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Abstract

We give simple exact descriptions of the null controllable regions for general linear systems with saturating actuators.
The description is in terms of a set of extremal trajectories of the anti-stable subsystem. For lower order systems or
systems with only real eigenvalues, this description is further simpli6ed to result in explicit formulae for the boundaries
of the null controllable regions. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most fundamental issues associated with the control of a system is its controllability. Since all
practical control inputs are bounded (due to actuator saturation), the constrained controllability was formulated
earlier than the unconstrained one. While the unconstrained controllability has been well understood for several
decades, there have been continual e<orts towards full understanding of the constrained controllability (see,
e.g., [1–3,6–8,10,14–17] and the references therein).
For a linear system with a constrained input, the null controllable region at a time T ∈ (0;∞), denoted as

C(T ), is de6ned to be the set of states that can be steered to the origin in time T with a constrained control.
The union of C(T ) for all T ∈ (0;∞), denoted as C, is called the null controllable region. In the earlier studies,
the null controllable region, also called the controllable set or the reachable set (of the time reversed system),
was closely related to the time optimal control (e.g., [2,6,9,11]): for a given initial state x0, the time optimal
control problem has a solution if and only if x0 ∈C; If x0 is on the boundary of C(T ), then the minimal
time to steer x0 to the origin is T . It is well-known that the time optimal controls are bang–bang controls.
For discrete-time systems, the time optimal control can be computed through linear programming and C(T )
can be exactly obtained, although the computational burden increases as T increases. Also closely related to
the time optimal control is the model predictive control or the receding horizon control. The model predictive
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control has been extensively studied and has found wide applications in slow processes (see, e.g., [12,13] for
a survey). The development of the model predictive control also contributes to the characterization of C(T )
for discrete-time systems. On the contrary, for continuous-time systems, since the time optimal control is
generally impossible to compute except by numerical approximation, there has been no result on the explicit
or analytical characterization of C(T ) or C of exponentially unstable systems. There are however numerical
algorithms available to obtain approximations of C based on some partial properties about the boundary of C
for second-order systems (e.g., [16,17]). There are also numerical methods for testing if a particular point in
the state space is inside C (e.g., [5]). In this paper, we will focus on the analytic characterization of C for
general linear systems.
We recall that a linear system is said to be anti-stable if all its poles are in the open right-half plane and

semi-stable if all its poles are in the closed left-half plane.
For a semi-stable linear system, it is well-known [11,14,15] that the null controllable region is the whole

state-space as long as the system is controllable in the usual linear system sense. For a general system with
exponentially unstable modes, there exists a nice decomposition result concerning the null controllable region
[4]. Suppose such a system is decomposed into the sum of a controllable semi-stable subsystem and an
anti-stable subsystem, then the null controllable region of the whole system is the Cartesian product of the
null controllable region of the 6rst subsystem, which is its whole state space, and that of the second subsystem,
which is a bounded convex open set.
However, little was known about the null controllable region of an anti-stable system. This paper is dedicated

to solving this problem. We will give simple exact descriptions of the null controllable region of a general
anti-stable linear system with saturating actuators in terms of a set of extremal trajectories of its time reversed
system. This set of extremal trajectories is particularly easy to describe for low order systems or systems with
only real eigenvalues. For example, for a second-order system, the boundary of its null controllable region is
covered by at most two extremal trajectories; and for a third-order system, the set of extremal trajectories can
be described in terms of parameters in a real interval.
The remainder of the paper is organized as follows. Section 2 contains some preliminaries and de6nitions

of notation. Section 3 gives a simple exact description of the null controllable regions of anti-stable linear
systems with bounded controls. Section 4 draws a brief conclusion to this paper.

2. Preliminaries and notation

Consider a linear system

ẋ(t) = Ax(t) + Bu(t); (1)

where x(t)∈Rn is the state and u(t)∈Rm is the control. Let

Ua = {u: u is measurable and ‖u(t)‖∞6 1; ∀t ∈R}; (2)

where ‖u(t)‖∞ = maxi |ui(t)|. A control signal u is said to be admissible if u∈Ua. In this paper, we are
interested in the control of system (1) by using admissible controls. Our concern is the set of states that can
be steered to the origin by admissible controls.

