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Abstract

We present a method to estimate the domain of attraction for a discrete-time linear system under a saturated linear
feedback. A simple condition is derived in terms of an auxiliary feedback matrix for determining if a given ellipsoid is
contractively invariant. Moreover, the condition can be expressed as linear matrix inequalities (LMIs) in terms of all the
varying parameters and hence can easily be used for controller synthesis. The following surprising result is revealed for
systems with single input: suppose that an ellipsoid is made invariant with a linear feedback, then it is invariant under the
saturated linear feedback if and only if there exists a saturated (nonlinear) feedback which makes the ellipsoid invariant.
Finally, the set invariance condition is extended to determine invariant sets for systems with persistent disturbances. LMI
based methods are developed for constructing feedback laws that achieve disturbance rejection with guaranteed stability
requirements. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we are interested in the control of linear systems subject to actuator saturation and persistent
disturbances,

x(k + 1)=Ax(k) + Bsat(u(k)) + Ew(k); x∈Rn; u∈Rm; w∈Rq; (1)

where x is the state, u is the control, w is the disturbance and sat(·) is the standard saturation function. First,
we will consider the closed-loop stability under a given linear state feedback u=Fx in the absence of the
disturbance. There has been a lot of work on this topic (see, e.g. [3–5,9–14] and the references therein). For
the continuous-time case, various simple and general methods for estimating the domain of attraction have
been developed by applying the absolute stability analysis tools, such as the circle and Popov criteria (see, e.g.
[5,9,10,12], where the saturation is treated as a locally sector bounded nonlinearity and the domain of attraction
is estimated by use of quadratic and Lur’e type Lyapunov functions). The multivariable circle criterion in [9]

� This work was supported in part by the US OEce of Naval Research Young Investigator Program under grant N00014-99-1-0670.
∗ Corresponding author.
E-mail addresses: th7f@virginia.edu (T. Hu), zl5y@virginia.edu (Z. Lin), bmchen@nus.edu.sg (B.M. Chen).

0167-6911/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0167 -6911(01)00168 -2



98 T. Hu et al. / Systems & Control Letters 45 (2002) 97–112

was restated in [12], in terms of (nonlinear) matrix inequalities in controller parameters and other auxiliary
optimization parameters, such as the positive deMnite matrix P in the Lyapunov function V (x)= xTPx and
the saturation levels. By Mxing some of the parameters, these matrix inequalities simplify to linear matrix
inequalities (LMIs) and can be treated with the LMI software. A nice feature of these analysis tools is that
they can be adapted for controller synthesis by simply considering the feedback gain matrix as an additional
optimization parameter.
In [8], a simpler criterion is derived in terms of an auxiliary feedback matrix for determining if a given

ellipsoid is contractively invariant under a given feedback law. This condition is shown to be less conservative
than the existing conditions which are based on the circle criterion or the vertex analysis. The most important
feature of this new condition is that it can be expressed as LMIs in terms of all the varying parameters and
hence can easily be used for controller synthesis.
In this paper, the set invariance criterion in [8] will be extended to discrete-time systems although the

approach has to be quite diNerent. In [8], the set invariance criterion is proven by expanding the derivative
of the Lyapunov function and examining the terms that include the saturated feedback sat(Fx). However, for
the discrete-time case, the terms of the increment of the Lyapunov function cannot be examined separately.
A new approach by placing the saturated control sat(Fx) in the convex hull of a group of linear controls is
derived to establish the main results. By further exploiting the idea, we will reveal a surprising fact for the
single input systems: Given a feedback matrix F , assume that an ellipsoid is invariant for the linear system

x(k + 1)=Ax(k) + BFx(k):

Then, it is invariant for the system

x(k + 1)=Ax(k) + Bsat(Fx(k))

if and only if there exists a feedback law u= h(x); |h(x)|6 1, such that the ellipsoid is invariant for the
system

x(k + 1)=Ax(k) + Bh(x(k)):

This means that the set invariance property under a group of saturated linear feedback laws is in some sense
independent of a particular feedback in this group as long as all the corresponding linear feedback laws make
the ellipsoid invariant.
Based on the stability analysis result, some disturbance rejection problems will be considered, such as,

set invariance property in the presence of disturbance, invariant set enlargement, disturbance rejection and
disturbance rejection with guaranteed stability region.
This paper is organized as follows. Section 2 addresses the analysis of and design for closed-loop stability.

Section 3 addresses the issues related to disturbance rejection. In particular, Section 2.1 presents conditions
for an ellipsoid to be invariant. Section 2.2 derives a necessary and suEcient condition for an ellipsoid to be
invariant in the case of single input. Section 2.3 proposes an optimization approach to estimating the domain
of attraction. Section 2.4 presents a controller design approach to enlarging the domain of attraction. A brief
concluding remark is given in Section 4.

