) will be steered to
the origin in L steps. Because � can be made arbitrar-
ily close to 1 and L can be made arbitrarily large, any
compact subset of C can be covered by a family of
such ellipsoids. It should be noted that as � gets closer
to 1, � will decrease and we need more ellipsoids to
cover �C(L), although the determination of these el-
lipsoids could be technically involved for higher order
systems. Also, in the above development, we need to
lift the system by L steps to cover �C(L). Actually, the
lifting step can be reduced if we replace the dead-beat
condition AL + BLF = 0 with a less restrictive one:

(AL + BLF)TP(AL + BLF)− cP 6 0;

where c ∈ (0; 1) speci4es the requirement of the con-
vergence rate. A direct consequence of Lemma 1 is

Theorem 2. Given any compact subset X0 of C and a
number c ∈ (0; 1); there exist an L¿ 1 and a family
of Fi ∈ RmL×n; i = 1; 2; : : : ; M; with corresponding
positive de8nite matrices Pi’s; such that

(AL + BLFi)TPi(AL + BLFi)− cPi 6 0; (17)

E(Pi) ⊂ L(Fi); i = 1; 2; : : : ; M; (18)

and

X0 ⊂
M⋃
i=1

E(Pi): (19)

Because of (17) and (18), E(Pi) is an invariant set
inside the domain of attraction for the closed-loop sys-
tem

xL(k + 1) = ALxL(k) + BL�(FixL(k)):

By Theorem 1, we can use a switching controller
to make

⋃M
i=1 E(Pi) inside the domain of attraction.

Once the state enters the region E(P0), the controller
switches to the feedback law

uL(k) = QF0(xL(k)) =




F0(xL(k))

F0(x(kL+ 1))

...

F0(x(kL+ L− 1))



; (20)
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where the variables x(kL+i); i=1; 2; : : : ; L−1, can be
recursively computed from the state xL(k) as follows:

x(kL+ 1) = AxL(k) + BF0(xL(k));

x(kL+ 2) = Ax(kL+ 1) + BF0(x(kL+ 1)

= A(AxL(k) + BF0(xL(k)))

+BF0(AxL(k) + BF0(xL(k)))

...

x(kL+ i + 1) = Ax(kL+ i) + BF0(x(kL+ i)):

Since feedback law (20) corresponds to u = F0(x)
in the original time index, under which E(P0) is an
invariant set, E(P0) is also an invariant set under feed-
back law (20) in the lifted time index and the desired
performance in this region is preserved.

We also observe that, due to the switching and
lifting that are involved in the construction of feed-
back laws, our 4nal semi-globally stabilizing feedback
laws, when implemented in the original system (1),
are nonlinear and periodic in time.

4. Continuous-time systems

In this section, we consider the continuous-time
counterpart of the system (1)

ẋ(t) = Ax(t) + B�(u(t)); x ∈ Rn; u ∈ Rm: (21)

The null controllable region at time T , denoted as
C(T ), is the set of states that can be steered to the
origin in time T by a measurable control input u. The
null controllable region, denoted as C, is

⋃
T¿0 C(T ).

Let h¿ 0 be the lifting period. We are now inter-
ested in controlling the state of (21) at times kh; k =
1; 2; : : : :Denote xh(k)=x(kh) and uh(k; +)=u(kh++).
Let Ah = eAh; then the lifted system is

xh(k + 1) = Ahxh(k) +
∫ h

0
eA(h−+)B�(uh(k; +)) d+:

(22)

Denote the set of m × n dimensional measurable
functions de4ned on [0; h) as Fm×n. With a matrix
function F ∈ Fm×n, let the feedback control be
uh(k; +) = F(+)xh(k). Then the closed-loop system is

xh(k + 1) = Ahxh(k) +
∫ h

0
eA(h−+)B�(F(+)xh(k)) d+:

(23)

The unsaturated region of the feedback law is then
given by,

L(F):={x ∈ Rn : |fj(+)x|6 1;

j = 1; 2; : : : ; m; + ∈ [0; h)};
where fj ∈ F1×n is the jth row of F . If xh(k) ∈
L(F), then �(F(+)xh(k)) = F(+)xh(k) and

xh(k + 1) =

(
Ah +

∫ h

0
eA(h−+)BF(+) d+

)
xh(k): (24)

The feedback uh(k; +)=F(+)xh(k) is stabilizing if there
exists P¿ 0 such that(
Ah +

∫ h

0
eA(h−+)BF(+) d+

)T

×P
(
Ah +

∫ h

0
eA(h−+)BF(+) d+

)
− P 6 0:

Note that P can be scaled such that E(P) ⊂ L(F). In
this case, E(P) is an invariant set inside the domain
of attraction for the system (23). Since for all xh(k) ∈
E(P), the control is linear in xh(k), so, when xh(k)
tends to the origin, the control uh(k; +) = F(+)xh(k)
will gets smaller and hence the state of the original
system (21) between t= kh and t=(k +1)h will stay
close to xh(k). Similar to the discrete-time case, we
have the following lemma.