De�nition 2.1. A state x0 is said to be null controllable if there exist a T ∈ [0;∞) and an admissible control u
such that the state trajectory x(t) of the system satis6es x(0)=x0 and x(T )=0. The set of all null controllable
states is called the null controllable region of the system and is denoted by C.
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With the above de6nition, we see that x0 ∈C if and only if there exist T ∈ [0;∞) and a u∈Ua such that

0 = x(T ) = eAT x0 +
∫ T

0
eA(T−
)Bu(
) d
= eAT

(
x0 +

∫ T

0
e−A
Bu(
) d


)
:

It follows that

C =
⋃

T∈[0;∞)

{
x =−

∫ T

0
e−A
Bu(
) d
: u∈Ua

}
: (3)

The minus sign “−” before the integral can be removed since Ua is a symmetric set. In what follows we
recall from the literature some existing results on the characterization of the null controllable region.

Proposition 2.1. Assume that (A; B) is controllable.
(a) If A is semi-stable; then C = Rn.
(b) If A is anti-stable; then C is a bounded convex open set containing the origin.
(c) If

A=
[
A1 0
0 A2

]
with A1 ∈Rn1×n1 anti-stable and A2 ∈Rn2×n2 semi-stable; and B is partitioned as[

B1
B2

]
accordingly; then C = C1 × Rn2 where C1 is the null controllable region of the anti-stable system
ẋ1(t) = A1x1(t) + B1u(t).

Statement (a) is well-known [11,14,15]. Statements (b) and (c) are proven in [4]. Because of this propo-
sition, we can concentrate on the study of null controllable regions of anti-stable systems. For this kind of
systems,

RC =
{
x =

∫ ∞

0
e−A
Bu(
) d
: u∈Ua

}
; (4)

where RC denotes the closure of C. We will use “@” to denote the boundary of a set. In [5], a nonlinear
programming based algorithm is proposed to test if a point in the state space belongs to C. In Section 3, we
will derive a method for explicitly describing @C. To this end, we will need some more preliminaries.
If B=[b1 b2 : : : bm] and the null controllable region of the system ẋ(t)=Ax(t)+biui(t) is Ci, i=1; : : : ; m,

then

C =
m∑
i=1

Ci = {x1 + x2 + · · ·+ xm: xi ∈Ci ; i = 1; 2; : : : ; m}: (5)

In view of (5) and Proposition 2.1, in the study of the null controllable regions we will assume, without loss
of generality, that (A; B) is controllable, A is anti-stable, and m= 1. For clarity, we rename B as b.
For a general system

ẋ = f(x; u); (6)

its time reversed system is

ż =−f(z; v): (7)

It is easy to see that x(t) solves (6) with x(0) = x0; x(t1) = x1, and certain u if and only if z(t) = x(t1 − t)
solves (7) with z(0)=x1, z(t1)=x0, and v(t)=u(t1− t). The two systems have the same curves as trajectories,
but traverse in opposite directions.
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Consider the time reversed system of (1):

ż(t) =−Az(t)− bv(t): (8)

De�nition 2.2. A state zf is said to be reachable if there exist T ∈ [0;∞) and an admissible control v such
that the state trajectory z(t) of system (8) satis6es z(0) = 0 and z(T ) = zf. The set of all reachable states is
called the reachable region of system (8) and is denoted by R.

It is known that C of (1) is the same as R of (8) (see, e.g., [11]). To avoid confusion, we will continue
to use the notation x; u and C for the original system (1), and z; v and R for the time-reversed system (8).

3. Null controllable regions

In Section 3.1, we show that the boundary of the null controllable region of a general anti-stable linear
system with saturating actuator is composed of a set of extremal trajectories of the time reversed system. The
descriptions of this set are further simpli6ed for systems with only real poles and for systems with complex
poles in Sections 3.2 and 3.3, respectively.