2. Estimation of the domain of attraction

2.1. Condition for set invariance — multiple input case

Consider the open-loop system

x(k + 1)=Ax(k) + Bsat(u(k)); x∈Rn; u∈Rm; (2)

where sat(·) is the standard saturation function of appropriate dimensions. In the above system, sat :Rm → Rm,
and sat(u)= [sat(u1); sat(u2); : : : ; sat(um)]T, where sat(ui)= sgn(ui)min{1; |ui|}. Here we have slightly abused
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the notation by using sat(·) to denote both the scalar valued and the vector valued saturation functions. Suppose
that a state feedback u=Fx has been designed such that A+BF is Schur stable and that the closed-loop linear
system satisMes some performance requirement. We would like to know how the closed-loop system behaves
in the presence of saturation nonlinearity, in particular, to what extent the stability is preserved. Our Mrst
objective of this paper is to obtain an estimate of the domain of attraction of the origin for the closed-loop
system

x(k + 1)=Ax(k) + Bsat(Fx(k)): (3)

For a matrix F ∈Rm×n, denote the jth row of F as fj and deMne

L(F):={x∈Rn: |fjx|6 1; j∈ [1; m]}:

If F is the feedback matrix, then L(F) is the region where the feedback control u=sat(Fx) is linear in x.
For x(0)= x0 ∈Rn, denote the state trajectory of the system (3) as  (k; x0). The domain of attraction of

the origin is

S:=
{
x0 ∈Rn: lim

k→∞
 (k; x0)= 0

}
:

A set is said to be invariant if all the trajectories starting from it will remain in it.
Let P ∈Rn×n be a positive-deMnite matrix. For �¿ 0, denote

E(P; �)= {x∈Rn: xTPx6 �}:

Let V (x)= xTPx. The set E(P; �) is said to be contractively invariant if

PV (x):=(Ax + Bsat(Fx))TP(Ax + Bsat(Fx))− xTPx¡ 0

for all x∈E(P; �)\{0}. Clearly, if E(P; �) is contractively invariant, then it is inside the domain of attraction.
We will develop conditions under which E(P; �) is contractively invariant and thus obtain an estimate of

the domain of attraction.
Let D be the set of m × m diagonal matrices whose diagonal elements are either 1 or 0. There are 2m

elements in D. Suppose that each element of D is labeled as Di, i=1; 2; : : : ; 2m. Then, D= {Di: i∈ [1; 2m]}:
Denote D−

i = I − Di. Clearly, D−
i is also an element of D if Di ∈D. Given two vectors, u; v∈Rm, {Diu +

D−
i v: i∈ [1; 2m]} is the set of vectors formed by choosing some elements from u and the remaining from v.

Given two matrices F;H ∈Rm×n, {DiF + D−
i H : i∈ [1; 2m]} is the set of matrices formed by choosing some

rows from F and the remaining from H .
With these Di and D−

i matrices, a discrete-time counterpart of Theorem 10:4 in [9] (when applied to
saturation nonlinearities) can be derived with some standard technique in robustness analysis for systems with
varying parameters.

Proposition 1. Given an ellipsoid E(P; �); if there exists a positive diagonal matrix K ∈Rm×m; K ¡ I such
that

(A+ B(DiF + D−
i KF))TP(A+ B(DiF + D−

i KF))− P¡ 0; ∀i∈ [1; 2m]; (4)

and E(P; �) ⊂ L(KF); then E(P; �) is a contractively invariant set.

Here, the varying gain of each control channel (due to saturation) is viewed as an uncertain parameter
varying between Kii and 1, and the quadratic stability (within E(P; �)) of the systems corresponding to this
box of uncertain parameters is guaranteed by those on the vertices of the box, {DiF + D−

i KF : i∈ [1; 2m]}.
Similar to [8], we have the following less conservative criterion for an ellipsoid to be contractively invariant.
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Theorem 1. Given an ellipsoid E(P; �); if there exists an H ∈Rm×n such that

(A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H))− P¡ 0; ∀i∈ [1; 2m]; (5)

and E(P; �) ⊂ L(H); then E(P; �) is a contractively invariant set.

Although a natural discrete-time counterpart of Theorem 1 in [8], the above theorem cannot be proven in
a similar way. Before starting the proof of Theorem 1, we need some simple facts about the convex hull of
a set of points. Recall that for a group of points, u1; u2; : : : ; uI, the convex hull of these points is deMned as,

co{ui: i∈ [1;I]}:=
{

I∑
i=1

�iui:
I∑
i=1

�i =1; �i¿ 0

}
:

Lemma 1. Let u; u1; u2; : : : ; uI ∈Rm1 ; v; v1; v2; : : : ; vJ ∈Rm2 . If u∈ co{ui: i∈ [1;I]} and v∈ co{vj: j∈ [1;J]};
then [

u

v

]
∈ co

{[
ui

vj

]
: i∈ [1;I]; j∈ [1;J]

}
: (6)

Proof. Since u∈ co{ui: i∈ [1;I]} and v∈ co{vj: j∈ [1;J]}, there exist �i; �j¿ 0; i=1; 2; : : : ;I;
j=1; 2; : : : ;J, such that

I∑
i=1

�i =
J∑
j=1

�j =1; u=
I∑
i=1

�iui; v=
J∑
j=1

�jvj:

Therefore,

[
u

v

]
=




I∑
i=1

�iui

J∑
j=1

�jvj


=




I∑
i=1

�iui(
J∑
j=1

�j)

J∑
j=1

�jvj(
I∑
i=1

�i)


=




I∑
i=1

J∑
j=1

�i�jui

I∑
i=1

J∑
j=1

�i�jvj


=

I∑
i=1

J∑
j=1

�i�j

[
ui

vj

]
:

Noting that
I∑
i=1

J∑
j=1

�i�j =
I∑
i=1

�i

J∑
j=1

�j =1;

we obtain (6).

