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Stabilization of Exponentially Unstable Linear Systems Despite the existing results (see [2] for an extensive chronological
with Saturating Actuators bibliography on the subject), the general picture of stabilizing expo-

nentially unstable linear systems with saturating actuators remains not

Tingshu Hu, Zongli Lin, and Li Qiu as clear as that of ANCBC systems. It is clear that this kind of systems

cannot be globally stabilized in any way since they are not globally
null controllable. The largest possible region on which a system can be

. . i . ; stabilized is the null controllable region. In [4], we gave an explicit de-
linear systems with saturating actuators. The study begins with planar sys- s . . .
tems with both poles exponentially unstable. For such a system, we show SCrption of the null controllak_)le region for a ggneral linear system in
that the boundary of the domain of attraction under a saturated stabi- terms of a set of extremal trajectories of the (time reversed) antistable
lizing linear state feedback is the unique stable limit cycle of its time-re- - subsystem. We recall that a linear system is said to be antistable if all its
versed system. A saturated linear state feedback is designed that results in poles are in the open right-half plane and semistable if all its poles are

a closed-loop system having a domain of attraction that is arbitrarily close . .
to the null controllable region. This design is then utilized to construct state in the closed left-half plane. For example, for a second order antistable

feedback laws for higher order systems with two exponentially unstable System, the boundary of its null controllable region is covered by at
poles. most two extremal trajectories; and for a third order antistable system,

Index Terms—Actuator saturation, domain of attraction, null control- j[he set Of_ extremal trajectories can be described in terms of parameters
lable region, semiglobal stabilization. in a real interval.
Based on the description of the null controllable region in [4], we
begin our study of stabilization with planar antistable systems. We
I. INTRODUCTION show that for such a system the boundary of the domain of attraction

We consider the problem of stabilizing exponentially unstable linedpder any stabilizing saturated linear state feedback is the unique stable

systems subject to actuator saturation. For systems that are not e}t cycle of its time-reversed system. Moreover, the domain of attrac-

nentially unstable, this stabilization problem has been focus of stubign IS convex. We next show that any second order antistable linear
and is now well addressed. For example, it was shown in [13] thg¥Stem can be semiglobally asymptotically stabilized on its null con-
a linear system subject to actuator saturation can be globally asyrHgllable region by saturated linear feedback. That is, forapyiori
totically stabilized by nonlinear feedback if and only if the systerVen set in the interior of the null cgntrollable region, there exists a
is asymptotically null controllable with bounded controls (ANCBC)Saturated linear feedback law that yields a closed-loop system which
which, as shown in [11], is equivalent to the system being stabili?@S an asymptotically stable equilibrium whose domain of attraction
able in the usual linear sense and having open-loop poles in the clo¥dudes this given set. This design is then utilized to construct state
left-half plane. A nested feedback design technique for designing ndgedback laws for higher order systems with two exponentially unstable
linear globally asymptotically stabilizing feedback laws was propos@®9'es- ) ) ) _ _

in [16] for a chain of integrators and was fully generalized in [14]. The remainder of this note is organized as follows. Section Il con-
Alternative solutions to the global stabilization problem consisting ¢#ins a brief summary of the description of the null controllable region
scheduling a parameter in an algebraic Riccati equation according4gich will be used in this note. Section Il determines the domain of
the size of the state vector was later proposed in [12], [17]. The quest@ffaction for a second order antistable linear system under any satu-
of whether or not a general linear ANCBC system subject to actuaf@ted stabilizing linear _feedback_ law. Section IV_constr_u_cts saturated
saturation can be globally asymptotically stabilized by linear feedbaf§&dback laws that achieve semiglobal asymptotic stability on the null
was answered in [3], [15], where it was shown that a chain of integrat&gntrollable region for anylllnear systems havmg two expohentlally un-
of length greater than two cannot be globally asymptotically stabiliz&¢@ble poles. Finally, Section V draws some brief conclusions.

by saturated linear feedback.