3.1. Description of the null controllable regions

We will characterize the null controllable region C of system (1) through studying the reachable region R
of its time reversed system (8).
Since A is anti-stable, we have

RR=
{
z =

∫ ∞

0
e−A
bv(
) d
: v∈Ua

}
=

{
z =

∫ 0

−∞
eA
bv(
) d
: v∈Ua

}
:

The change of integration interval from [0;∞] to [ − ∞; 0] is crucial to our development, as will be clear
from Eq. (17). Noticing that eA
=e−A(0−
), we see that a point z in RR is a state of the time-reversed system
(8) at t = 0 by applying an admissible control v from −∞ to 0.

Theorem 3.1.

@R=

{
z =

∫ 0

−∞
eA
b sgn(c′eA
b) d
: c∈Rn\{0}

}
: (9)

RR is strictly convex. Moreover; for each z∗ ∈ @R; there exists a unique admissible control v∗ such that

z∗ =
∫ 0

−∞
eA
bv∗(
) d
: (10)

Remark 3.1. We give some simple facts about convex sets in this remark. Consider a closed set S. If S is
convex and z∗ ∈ @S; then by separation theorem; there exists a hyperplane c′z = k that is tangential to @S at
z∗ and the set S lies completely to one side of the hyperplane; i.e.;

c′z6 k = c′z∗; ∀z ∈ S:
A set S is said to be strictly convex if it is convex and for any two points z1; z2 ∈ @S, �z1 +(1−�)z2 �∈ @S for
all �∈ (0; 1). This is equivalent to saying that any hyperplane that is tangential to @S has only one intersection
point with @S, or, for any c �=0, there exists a unique z∗ ∈ @S such that c′z∗ =maxz∈S c′z.
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Proof of Theorem 1. First; the convexity of RR can easily be veri6ed by de6nition. Let z∗ ∈ @R. Then; there
exists a nonzero vector c∈Rn such that

c′z∗ =max
z∈ RR
c′z =max

v∈Ua

∫ 0

−∞
c′eA
bv(
) d
: (11)

Since c �=0 and (A; b) is controllable; c′eA
b �≡ 0. Since c′eAtb has a 6nite number of zeros in any 6nite
interval;

�({t: c′eAtb= 0}) = 0; (12)

where �(·) denotes the measure of a set.
It is easy to see that

v∗(t) = sgn(c′eAtb)

maximizes the right-hand side of (11). We maintain that v∗ is the unique optimal solution of (11). To verify
this, we need to show that for any v∈Ua; v �= v∗,∫ 0

−∞
c′eA
bv∗(
) d
¿

∫ 0

−∞
c′eA
bv(
) d
: (13)

Since v �= v∗, there are a set E1 ⊂ [−∞; 0] with nonzero measure, i.e., �(E1) = �1¿ 0, and a number �1¿ 0
such that

|v(t)− v∗(t)|¿ �1; ∀t ∈E1:
By (12), there exist a set E ⊂ E1, with �(E) = �¿ 0, and a positive number �¿ 0 such that

|c′eAtb|¿ �; ∀t ∈E:
Noting that v∈Ua, we have

c′eAtb (v∗(t)− v(t))¿ 0; ∀t ∈ [−∞; 0]:
It then follows that∫ 0

−∞
c′eA
b(v∗(
)− v(
)) d


¿
∫
E
c′eA
b(v∗(
)− v(t)) d
=

∫
E
|c′eA
b| |v∗(
)− v(
)| d
¿ ���1¿ 0:

This shows that v∗(t) is the unique optimal solution of (11) and hence the unique admissible control satisfying

z∗ =
∫ 0

−∞
eA
bv∗(
) d
: (14)

On the other hand, if

z∗ =
∫ 0

−∞
eA
b sgn(c′eA
b) d


for some nonzero c, then obviously

c′z∗ =max
z∈ RR
c′z:

This shows that z∗ ∈ @R and we have (9).
Since for each c �=0, the optimal solution v∗(t) and z∗ of (11) is unique, we see that RR is strictly convex.
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Theorem 3.1 says that for z∗ ∈ @R, there is a unique admissible control v∗ satisfying (10). From (9), this
implies v∗(t) = sgn(c′eAtb) for some c �=0 (such c; ‖c‖= 1 may be nonunique, where ‖ · ‖ is the Euclidean
norm). So, if v is an admissible control and there is no c such that v(t) = sgn(c′eAtb) for t6 0, then∫ 0