Lemma 2. Let u; v∈Rm;

u=




u1
u2
...
um


 ; v=




v1
v2
...
vm


 :

Suppose that |vj|6 1 for all j∈ [1; m]; then

sat(u)∈ co{Diu+ D−
i v: i∈ [1; 2m]}:

Proof. Since |vj|6 1, we have

sat(uj)∈ co{uj; vj}; ∀j∈ [1; m]:
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Fig. 1. Illustration for Lemma 2.

By applying Lemma 1 inductively, we have

sat(u1)∈ co{u1; v1};
sat

([
u1
u2

])
∈ co

{[
u1
u2

]
;
[
u1
v2

]
;
[
v1
u2

]
;
[
v1
v2

]}
;

sat




 u1
u2
u3




∈ co




 u1
u2
u3


 ;


 u1
u2
v3


 ;


 u1

v2
u3


 ;


 u1

v2
v3


 ;


 v1
u2
u3


 ;


 v1
u2
v3


 ;


 v1

v2
u3


 ;


 v1
v2
v3




 ;

...

and Mnally,

sat(u)∈ co{Diu+ D−
i v: i∈ [1; 2m]}:

Lemma 2 is illustrated in Fig. 1 for the case where m=2.
Given two feedback matrices F;H ∈Rm×n, suppose that |hjx|6 1 for all j∈ [1; m], then by Lemma 2, we

have

sat(Fx)∈ co{DiFx + D−
i Hx: i∈ [1; 2m]}:

In this way, we have placed sat(Fx) into the convex hull of a group of linear feedbacks.

Proof of Theorem 1. Let V (x)= xTPx, we need to show that

PV (x)= (Ax + Bsat(Fx))TP(Ax + Bsat(Fx))− xTPx¡ 0; ∀x∈E(P; �)\{0}: (7)

Since E(P; �) ⊂ L(H), i.e., |hjx|6 1 for all j∈ [1; m] and x∈E(P; �), by Lemma 2, for every x∈E(P; �),

sat(Fx)∈ co{DiFx + D−
i Hx: i∈ [1; 2m]}:

It follows that

Ax + Bsat(Fx)∈ co{Ax + B(DiF + D−
i H)x: i∈ [1; 2m]}:
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By the convexity of the function V (z)= zTPz, we have

(Ax + Bsat(Fx))TP(Ax + Bsat(Fx))6 max
i∈[1;2m]

xT(A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H))x

for every x∈E(P; �). Since condition (5) is satisMed, we have

max
i∈[1;2m]

xT(A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H))x¡xTPx

for all x �=0. Therefore, for every x∈E(P; �)\{0},
(Ax + Bsat(Fx))TP(Ax + Bsat(Fx))¡xTPx:

This veriMes (7).

We see that Proposition 1 is a special case of Theorem 1 by setting H =KF . Clearly the condition in
Theorem 1 is less conservative than that in Proposition 1. This will be illustrated in Example 1. Another
important advantage of Theorem 1 is that, when optimization is concerned, it leads to constraints in the form
of linear matrix inequality while from Proposition 1 we can only get bilinear matrix inequalities. This will be
investigated later.

2.2. The necessary and su7cient condition — single input case

For the single input case (m=1), D= {0; 1}. So the condition in Theorem 1 for E(P; �) to be contractively
invariant simpliMes to: there exists an H ∈R1×n such that

(A+ BF)TP(A+ BF)− P¡ 0; (A+ BH)TP(A+ BH)− P¡ 0

and E(P; �)∈L(H). In fact, we can go one step further to obtain the following surprising result.

Theorem 2. Assume m=1. Given an ellipsoid E(P; �); suppose that

(A+ BF)TP(A+ BF)− P¡ 0: (8)

Then; E(P; �) is contractively invariant under u=sat(Fx) if and only if there exists a function h(x) :Rm →
R; |h(x)|6 1 for all x∈E(P; �); such that E(P; �) is contractively invariant under the control u= h(x); i.e.;

(Ax + Bh(x))TP(Ax + Bh(x))− xTPx¡ 0; ∀x∈E(P; �) \ {0}: (9)

Proof. The “only if” part is obvious. Now we show the “if” part. Here we have |h(x)|6 1 for all x∈E(P; �).
It follows from Lemma 2 that for every x∈E(P; �), sat(Fx)∈ co{Fx; h(x)}.
By the convexity of the function V (z)= zTPz, we have

(Ax + Bsat(Fx))TP(Ax + Bsat(Fx))6max{xT(A+ BF)TP(A+ BF)x; (Ax + Bh(x))TP(Ax + Bh(x))}:
By (8) and (9), we obtain

(Ax + Bsat(Fx))TP(Ax + Bsat(Fx))− xTPx¡ 0; ∀x∈E(P; �)\{0}:
This shows that E(P; �) is contractively invariant under u=sat(Fx).