The notion of semiglobal asymptotic stabilization on the null con- Il. RESULTS ON THENULL CONTROLLABLE REGION
trollable region for linear systems subject to actuator saturation WaS-onsider a linear system
introduced in [7], [8]. The semi-global framework for stabilization re-
quires fet_adback laws tha_lt_ yi_eld a closed-loop system V\_/hic_h has an #(t) = Ax(t) + bu(t), | < 1 1)
asymptotically stable equilibrium whose domain of attraction includes
ana prior_i given (arbitra_rily large) bounded supset of the null Contml\?\/herea:(t) € R" is the state and(t) € R is the control. Assume
lable region. In [7], [8], it was shown that, for linear ANCBC systemg, o (4. 1) is stabilizable. The null controllable region of the system,
subject to actuator saturation, one can achieve semi-global asympiglifeq ag, is defined to be the set of states that can be steered to
stabilization on the asymptc_)tlca_lly null controllable region (the wholﬁ1e origin in a finite time by using a contral that is measurable and
state space in this case) using linear feedback laws. lu(t)] < 1 forallt. If A is antistable, thek is a bounded convex

open set. For a general unstable systérig the Cartesian product of
the null controllable region of its semistable subsystem, which is the
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and for a controb, |v(¢)| < 1 forallt € R, denote the trajectory of §
(2) under the control of as o
ot
D(t, v) = / ey (7) dr. 4) i <
o 2t f
SinceA is antistable, the integral in (4) exists forak R, so®(t, v)
is well defined. It is shown in [4] that o
AC ={P(t,v):te R, vECE}. (5) N ‘ 1
-4 .
In particular, for a second-order antistable system, ifas two real
eigenvalues, then - .
ot N N N N N N , N N
acC = {:i: |:67Atz; —/ e,fA(t*T)de:| 1t €10, oc]} qo . 6 4 2 0 2 4 & 8 10
0
— {:t(_ge*/“ + DA 't e [0, oo]} (6) Fig. 1. Determination oS from the limit cycle.
wherez. = A" is the equilibrium point under the constant control Lemma 3.1 [1]: The origin is the unique equilibrium point of
u = —1;if A has a pair of complex eigenvaluest j3, o, 3 > 0, system (8).
then Let us introduce the time-reversed system of (8)
ot .
a0 — {i {67%: 3 / GfA(tfr)de:| e, Tp]} 2(t) = —Az(t) — bo(f(1)). (10)
0
_ {i[efAtZ: —(I- (At)Aflb]: teo, T} @) Cl_ez_arly (10) also has only one_e_quilibrium point, an unstable one, atthe
origin. Denote the state transition map of (10)dky(t, z0) — z(¢).
wherel, = /3 andz; = (I+ e Mr) 11— e A1r)a 1, Theorem 3.1:9S is the unique limit cycle of planar systems (8)

and (10). Furthermor€)S is the positive limit set of/ (-, zo) for all
I1l. D OMAIN OF ATTRACTION UNDER SATURATED LINEAR STATE 0 7é_0' . . L
FEEDBACK This theorem says tha&tS is the unique limit cycle of (8) and (10).
This limit cycle is a stable one for (10) (in a global sense), but an un-
Also consider the open-loop system (1). A saturated linear state fegghble one for (8). Therefore, it is easy to deterndifeby simulating
back is given byt = o(fx), wheref € R'*" is the feedback gain the time-reversed system (10). Shown in Fig. 1 is a typical result, where
ande (-) is the saturation function(s) = sgn(s) min{1. |s|}. Such two trajectories, one starting from outside, the solid curve, and the other
a feedback is said to be stabilizing4f+ 0 is asymptotically stable. starting from inside, the dashed curve, both converge to the unique limit

With a saturated linear state feedback applied, the closed-loop sysig#le. The straight lines in Fig. 1 afee = 1 andfz = —1.