−∞
eA
bv(
) d
 �∈ @R

and must be in the interior of R.
Since sgn(kc′eA
b)=sgn(c′eA
b) for any positive number k, Eq. (9) shows that @R can be determined from

the surface of a unit ball in Rn. In what follows, we will simplify (9) and describe @R in terms of a set of
trajectories of the time-reversed system (8).
Denote

E:={v(t) = sgn(c′eAtb); t ∈R: c∈Rn\{0}} (15)

and for an admissible control v, denote

�(t; v):=
∫ t
−∞

e−A(t−
)bv(
) d
: (16)

Since A is anti-stable, the integral in (16) exists for all t ∈R, so �(t; v) is well de6ned.
If v(t) = sgn(c′eAtb), then

�(t; v) =
∫ t
−∞

e−A(t−
)bv(
) d
=
∫ 0

−∞
eA
b sgn(c′eAteA
b) d
∈ @R (17)

for any t ∈R, i.e., �(t; v) lies entirely on @R. An admissible control v such that �(t; v) lies entirely on @R is
said to be extremal and such �(t; v) an extremal trajectory. On the other hand, given an admissible control
v(t), if there exists no c such that v(t) = sgn(c′eAtb) for all t6 0, then by Theorem 3.1, �(0; v) �∈ @R and
must be in the interior of R. By the time invariance property of the system, if there exists no c such that
v(t) = sgn(c′eAtb) for all t6 t0, �(t; v) must be in the interior of R for all t¿ t0. Consequently, E is the set
of extremal controls.
The following lemma shows that @R is covered by the set of extremal trajectories.

Lemma 3.1.

@R= {�(t; v): t ∈R; v∈E}: (18)

Proof. For any 6xed t ∈R; it follows from (9) that

@R=
{∫ t

−∞
e−A(t−
)b sgn(c′e−AteA
b) d
: c

}
=
{∫ t

−∞
e−A(t−
)b sgn(c′eA
b) d
: c

}
;

i.e.; @R= {�(t; v): v∈E}; for any 6xed t ∈R. So @R can be viewed as the set of extremal trajectories at any
frozen time. Now let t vary; then each point on @R moves along a trajectory but the whole set is invariant.
So we can also write @R= {�(t; v): v∈E; t ∈R}; which is equivalent to (18).

Unlike (9), Eq. (18) shows that @R is covered by extremal trajectories. It, however, introduces redun-
dancy by repeating the same set {�(t; v): v∈E} for all t ∈R. This redundancy can be removed by a careful
examination of the set E. Indeed, the set {�(t; v): t ∈R} can be identical for a class of v∈E.

De�nition 3.1.
(a) Two extremal controls v1; v2 ∈E are said to be equivalent; denoted by v1 ∼ v2; if there exists an h∈R

such that v1(t) = v2(t − h) for all t ∈R.
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(b) Two vectors c1; c2 ∈Rn are said to be equivalent, denoted by c1 ∼ c2, if there exist a k ¿ 0 and an h∈R
such that c1 = keA

′hc2.

Noting that a shift in time of the control corresponds to the same shift of the state trajectory, we see that,
if v1 ∼ v2, then {�(t; v1): t ∈R}= {�(t; v2): t ∈R}; and if c1 ∼ c2, then sgn(c′1e

Atb) ∼ sgn(c′2e
Atb).

De�nition 3.2.
(a) A set Emin ⊂ E is called a minimal representative of E if for any v∈E; there exists a unique v1 ∈Emin

such that v ∼ v1.
(b) A set M ⊂ Rn is called a minimal representative of Rn if for any c∈Rn, there exists a unique c1 ∈M

such that c ∼ c1.

With this de6nition, there will be no pair of distinct elements in Emin or in M that are equivalent. It should
be noted that the minimal representative of E or Rn is unique up to equivalence and Emin and M always
exist. An immediate consequence of these de6nitions and Lemma 3.1 is

Theorem 3.2. If Emin is a minimal representative of E; then

@R= {�(t; v): t ∈R; v∈Emin};
If M is a minimal representative of Rn; then

@R= {�(t; sgn(c′eAtb)): t ∈R; c∈M\{0}}:

It turns out that for some classes of systems, Emin can be easily described. For second order systems, Emin

contains only one or two elements, so @R can be covered by no more than two trajectories; and for third-order
systems, Emin corresponds to some real intervals. We will see later that for systems of di<erent eigenvalue
structures, the descriptions of Emin can be quite di<erent.