Theorem 2 implies that, for the single input case, the invariance of an ellipsoid E(P; �) under a saturated
linear control u=sat(Fx) is in some sense independent of F as long as the condition (A + BF)TP(A +
BF)− P¡ 0 is satisMed. In other words, suppose that both F1 and F2 satisfy the condition (A+ BFi)TP(A+
BFi) − P¡ 0; i=1; 2, then the maximal invariant ellipsoid E(P; �) (with � maximized under a Mxed P) is
the same under either u=sat(F1x) or u=sat(F2x). In [6, Chapter 11], we developed a computational method
to determine the largest � such that E(P; �) can be made invariant.
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Fig. 2. Invariant ellipsoids determined with diNerent methods.

Example 1. Consider the closed-loop system (3) with

A=

[
0:8876 −0:5555

0:5555 1:5542

]
; B=

[
−0:1124

0:5555

]
; F = [−0:7651 −2:0299 ]:

Given

P=

[
5:0127 −0:6475

−0:6475 4:2135

]
:

By combining Theorem 2 and Hu and Lin’s method [6], the maximal E(P; �) is E(P; �∗) with �∗ =2:3490.
Let’s compare the largest invariant ellipsoid, E(P; �∗), with those obtained by other methods.

(1) The maximal � such that E(P; �) ⊂ L(F) is �1 = 0:8237;
(2) The maximal � satisfying the condition in Proposition 1 is �2 = 1:0710;
(3) The maximal � satisfying the condition in Theorem 1 is �3 = �∗ =2:3490, with

H = [− 0:1389 − 1:3018]:

Shown in Fig. 2 is a comparison of the invariant ellipsoids obtained with diNerent methods. It is very
interesting to note that �3 = �∗. In this case, the largest invariant ellipsoid obtained by Theorem 1 is not
conservative at all. In fact, as we have proven for continuous-time systems in [7], if m=1, then the condition
in Theorem 1 (in its continuous-time form) is also necessary.

2.3. Estimation of the domain of attraction — an LMI approach

With all the ellipsoids satisfying the set invariance condition in Theorem 1, we would like to choose from
among them the “largest” one to get a least conservative estimate of the domain of attraction. In the literature
(e.g., see [2,3,5]), the largeness of a set is usually measured by its volume. Here, we will follow the idea in
[8] and take the shape of a set into consideration. Let XR ⊂ Rn be a prescribed bounded convex set. For a
set S ⊂ Rn, deMne

�R(S):=sup{�¿ 0: �XR ⊂ S}:
If �R(S)¿ 1, then XR ⊂ S. Two typical types of XR are the ellipsoids

XR = {x∈Rn: xTRx6 1}; R¿ 0
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and the polyhedrons

XR = co{x1; x2; : : : ; xl}:
We can choose the reference set XR according to the available information on the initial conditions. For
instance, if some possible initial conditions are known, we can choose XR as a polyhedron containing all
these initial conditions. In the extreme case, we may choose XR to be co{x0;−x0} when we want to know if
x0 is in the domain of attraction.
Now we would like to choose from all the E(P; �)’s that satisfy the condition in Theorem 1 such that

the quantity �R(E(P; �)) is maximized. For this reason, we call XR the shape reference set. The problem of
maximizing the contractively invariant ellipsoid with respect to a shape reference set can be formulated as

sup
P¿0;�;H

�

s:t: (a) �XR ⊂ E(P; �);

(b) (A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H))− P¡ 0; ∀i∈ [1; 2m];

(c) |hjx|6 1; ∀x∈E(P; �); j∈ [1; m]:

(10)

We will transform the above optimization constraints into LMIs. If XR is a polyhedron, then by Schur
complement, (a) is equivalent to

�2xTk

(
P
�

)
xk 6 1 ⇔

[
1=�2 xTk
xk (P=�)−1

]
¿ 0; k ∈ [1; l]: (11)

If XR is an ellipsoid {x: xTRx6 1}, then (a) is equivalent to

R
�2
¿

P
�

⇔
[
1=�2R I

I (P=�)−1

]
¿ 0: (12)

Also by Schur complement and some manipulation, the constraint (b) is equivalent to[
(P=�)−1 (P=�)−1(A+ B(DiF + D−

i H))T

(A+ B(DiF + D−
i H))(P=�)−1 (P=�)−1

]
¿ 0; i∈ [1; 2m]: (13)