is To prove Theorem 3.1, we need the following two lemmas, proofs
. ) of which can be found in [4].
#(t) = Ax(t) + bo (f2(1)). (®) Lemma 3.2: Suppose thatt € R?*? is anti-stable andf, A4) is

observable. Given a > 0, letz, z2, y1 andy. (x1 # z2) be four

Denote the state transition map of (8) by (t, x¢) — x(t). The do- points on the linefz = ¢, satisfying

main of attractionS of the equilibriumez = 0 of (8) is defined by

ATy ATy

Yy1=¢ T1, Y2 =€ T2,

S = {:L’o eR": lim ¢, @0) = ()}.
e for someT,, T, > 0 and
Obviously, S must lie within the null controllable regio@ of the
system (1). Therefore, a design problem is to choose a state feedbac!
gain so thatS is arbitrarily close taC. We refer to this problem as then,flyr — yol| > [lor — a2]|.

semiglobal stabilization on the null controllable region. We will first Shown in Fig. 2 is an illustration of Lemma 3.2. The curve from

deal with antlsta_ble planar systt_ems, then extend the results to hng?rto yi is a(t) = e*'zi,t € [0, T)], a segment of a trajectory of
order systems with only two antistable modes.

S . ) .. the autonomous systein= Az. Lemma 3.2 indicates that if any two
For the system (8), assume thate R**? is anti-stable. In [1], it y g y

. : different trajectories leave a straight line on the same side, they will be
was shown that the boundary8f denoted by)S, is a closed orbit, but further apart when they return to it.

no method to find this closed orbit is provided. Generally, onlyasubsetl_emma 3.3: Suppose thatl € R2*” is asymptotically stable and
of S lying betweenfx = 1 andfx = —1 is detected as a level set of(f A) is observable. Givena > 0, leta,, +2 be two points on the
some Lyapunov function (see, e.g., [5]). LBtbe a positive—definite =’ ",  ~ ) VS

matrix such thatA + bf)' P+ P(A + bf) is negative—definite. Since line f = candy:, y> be two points orf = —c such that
{z € R*: -1 < fz < 1} is an open neighborhood of the origin, it g1 = e gy, yo = A2,
must contain

ﬁ(imlfl >c fe'2ry>e, V€ (0, Ty), t2€(0,T13)

for someT', 7> > 0, and
Qo :={z € R :'Pz < ro} 9
|fetia| <e, |[fe2as| < e,
for somero > 0. Clearly,Q is an invariant set insidg. However,Qo vVt €(0,Th), t2€(0,T3)
as an estimation of the domain of attraction can be very conservative
(see, e.g., Fig. 1). then,|ly1 — vzl > [|lz1 — 22]|.
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Fig. 2. lllustration of Lemma 3.2. Fig. 3. lllustration of Lemma 3.3.
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Shown in Fig. 3 is an illustration of Lemma 3.3. It says that if two

different trajectories of the autonomous systers= Az enter the re- il i}
gion betweenfz = c and fx = —c, they will be further apart when sk i
they leave the region. Notice that in Lemma 342is antistable, and in

Lemma 3.3,4 is asymptotically stable. " ]

Proof of Theorem 3.1:We first prove that for the system (10),
every trajectoryy(t, z9), zo # 0, converges to a periodic orbit as
t — oo. Recall thatQ, [defined in (9)] lies within the domain of of
attraction of the equilibriumx = 0 of (8) and is an invariant set. It
follows that, for every state; # 0 of (10), there is somé&, > 0 such , .

1 2

that)(¢, zo) lies outsideQ, for all t > 7. The state transition map of -1F 2
the system (10) is s \\/ ]