3.2. Systems with only real eigenvalues

It follows from, for example, [11, p. 77], that if A has only real eigenvalues and c �=0, then c′eAtb has at
most n− 1 zeros. This implies that an extremal control can have at most n− 1 switches. We will show that
the converse is also true.

Theorem 3.3. For system (8); assume that A has only real eigenvalues; then
(a) an extremal control has at most n− 1 switches;
(b) any bang–bang control with n− 1 or less switches is an extremal control.

Proof. See Appendix A.

By Theorem 3.3, the set of extremal controls can be described as follows:

E=


±v: v(t) =




1 −∞6 t ¡ t1;
(−1)i ti6 t ¡ ti+1;
(−1)n−1; tn−16 t ¡∞;

−∞¡t1¡t26 · · ·6 tn−16∞

 ∪ {v(t) ≡ ±1};

where ti; i = 1; : : : ; n − 1, are the switching times. If v(t) has a switch, then the 6rst switch occurs at t = t1.
Here we allow ti= ti+1 (i �=1) and tn−1 =∞, so the above description of E consists of all bang–bang controls
with n− 1 or less switches.
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To obtain a minimal representative of E, we can simply set t1 = 0, that is,

Emin =


±v: v(t) =




1; −∞ ≤ t ¡ t1;
(−1)i ; ti6 t ¡ ti+1;
(−1)n−1; tn−16 t ¡∞:

0 = t1¡t26 · · ·6 tn−16∞

 ∪ {v(t) ≡ ±1}:

For every v∈Emin, we have v(t) = 1 (or −1) for all t ¡ 0. Hence, for t6 0,

�(t; v) =
∫ t
−∞

e−A(0−
)b d
= A−1b (or − A−1b):

Afterwards, v(t) is a bang–bang control with n−2 or less switches. Denote z+e =−A−1b and z−e =A−1b, then
from Theorem 3.2 we have,

Observation 3.1. @R= @C is covered by two bunches of trajectories. The <rst bunch consists of trajectories
of (8) whose initial state is z+e and the input is a bang–bang control that starts at t = 0 with −1 and has
n− 2 or less switches. The second bunch consists of the trajectories of (8) whose initial state is z−e and the
input is a bang–bang control that starts at t = 0 with 1 and has n− 2 or less switches.

Furthermore, @R can be simply described in terms of the open-loop transition matrix. Note that for a 6xed
t¿ 0,

{�(t; v): v∈Emin}

=

{
±
[
e−Atz+e −

n−1∑
i=1

∫ ti+1

ti
e−A(t−
)b(−1)i d


]
: 0 = t1¡t2¡ · · ·6 tn−16 tn = t

}
∪ {±z+e }

=

{
±
[
n−1∑
i=1

2(−1)ie−A(t−ti) + (−1)nI

]
A−1b: 0 = t1¡t2¡ · · ·6 tn−16 t

}
∪ {±z+e }:

Hence,

@R= {�(t; v): t ∈R; v∈Emin}

=

{
±
[
n−1∑
i=1

2(−1)ie−A(t−ti) + (−1)nI

]
A−1b: 0 = t16 t26 · · ·6 tn−16 t6∞

}
:

Here, we allow t1 = t2 to include ±z+e . For second-order systems,

@R=
{
±
[
e−Atz−e −

∫ t

0
e−A(t−
)b d


]
: t ∈ [0;∞]

}
= {±(−2e−At + I)A−1b: t ∈ [0;∞]}: (19)

Plotted in Fig. 1 is the @R of a second-order system with

A=

[
0 −0:5

1 1:5

]
; B=

[
0
−1

]
:

We see that @R consists of a trajectory from z+e to z−e under the constant control v = −1 and a trajectory
from z−e to z+e under the constant control v= 1.
If n = 3, then one half of @R = @C can be formed by the trajectories of (8) starting from z+e with the

control initially being −1 and then switching at any time to 1. So the trajectories go toward z−e at 6rst then
turn back toward z+e . The other half is just symmetric to the 6rst half. That is

@R=
{
±
[
e−Atz+e +

∫ t2

0
e−A(t−
)b d
−

∫ t

t2
e−A(t−
)b d


]
: 06 t26 t6∞

}
: (20)
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Fig. 1. @R of a second order system.
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Fig. 2. @R of a third-order system.