From [8], the constraint (c) is equivalent to

�hjP−1hTj 6 1 ⇔
[

1 hj(P=�)−1

(P=�)−1hTj (P=�)−1

]
¿ 0; j∈ [1; m]: (14)

Let %=1=�2; Q=(P=�)−1 and Z =H (P=�)−1. Also let the jth row of Z be zj, i.e., zj = hj(P=�)−1. If XR

is a polyhedron, then from (11), (13) and (14), the optimization problem (10) can be rewritten as
inf
Q;Z

%

s:t: (a1)

[
% xTk
xk Q

]
¿ 0; k ∈ [1; l];

(b)

[
Q (AQ + B(DiFQ + D−

i Z))T

AQ + B(DiFQ + D−
i Z) Q

]
¿ 0; i∈ [1; 2m];

(c)

[
1 zj
zTj Q

]
¿ 0; j∈ [1; m];

(15)

where all the constraints are given in LMIs.
If XR is an ellipsoid, we just need to replace (a1) with another LMI,

(a2)

[
%R I

I Q

]
¿ 0:
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2.4. Controller design

Our objective in this section is to choose a feedback matrix F ∈Rm×n such that the estimated domain of
attraction as obtained by the method of Section 2.3 is maximized with respect to XR. This can be simply
done by taking the F in (15) as an extra optimization parameter. To make the optimization easy, we use a
new parameter Y to replace FQ in (15(b)) and the resulting LMI problem is

inf
Q;Y; Z

%

s:t: (15(a1)); (15(c));

(b)

[
Q (AQ + B(DiY + D−

i Z))T

AQ + B(DiY + D−
i Z) Q

]
¿ 0; i∈ [1; 2m]:

(16)

The optimal F will be recovered from YQ−1. Denote the optimal value of the above optimization problem
as %∗.
Let’s consider a simpler optimization problem

inf
Q;Z

%

s:t: (15(a1)); (15(c));

(b1)

[
Q (AQ + BZ)T

AQ + BZ Q

]
¿ 0:

(17)

Denote its optimal value as %∗1 . We claim that %∗ = %∗1 . The argument goes as follows. Since (b1) is only one
of the inequality constraints in (b) (when Di =0), (17) can be viewed as a problem resulting from dropping
the other 2m − 1 constraints in (16(b)), hence we have %∗¿ %∗1 . On the other hand, we can also see (b1) as a
result of (b) by restricting Y =Z (recall that Di +D−

i = I). This means that the constraints of (17) are more
restrictive than that of (16). Hence (16) admits a less inMmum than (17), i.e., %∗6 %∗1 . In summary, we must
have %∗ = %∗1 .
In view of the above observation, we might as well solve the simpler optimization problem (17) if our

objective is to enlarge the domain of attraction. If we solve (17) and let H =ZQ−1, then the resulting
invariant ellipsoid is in the linear region of the state feedback u=sat(Hx), i.e., E(P; �) ⊂ L(H). In this
case, the convergence of trajectories would be generally very slow inside the ellipsoid. Suppose that we have
another feedback u=sat(Fx) such that F and H satisfy (5), then by Theorem 1, the ellipsoid is also invariant
under u=sat(Fx). There could be inMnitely many such F’s. We may choose among these F’s to optimize
other performances such as convergence rate.

3. Disturbance rejection

3.1. Problem statement

Consider the open-loop system

x(k + 1)=Ax(k) + Bsat(u(k)) + Ew(k); x∈Rn; u∈Rm; w∈Rq; (18)

where, without loss of generality, we assume that the bounded disturbance w belongs to the set
W:={w: w(k)Tw(k)6 1; ∀k¿ 0}. Let the state feedback be u=Fx. The closed-loop system is

x(k + 1)=Ax(k) + Bsat(Fx(k)) + Ew(k): (19)

For an initial state x(0)= x0, denote the state trajectory of the closed-loop system under w as  (k; x0; w).
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Our primary concern is the boundedness of the trajectories. A set in Rn is said to be invariant if all the
trajectories starting from it will remain in it regardless of w∈W. An ellipsoid E(P; �) is said to be strictly
invariant if

(Ax + Bsat(Fx) + Ew)TP(Ax + Bsat(Fx) + Ew)¡�

for all x∈E(P; �) and w; wTw6 1.
The notion of invariant set plays an important role in studying the stability and other performances of a

system, see [1,2,9] and the references therein. To keep the state trajectory bounded for a large range of initial
conditions, it is desired to have a large invariant set. On the other hand, a small invariant set indicates that
the system is insensitive to the disturbance. Suppose that we have an invariant set containing the origin in its
interior, then all the trajectories starting from the origin will remain inside the invariant set regardless of the
disturbance. Hence for the purpose of disturbance rejection, we would also like to have a small invariant set
containing the origin in its interior.
To formally state the objectives of this section, we need to extend the notion of the domain of attraction

of an equilibrium to that of an invariant set as follows.