-t -2} j
W(t, z0) = e My — / efA(t*T)ba(fz(T))dT. (12)
0
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Since — A is stable, the first term converges to the origin. SinCEig. 4
lo(fz(7))| < 1, the second term belongs & the null controllable
region of (1), for allt. It follows that there exists ami > 7o
such thaty'(t, z0)Py(t, z0) < 1 < oo forallt > t,. Let Jfv = 1exactlytwiceand similarly fofz = —1. It also implies that
Q= {z€e R%r < Pz < r}. Thent(t, z), t > to, lies a periodic orbit goes counter-clockwise.
entirely in Q. It follows from the Poincaré—Bendixon theorem that NOw, suppose on the contrary that (8) has two different periodic or-
(¢, =) converges to a periodic orbit. bitsI'; andT'z, with T'; enclosed by'2, as illustrated in Fig. 4. Note
The preceding paragraph shows that (8) and (10) have periodic #1et any periodic orbit must enclose the origin and any two trajectories
bits. We claim that the system (8) and (10) each has only one periofnot intersect. Hence, all the periodic orbits must be ordered by en-
orbit. For direct use of Lemma 3.2 and Lemma 3.3, we prove this clafffPSement. Lek, andy, be the two intersections @h with fo = 1,
through the original system (8). andzxz, y» be the two intersections &% with f= = 1. Then, alond":,
First notice that a periodic orbit must enclose the unique equilibriuffi® trajectory goes from, toy:, —x1, —y: and returns ta; ; along
pointx = 0 by the index theory, see e.g., [6], and must be symmetrie. the trajectory goes from to y2, —x2, —y» and returns ta.
to the origin €I is a periodic orbit ifl" is, hence if the periodic orbit L€t x} = —A""p. Sincer; — y; alongl'; andr; — y. alongl;
is not symmetric, there will be two intersecting trajectories). Also, A€ On trajectories of = Az + b (or d(x — 2D)/dt = A(x — 2F)),
cannot be completely contained in the linear region between= We have
lLandfr = —1. (Otherwise the asymptotically stable linear system 4 ATy, 4
i = (A+ bf)x would have a closed trajectory in this region. Thisis ~ ¥' —%e = ¢ (w1 —2l) yo—al =e" P(va—2])
impossible). Hence, it has to intersect each of the lifies= +1 at
least twice. Assume without loss of generality that A, b) is in the
observer canonical form, i.ef, = [0 1], 4 = [2 —=1], b = [1],

lllustration for the proof of Theorem 3.1.

for someT, T, > 0. Furthermoref(x1 — af) = f(az — 2) =
flyp—al) = flyo—at) =1—fal > 0(sincefz =bi/ar < 1)

- . i ag bo and for allz on the two pieces of trajectorief(z — xF) > 1 — faf.
with a1, a2 > 0, and denoter = [;!]. In this casefr = £l are ¢ foliows from Lemma 3.2 that
horizontal lines. The stability oft + 6 f requires that-a; + b, < 0
andaz + b2 < 0. Observe that on the linfz = 1, we have; = 1 ly2 — y1]| > [lw2 — 1.

andé; = & + ax + by. Hence, if¢; > —as — ba, thenéz > 0, i.e.,
the trajectories go upwards;§f < —as — bs, thené, < 0, i.e., the On the other hand;; — —=, alongl'; andy, — —a, alongI'; are
trajectories go downwards. This implies that any periodic orbit crosses trajectories of = (A + bf )z satisfying—zq = (A" 754, and
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—ay = AT Tay, for someTs, T, > 0. It follows from Lemma
3.3 that 08
w2 = a1ll > lly2 — ] o8
which is a contradiction. ThereforE,; andI'> must be the same pe- >
riodic orbit. This shows that the systems have only one periodic orbit o2
and, hence, itis a limit cycle.
We have so far proven that both (8) and (10) have a unique limit
cycle and every trajectory (¢, zy), zo # 0, of (10) converges to this -02
limit cycle. This implies that a trajectory(¢, xo) of (8) converges to

the origin if and only ifz, is inside the limit cycle. This shows thatthe ¢
limit cycle isdS. | -8

In the above proof, we also showed tlé&t is symmetric and has
two intersections withfz = 1 and two withfz = —1. Another nice o8
feature ofS, as shown in [4], is that it is convex. »

-1 -0.8 -0.8 -0.4 ~0.2 [ 02 0.4 08 08 1
IV. SEMIGLOBAL STABILIZATION ON THE NULL CONTROLLABLE Fig. 5. Domains of attraction under different feedbacks.
REGION

A. Second Order Antistable Systems Example 4.1:Let A = [? —95 ] andb = [_(j] Thenfy = [0 3].

In this subsection, we continue to assume that R2*2 is an- N Fig. 5, the boundaries of the domains of attraction corresponding to

tistable and A, b) is controllable. We will show that the domain ofdifferentf =k fo, k = 0.50005, 0.65, 1, 3, are plotted. The regions
attractionS of the equilibriuma = 0 of the closed-loop system (8) 90 become bigger for greater The outermost boundary é&”. When
can be made arbitrarily close to the null controllable regidsy judi- * = 3. it can be seen thas is already very close toC.