Plotted in Fig. 2 is the @R of a third-order system with

A=



0:2 1 0

0 0:2 0

0 0 0:4


 ; B=


 1
1
1


 :

Since the trajectories of the original system and those of the time-reversed system are the same but traverse
in opposite directions, we can also say that @R=@C is covered by a set of trajectories of the original system.
While all the trajectories of the time-reversed system start at z+e or z−e and are very easy to generate by
simulation, it is impossible to obtain the same trajectories from the original system. For example, when n=2,
one half of @R is formed by the trajectory of the time-reversed system that starts at z−e under a constant
control v=+1. The trajectory goes from z−e toward z+e asymptotically but never reaches z+e at a 6nite time.
It seems that if we apply u = +1 at z+e to the original system, the trajectory will go from z+e to z−e along
the same trajectory of the time-reversed system. However, this is not the case. The trajectory of the original
system will stay at z+e under the constant control u=+1. The boundary @R can only be partially generated
from the original system if we know one point on it other than ±z+e . But this point is not easy to determine.
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3.3. Systems with complex eigenvalues

For a system with complex eigenvalues, the minimal representative set Emin is harder to determine. In what
follows, we consider two important cases.
Case 1. A∈R2×2 has a pair of complex eigenvalues �± j#; �; #¿ 0.
In order to arrive at an explicit formula for @C, we need to simplify c′eAtb. To this end, let V be the

nonsingular matrix such that

A= V
[
� −#
# �

]
V−1

and let[
c1
c2

]
= V ′c;

[
b1
b2

]
= V−1b;

then

c′eAtb= [c1 c2]
[
cos(#t) −sin(#t)
sin(#t) cos(#t)

] [
b1
b2

]
e�t

= [cos(#t) sin(#t)]
[
b1 b2
−b2 b1

] [
c1
c2

]
e�t :

Since [
b1 b2
−b2 b1

]

is nonsingular, it follows that{[
b1 b2
−b2 b1

] [
c1
c2

]
: c �=0

}
=
{
r
[
sin(&)
cos(&)

]
: r �=0; &∈ [0; 2')

}
:

Hence

{sgn(c′eAtb): c �=0}= {sgn(sin(#t + &)): &∈ [0; 2')};
and the set of extremal controls is

E= {v(t) = sgn(sin(#t + &)); t ∈R : &∈ [0; 2')}:
It is easy to see that

Emin = {v(t) = sgn(sin(#t)); t ∈R}
contains only one element. Denote Tp = '=#, then e−ATp =−e−�TpI . Let

z−s = (I + e−ATp)−1(I − e−ATp)A−1b=
1 + e−�Tp

1− e−�Tp
z−e : (21)

It can be veri6ed that the extremal trajectory corresponding to v(t)= sgn(sin(#t)) is periodic with period 2Tp
and,

@R=
{
±
[
e−Atz−s −

∫ t

0
e−A(t−
)b d


]
: t ∈ [0; Tp)

}

= {±[e−Atz−s − (I − e−At)A−1b]: t ∈ [0; Tp)}: (22)
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Case 2: A∈R3×3 has eigenvalues �± j# and �1, with �; #; �1¿ 0.
(a) �= �1. Then similar to Case 1,

E= {v(t) = sgn(k + sin(#t + &)); t ∈R: k ∈R; &∈ [0; 2')}:
Since sgn(k + sin(#t + &)) is the same for all k¿ 1 (or k6− 1), we have

Emin = {v(t) = sgn(k + sin(#t)); t ∈R: k ∈ [− 1; 1]}:
Each v∈Emin is periodic with period 2Tp, but the lengths of positive and negative parts vary with k. �(t; v)
can be easily determined from simulation.
(b) �1 �= �. Then