De�nition 1. Let B be a bounded invariant set of (19). The domain of attraction of B is

S(B):=
{
x0 ∈Rn: lim

k→∞
d( (k; x0; w);B)= 0; ∀w∈W

}
;

where d( (k; x0; w);B)= inf x∈B || (k; x0; w)− x|| is the distance from  (k; x0; w) to B.

In the above deMnition, ||·|| can be any norm. The problems we are to address in this section are formulated
as follows.

Problem 1 (Set invariance analysis): Let F be known. Given an ellipsoid E(P; �), determine if E(P; �) is
(strictly) invariant.

Problem 2 (Invariant set enlargement): Given a shape reference set X0 ⊂ Rn, design an F such that the
closed-loop system has an invariant set E(P; �) ⊃ �2X0 with �2 maximized.

Problem 3 (Disturbance rejection): Given a shape reference set X∞ ⊂ Rn, design an F such that the closed-
loop system has an invariant set E(P; �) ⊂ �3X∞ with �3 minimized. Here we can also take X∞ to be the
(possibly unbounded) polyhedron {x∈Rn: |cix|6 1; i∈ [1; p]}. In this case, the minimization of �3 leads to
the minimization of the L∞-norm of the output y=Cx∈Rp.

Problem 4 (Disturbance rejection with guaranteed domain of attraction): Given two shape reference sets,
X∞ and X0. Design an F such that the closed-loop system has an invariant set E(P; 1) ⊃ X0, and for all
x0 ∈E(P; 1),  (k; x0; w) will enter a smaller invariant set E(P; �1) ⊂ �4X∞ with �4 minimized.

3.2. Condition for set invariance

We consider the closed-loop system (19) with a given F .

Theorem 3. For a given ellipsoid E(P; �); if there exist an H ∈Rm×n and a positive number / such that

(1 + /)(A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H)) +
(
1 + /
�/

0max(ETPE)− 1
)

P6 (¡)0 (20)

for all i∈ [1; 2m]; and E(P; �) ⊂ L(H); then E(P; �) is a (strictly) invariant set for system (19).

Proof. We prove the strict invariance. That is, we will show that

(Ax + Bsat(Fx) + Ew)TP(Ax + Bsat(Fx) + Ew)¡�; ∀x∈E(P; �); wTw6 1:
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Since E(P; �) ⊂ L(H), similar to the proof of Theorem 1, we can show that

Ax + Bsat(Fx) + Ew∈ co{Ax + B(DiF + D−
i H)x + Ew: i∈ [1; 2m]}

for every w∈Rq and x∈E(P; �). By the convexity of the function V (z)= zTPz, for every x∈E(P; �) and
every w, wTw6 1,

(Ax + Bsat(Fx) + Ew)TP(Ax + Bsat(Fx) + Ew)

6 max
i∈[1;2m]

(Ax + B(DiF + D−
i H)x + Ew)TP(Ax + B(DiF + D−

i H)x + Ew):

Using the fact that (a+ b)T(a+ b)6 (1 + /)aTa+ (1 + 1=/)bTb for any /¿ 0, we have

(Ax + Bsat(Fx) + Ew)TP(Ax + Bsat(Fx) + Ew)

6 max
i∈[1;2m]

(1 + /)xT(A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H))x +
(
1 +

1
/

)
wTETPEw

6 max
i∈[1;2m]

(1 + /)xT(A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H))x +
(
1 +

1
/

)
0max(ETPE):

To prove the strict invariance, it suEces to show that there exists an /¿ 0 such that for all x∈ @E(P; �) and
for all i∈ [1; 2m],

(1 + /)xT(A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H))x +
(
1 +

1
/

)
0max(ETPE)¡�: (21)

Noticing that 1= xT(P=�)x on @E(P; �), we see that (21) is guaranteed by (20).

Theorem 3 deals with Problem 1 and can be easily used for controller design in Problem 2 and Problem
3. For Problem 2, we can solve the following optimization problem:

sup
P¿0;�; /¿0; F;H

�2

s:t: (a) �2X0 ⊂ E(P; �);

(b) (A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H))

1
1 + /

(
1 + /
/

0max

(
ETPE

�

)
− 1

)
P6 0; i∈ [1; 2m];

(c) |hjx|6 1; ∀x∈E(P; �); j∈ [1; m]:

(22)

Let %=1=�22, Q=(P=�)−1, Y =FQ and Z =HQ. Similar to Section 2.3, the above optimization problem
can be transformed into one with LMI constraints (providing two scalars are Mxed). Here, constraint (b) is
equivalent to the existence of 0∈ (0; /=(1 + /)) such that


1

1 + /

(
1− 1 + /

/
0
)

Q (AQ + BDiY + BD−
i Z)T

AQ + BDiY + BD−
i Z Q


¿ 0; i∈ [1; 2m] (23)

and [
0 ET

E Q

]
¿ 0: (24)
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Hence, the optimization problem (22) is equivalent to

inf
/¿0; 0;Q; Y; Z

%

s:t: (15(a1)); (15(c)); (23); (24):
(25)