Lemma 2. Given h¿ 0 and a positive number �¡ 1;
there exists a family of Fi ∈ Fm×n; i = 1; 2; : : : ; M;
with corresponding positive de8nite matrices Pi’s;
such that

Ah +
∫ h

0
eA(h−+)BFi(+) d+= 0;

E(Pi) ⊂ L(Fi); i = 1; 2; : : : ; M;

and

�C(h) ⊂
M⋃
i=1

E(Pi):

Proof. The idea of the proof is the same as that of
Lemma 1. Here we just show how to construct �, F
and P for a given x1 ∈ @(�C(h)). We also assume that
x1 = �e1. Since �e1 ∈ @(�C(h)), there exists a u1 ∈
Fm×1, ‖u1(+)‖∞ 6 � for all + ∈ [0; h), such that

Ah�e1 +
∫ h

0
eA(h−+)Bu1(+) d+= 0;
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and for ‘¿ 2, there exists a u‘ ∈ Fm×1; ‖u‘(+)‖∞ 6
�" for all + ∈ [0; h), such that

Ah�e‘ +
∫ h

0
eA(h−+)Bu‘(+) d+= 0:

Let F = 1=�[u1 u2 · · · un], and P, � be the same as
those in the proof of Lemma 1, the remaining part of
the proof will be the same as that of Lemma 1 except
that (16) is replaced with

fj(+)P−1fT
j (+)6 1; ∀+ ∈ [0; h); j = 1; 2; : : : ; m:

The following is the counterpart of Theorem 2 for
the discrete-time system (1).

Theorem 3. Given any compact subset X0 of C and a
number c ∈ (0; 1); there exist an h¿ 0 and a family
of Fi ∈ Fm×n; i = 1; 2; : : : ; M; with corresponding
positive de8nite matrices Pi’s; such that(
Ah +

∫ h

0
eA(h−+)BFi(+) d+

)T

×Pi
(
Ah +

∫ h

0
eA(h−+)BFi(+) d+

)
− cPi 6 0;

E(Pi) ⊂ L(Fi); i = 1; 2; : : : ; M;

and

X0 ⊂
M⋃
i=1

E(Pi):

Again, by Theorem 1, we can use a switching con-
troller to make

⋃M
i=0 E(Pi) inside the domain of at-

traction and hence semi-global stabilization can be
achieved. Moreover, once the state enters the region
E(P0), the controller switches to the feedback law
u = F0(x) and hence the desired performance in this
region is preserved.

5. Example

Consider the system (1) with

A=

[
0:8876 −0:5555

0:5555 1:5542

]
; B=

[−0:1124

0:5555

]
:

The matrix A is exponentially unstable with a
pair of eigenvalues 1:2209 ± j0:4444. The LQR
controller corresponding to the cost function J=∑

(x(k)TQx(k) + u(k)TRu(k)), with Q = I; R = 1 is

Fig. 1. The union of the invariant ellipsoids.

Fig. 2. A trajectory under the multiple switching control.

u=F0(x)=[−0:2630 −2:1501 ]x. LetD0 be obtained
as

E(P0); P0 =

[
2:1367 −0:2761

−0:2761 1:7968

]
;

see the ellipsoid enclosed by the solid curve in Fig. 1.
To enlarge the domain of attraction, we take a lift-

ing step of 8 and obtain 16 invariant ellipsoids with
corresponding feedback controllers, see the ellipsoids
enclosed by the dotted curves in Fig. 1. Each invari-
ant ellipsoid is optimal with respect to certain xi in the
sense that it contains .xi with |.| maximized, see the
points marked with ‘∗’. This is computed by using the
LMI method [3]. The outermost curve in Fig. 1 is the
boundary of the null controllable region C. We see
that the union of the ellipsoids covers a large portion
of C.

Figs. 2–4 show some simulation results of the
closed-loop system under the multiple switching



210 T. Hu et al. / Systems & Control Letters 43 (2001) 203–210

Fig. 3. Simulation: x1, ‘-’; x2, ‘–’.

Fig. 4. Simulation: the control.

controls. The initial state is very close to the bound-
ary of C. In Fig. 2 the dashed trajectory is that of
the unlifted system (1) under the switched control,
and the trajectory of the lifted system is marked with‘∗’.

Figs. 3 and 4 are the state and control of the original
unlifted system.

6. Conclusions

In this paper, we have proposed a control design
method for linear systems that are subject to actua-
tor saturation. This design method applies to general
(possibly exponentially unstable) systems in either
continuous-time or discrete-time. The resulting feed-
back laws expand the domain of attraction achieved
by an a priori designed feedback law to include any
bounded set in the interior of the null controllable re-
gion, while preserving the desired performance of the
original feedback law in a 4xed region.
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