E= {v(t) = sgn(k1e(�1−�)t + k2sin(#t + &)); t ∈R: (k1; k2) �=(0; 0); &∈ [0; 2')}:
E can be decomposed as E= E1 ∪ E2 ∪ E3, where

E1 = {v(t) ≡ ±1} (k2 = 0);

E2 = {v(t) =±sgn(sin(#t + &)): &∈ [0; 2')} (k1 = 0);

E3 = {v(t) =±sgn(ke(�1−�)t + sin(#t + &)): k ¿ 0; &∈ [0; 2')}:
We will show that a minimal representative of E3 is

E3 min = {v(t) =±sgn(e(�1−�)t + sin(#t + &)): &∈ [0; 2')}: (23)

Let

v(t) = sgn(ke(�1−�)t + sin(#t + &))∈E3:

Since k ¿ 0, there is a number h∈R such that e(�1−�)h = k. So

v(t) = sgn(e(�1−�)(t+h) + sin(#(t + h)− #h+ &)) = v1(t + h)
for some v1(t)∈E3 min. On the other hand, given v1; v2 ∈E3 min, suppose

v1(t) = sgn(e(�1−�)t + sin(#t + &1))

v2(t) = sgn(e(�1−�)t + sin(#t + &2))

and v1 ∼ v2, i.e., v1(t) = v2(t − h) for some h, then

sgn(e(�1−�)t + sin(#t + &1)) = sgn(e(�1−�)(t−h) + sin(#(t − h) + &2)):
If �1¡� (or �1¿�), both e(�1−�)t and e(�1−�)(t−h) go to zero as t goes to ∞ (or −∞). For v1(t) and
v2(t − h) to change signs at the same time, we must have #t + &1 = #(t − h) + &2 + l', for some integer l.
Since at any switching time of v1(t) and v2(t), sin(#t + &1)¡ 0, sin(#(t − h) + &2)¡ 0, we conclude that
sin(#t + &1) = sin(#(t − h) + &2) and e(�1−�)t = e(�1−�)(t−h). So we get h= 0; &1 = &2. These shows that E3 min

is a minimal representative of E3.
The minimal representative of E2 is the same as Emin in Case 1. It follows that

Emin = {v(t) ≡ ±1} ∪ {v(t) = sgn(sin(#t))} ∪ E3 min :

If �1¡�, for each v∈E3 min, v(t) = 1(or −1) for all t6 0, so the corresponding extremal trajectories stay at
z+e =−A−1b or z−e before t = 0. And after some time, they go toward the periodic trajectory since as t goes
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Fig. 3. Extremal trajectories on @R, �1¡�.

to in6nity, v(t) becomes periodic; When �1¿�, for each v∈E3 min, v(t) = 1(or −1) for all t¿ 0, and the
corresponding extremal trajectories start from near periodic and go toward z+e or z−e .
Plotted in Fig. 3 are some extremal trajectories on @R of the time-reversed system (8) with

A=



0:5 0 0

0 0:8 −2

0 2 0:8


 ; B=


 1
1
1


 ;

which has two complex poles.
For higher order systems, the relative location of the eigenvalues are more diversi6ed and the analysis will

be technically much more involved. It can, however, be expected that in the general case, the number of
parameters used to describe Emin is n− 2.

4. Conclusions

We gave a clear understanding of the null controllable regions of general linear systems with saturating
actuators. We showed that the boundary of the null controllable region of an anti-stable linear system is
composed of a set of extremal trajectories of its time-reversed system. The description of the boundary of
the null controllable region is further simpli6ed for lower-order systems and systems that have only real
eigenvalues.

Appendix A. Proof of Theorem 3.3

First we present a lemma. Let us use Pk to denote the set of real polynomials with degree less than integer
k. The number 0 is considered a polynomial with arbitrary degree or with degree −1.