We see that (15(a1)) and (15(c)) are LMIs. If we Mx / and 0, then (23) and (24) are also LMIs. The
global inMmum of % can be obtained by running / from 0 to ∞ and 0 from 0 to /=(1 + /).
In fact, the computation can be simpliMed by reducing the number of parameters Mxed beforehand (/ and

0) from two to one. Denote

g=
1

1 + /

(
1− 1 + /

/
0
)

:

We see that as / varies from 0 to ∞ and 0 from 0 to /=(1 + /), g varies from 0 to 1. If we Mx g, then

0=1− 1
1 + /

− /g:

It can be shown with standard analysis that as / varies from 0 to ∞, the maximal value of 0 is

0∗ =(1−√
g)2;

obtained at /∗ =(1=
√
g) − 1. Since the constraint (24) is the least restrictive by taking 0= 0∗, the optimal

solution to (25) will be obtained with 0= 0∗. In view of these arguments, we can solve (25) by running g
from 0 to 1, taking 0= 0∗ =(1 − √

g)2, solving the resulting LMI problems and picking the minimal %. In
this case, we only need to Mx the parameter g before solving an LMI problem.
For Problem 3, we have

inf
P¿0;�; /¿0; F;H

�3

s:t: (a) E(P; �) ⊂ �3X∞; (22(b)); (22(c));
(26)

which can be solved similarly as (22).

3.3. Disturbance rejection with guaranteed domain of attraction

Given X0 ⊂ Rn, if the optimal solution of Problem 2 is �∗2 ¿ 1, then there are inMnitely many choices of the
feedback matrices F’s such that X0 is contained in some invariant ellipsoid. We will use this extra freedom
for disturbance rejection. That is, to construct another invariant set E(P; �1) which is as small as possible
with respect to some X∞. Moreover, X0 is inside the domain of attraction of E(P; �1). In this way, all the
trajectories starting from X0 will enter E(P; �1) ⊂ �4X∞ for some �4 ¿ 0. Here the number �4 is a measure
of the degree of disturbance rejection.
Before addressing Problem 4, we need to answer the following question: Suppose that for given F and

P, both E(P; �1) and E(P; �2); �1 ¡�2, are strictly invariant sets, then under what conditions will the other
ellipsoids E(P; �); �∈ (�1; �2) also be strictly invariant? If they are, then all the trajectories starting from
within E(P; �2) will enter E(P; �1) and remain inside it.

Theorem 4. Given two ellipsoids; E(P; �1) and E(P; �2); �2 ¿�1 ¿ 0; if there exist H1; H2 ∈Rm×n and a
positive / such that

(1 + /)(A+ B(DiF + D−
i H1))TP(A+ B(DiF + D−

i H1)) +
(
1 + /
�1/

0max(ETPE)− 1
)

P¡ 0; (27)

(1 + /)(A+ B(DiF + D−
i H2))TP(A+ B(DiF + D−

i H2)) +
(
1 + /
�2/

0max(ETPE)− 1
)

P¡ 0; (28)
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for all i∈ [1; 2m]; and E(P; �1) ⊂ L(H1); E(P; �2) ⊂ L(H2); then for every �∈ [�1; �2]; there exists an
H ∈Rm×n such that

(1 + /)(A+ B(DiF + D−
i H))TP(A+ B(DiF + D−

i H)) +
(
1 + /
�/

0max(ETPE)− 1
)

P¡ 0 (29)

and E(P; �)∈L(H). This implies that E(P; �) is also strictly invariant.

Proof. Let h1; j and h2; j be the jth rows of H1 and H2, respectively. The conditions E(P; �1) ⊂ L(H1) and
E(P; �2) ⊂ L(H2) are equivalent to[

1=�1 h1; j
hT1; j P

]
¿ 0;

[
1=�2 h2; j
hT2; j P

]
¿ 0; j∈ [1; m]:

Since �∈ [�1; �2], there exists an �∈ [0; 1] such that 1=�= �=�1+(1−�)=�2. Let H = �H1+(1−�)H2. Clearly[
1=� hj

hTj P

]
¿ 0;

which implies that E(P; �) ⊂ L(H). Since (27) and (28) are equivalent to
 1
1 + /

(
1− 1 + /

�1/
0max(ETPE)

)
P (A+ B(DiF + D−

i H1))T

A+ B(DiF + D−
i H1) P−1


¿ 0

and 
 1
1 + /

(
1− 1 + /

�2/
0max(ETPE)

)
P (A+ B(DiF + D−

i H2))T

A+ B(DiF + D−
i H2) P−1


¿ 0

by convexity, we have
 1
1 + /

(
1− 1 + /

�/
0max(ETPE)

)
P (A+ B(DiF + D−

i H))T

A+ B(DiF + D−
i H) P−1


¿ 0;

which is equivalent to (29).