Lemma A.1. Given N positive integers; k1; k2; : : : ; kN ; de<ne a set of functions

GN :=

{
g(t) =

N∑
i=1

eaitfi(t): fi ∈Pki ; ai ∈R; g(t) �≡ 0

}
:

Then g(t)∈GN has at most
∑N
i=1 ki − 1 zeros.
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Proof. We prove this lemma by induction. It is easy to see that the statement is true when N = 1. Now
assume that it is true when N is replaced by N −1. Let g(t)∈GN . Suppose on the contrary that g has

∑N
i=1 ki

or more zeros. Then g̃(t) = g(t)e−aN t also has
∑N
i=1 ki or more zeros. Therefore; the kN th derivative of g̃;

[g̃(t)](kN ) =

[
N−1∑
i=1

e(ai−aN )tfi(t) + fN (t)

](kN )

=

[
N−1∑
i=1

e(ai−aN )tfi(t)

](kN )

∈GN−1;

has at least
∑N−1
i=1 ki zeros; which is a contradiction.

Proof of Theorem 3.3. The proof of (a) was sketched in [11; p. 77]; where an additional assumption of
normality was required. This assumption is satis6ed for system (8) since it is single input and (A; b) is
controllable. To show (b); assume that A has N distinct real eigenvalues .i; i = 1; 2; : : : ; N ; each with a
multiplicity of ki (

∑N
i=1 ki = n). It is well-known that c′eAtb=

∑N
i=1 e.itfi(t) for some fi ∈Pki . If c �=0; then

c′eAtb �≡ 0 by the controllability of (A; b). (Thus (a) follows from Lemma A.1). To complete the proof of
(b); we 6rst show that any bang–bang control v with n− 1 switches is an extremal control.
Let t1; t2; : : : ; tn−1 ∈R be distinct switching times of v. From the following n− 1 linear equations

c′eAti b= 0; i = 1; 2; : : : ; n− 1

at least one nonzero vector c∈Rn can be solved. With any such c, (a) implies g(t)= c′eAtb �≡ 0 has no other
zeros than the n− 1 zeros at ti; i = 1; 2; : : : ; n− 1.
Now the question is whether g(t) indeed changes signs at each ti. If it does, then v(t) = sgn(c′eAtb) (or

sgn(−c′eAtb)) and v is an extremal control.
We now show that g does change signs at each ti. If g does not change sign at a certain ti, then g(t) must

have a local extremum at ti, so ġ(ti) = 0. We argue that there is at most one ti such that ġ(ti) = 0, otherwise
ġ will have at least n zeros, counting the at least n − 2 ones lying within the intervals (ti; ti+1), which is
impossible by Lemma A.1, since ġ has the same structure as g.
We further conclude that g, however, cannot have a local extremum at any of these ti’s.
Let g(t) =

∑N
i=1 e

.itfi(t). Assume without loss of generality that fN (t) �≡ 0. Suppose on the contrary that
g has a local minimum (or maximum) at t1, then g̃(t) = g(t)e−.N t also has a local minimum (or maximum)
at t1, furthermore, g̃(ti) = 0; ˙̃g(ti) �=0; i = 2; 3; : : : ; n − 1. Hence, there exists an �¿ 0 (or �¡ 0) such that
g̃(t) − � = ∑N−1

i=1 e(.i−.N )tfi(t) + fN (t) − � has n zeros, which contradicts with Lemma A.1. Therefore, g
changes signs at all ti. This shows that v(t) = sgn(c′eAtb) (or sgn(−c′eAtb)) is an extremal control.

Now consider the case that v has less than n−1 switches, say n−1−j switches, ti; i=1; 2; : : : ; n−1−j. For
simplicity and without loss of generality, assume that A is in the Jordan canonical form (the state transformation
matrix can be absorbed in c′ and b. Partition A; b as

A=
[
? ?
0 A1

]
; b=

[
?
b1

]

where A1 is of size n − j. It is easy to see that A1 is also of the Jordan canonical form and (A1; b1) is
controllable. Furthermore,

eAt =
[
? ?
0 eA1t

]
:

Partition c=[0 c′1]
′ accordingly, then c′eAtb= c′1e

A1tb1. By the foregoing proof for the full dimensional case,
we see that there exists c1 such that v(t) = sgn(c′1e

A1tb1) is a bang–bang control with switching times exactly
at ti; i = 1; 2; : : : ; n− 1− j.
Therefore, we conclude that any bang–bang control with less than n− 1 switches is also extremal.
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