In view of Theorem 4, to solve Problem 4, we can construct two invariant ellipsoids E(P; �1) and E(P; �2)
satisfying the condition of Theorem 4 such that X0 ⊂ E(P; �2) and E(P; �1) ⊂ �4X∞ with �4 minimized.
Since �2 can be absorbed into other parameters, we assume for simplicity that �2 = 1 and �1 ¡ 1. Problem 4
can then be formulated as

inf
P¿0;0¡�1¡1; /¿0; F;H1 ; H2

�4

s:t: (a) X0 ⊂ E(P; 1); E(P; �1) ⊂ �4X∞;

(b)


 1
1 + /

(
1− 1 + /

�1/
0max(ETPE)

)
P (A+ B(DiF + D−

i H1))T

A+ B(DiF + D−
i H1) P−1


¿ 0; i∈ [1; 2m];

(c)


 1
1 + /

(
1− 1 + /

/
0max(ETPE)

)
P (A+ B(DiF + D−

i H2))T

A+ B(DiF + D−
i H2) P−1


¿ 0; i∈ [1; 2m];

(d) |h1; jx|6 1; ∀x∈E(P; �1); j∈ [1; m];

(e) |h2; jx|6 1; ∀x∈E(P; 1); j∈ [1; m]:

(30)

If we Mx �1; 0 and /, then the constraints of the optimization problem can be transformed into LMIs. To
obtain the global inMmum, we may vary �1 from 0 to 1, / from 0 to ∞ and 0 from 0 to �1/=(1+ /). Similar
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Fig. 3. The invariant ellipsoids and the null controllable region.

to the treatment of the optimization problem (25), we can reduce the number of parameters Mxed beforehand
(�1; 0 and /) from three to two.

3.4. An example

Consider the system (18) with

A=

[
0:9741 −0:2474

0:2474 1:2710

]
; B=

[−0:0259

0:2474

]
; E=

[
0:0057
0:0082

]
:

Let’s Mrst consider Problem 2 of enlarging the invariant ellipsoid. Here we choose the shape reference set as a
unit ball, i.e., X0 =E(I; 1). By solving (22), we obtain �∗2 = 0:6337, along with /∗ =0:0143, 0∗ =1:9879∗10−4

and

P∗ =
[

1:2148 −0:1667
−0:1667 2:4681

]
; F∗ = [− 0:5726 − 1:2574]:

The invariant set E(P∗; 1) is the smaller ellipsoid in Fig. 3. The larger ellipsoid is obtained as the maximal
invariant ellipsoid in the absence of disturbance (E=0). The outmost closed curve is the boundary of the
null controllable region of the system in the absence of disturbance, which is the largest possible invariant
set that can be achieved with any control law (see [6]).
Next, we consider Problem 3. We take the reference set X∞ also to be the unit ball. The optimal �3 is

found to be �∗3 = 0:0825 with /∗ =0:2126; 0∗ =0:0307 and

P∗ =
[

1920:2 −1884:6
−1884:6 2150:6

]
; F∗ = [− 0:3314 − 2:4721]:

For Problem 4; we take X∞ to be the unit ball and X0 = �0E(I; 1). From the solution to Problem 2; we
know that �0 must be less than �∗2 = 0:6337. From the solution to Problem 3; we know that �∗4 must be
greater than �∗3 = 0:0825. First, we choose �0 = 0:5. By solving (30), we obtain �∗4 = 0:2960, along with
/∗ =0:0431; 0∗ =2:4565 ∗ 10−4; �∗

1 = 0:1440 and

P∗ =

[
1:9000 −0:7335

−0:7335 3:7429

]
; F∗ = [− 0:5707 − 1:4722]:

In Fig. 4, the smaller dotted ellipsoid is E(P∗; �1) and the bigger one is E(P∗; 1). A trajectory start-
ing from the boundary of E(P∗; 1) is plotted in Fig. 4. In the simulation, the disturbance is chosen as
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Fig. 4. The invariant ellipsoids and a trajectory, �0 = 0:5, �∗4 = 0:2960.
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Fig. 5. The invariant ellipsoids and a trajectory, �0 = 0:3, �∗4 = 0:1262.

w(k)= sign(sin(0:2k)). We see that the trajectory enters E(P; �1) and stays inside of it. However, the distur-
bance may not be rejected to a satisfactory level. This is because enlarging the outer ellipsoid and reducing
the inner ellipsoid are conTicting objectives. To obtain a better disturbance rejection performance, we have to
choose smaller X0. For example, if we choose �0 = 0:3, then we obtain �∗4 = 0:1262, along with

P∗ =

[
5:1710 −3:9277

−3:9277 8:5125

]
; F∗ = [− 0:5123 − 1:8880]:

Fig. 5 shows the invariant ellipsoids E(P∗; 1) and E(P∗; �1), and a trajectory starting from the boundary of
E(P∗; 1).

4. Conclusions

We considered linear systems subject to actuator saturation and persistent disturbance. Simple criteria for
determining if a given ellipsoid is contractively invariant have been derived. With the aid of these criteria,
we developed analysis and design methods for closed-loop stability and disturbance rejection. Examples were
used to demonstrate the eNectiveness of these methods.
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