ciously choosing the feedback gafn To state the main result of this ) ) )

section, we need to introduce the Hausdorff distance. l:etY> be B. Higher Order Systems with Two Exponentially Unstable Poles
two bounded subsets 8" . Then, their Hausdorff distance is defined Consider the following open-loop system:

as

b1

0
:| x(t) + w(t) (14)

12

, Ay

d(X1, Xy) := max {J(Aq, Xo), d(X, Xl)} #(t) = Ax(t) + bu(t) = [ 0 .
where wherez = [z} 23], z1 € R% 22 € R", A, € R**? is anti-
stable andd; € R" is semi-stable. Assume th@at, b) is controllable.

d(X1, o) = sup inf |1 — 2. Denote the null controllable region of the subsystem

r1EX, T2€X2

Here, the vector norm used is arbitrary. 21(t) = A () + bru(t)
Let P be the unique positive—definite solution of the following Ric- ) )
cati equation: asCi, then the null controllable region of (14) 5 x R"[4]. Given

71, 72 > 0, denote
A'P+PA—PH'P=0. (12) ‘ _
Qi1(m) = {",/1.1:1 eR* 2 € Cl}

Note that this equation is associated with the minimum energy regula- Qa(72) :={x2 € R™: [Jaz|| < 72} (15)
tion, i.e., an LQR problem with cost

- When~, = 1, (1) = C; and wheny; < 1, () lies in the

J= / o (tyu(t) dt. interior of C; . In this section, we will show that given any < 1 and

0 ~2 > 0, a state feedback can be designed such(®hét ) x Q22(~2)

. - S is contained in the domain of attraction of the equilibriure= 0 of the
The corresponding minimum energy state feedback gain is given (ﬁ%sed-loo svstem
fo = =1’ P. By the infinite gain margin and 50% gain reduction margin psy '

Y — [Pl Pl(c) (24n)x(24n) H
property of LQR regulators, the origin is a stable equilibrium of system Fore > 0, letP(e) [P2’<f> P§<c>] €R be the unique

positive—definite solution to the ARE

#(t) = A2(t) + bo(kfor(?)) (13) AP+ PA— Pbb'P+é1 =0. (16)

k 5. S(k i i ilibri .
f;)r:zill() Of>((1)35) LetS(k) be the domain of attraction of the equmb”umCIearly, as | 0, P(¢) decreases. Hendem, _o P(¢) exists.
Theorem 4.1:limy_ .. d(S(k), C) = 0. Let P, be the unique positive definite solution to the ARE

Proof: See the Appendix. O
Note that the use of high gain feedback is crucial here. The minimum
energy f_ee_dbac_lfo |t_self does not give a domain OT attraction CIOSel'hen by the continuity property of the solution of the Riccati equation
to C. This is quite different from the related result in [8] and [9] for, 19
semistable open-loop systems. In these two papers, it was shown hal
if (A, B) is ANCBC, then low-gain feedback gives arbitrarily large . P 0
domain of attraction. 313% Ple) = { 0 0} ’

flllPI + PlAl - Plblbllpl =0.
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Let f(e) := —b' P(¢). First, consider the domain of attraction of thehenT'(x10) is the time wheny (¢, x1¢) first enters the balfx; €

equilibriumz = 0 of the following closed-loop system: R?: ||z1]] € ri(e0)}. Let
(t) = Az(t) + ba(f(e)x(t)). a7) Ty = max{T (x10): €10 € Q1 (1)} (21)

It is easy to see that and
- 240, 0Pl 1P/ y2 At M (=)
D(e) := {L €ERTa Ple)r < 1/[0°P 7 ()l } 7= ]||e 2|72 +/ eA2(Tu sz dr  (22)
telo, Las 0

is contained in the domain of attraction of the equilibrium= 0 of
(17) and is an invariant set. Note thatif € D(¢), thenxz(t) € D(e)
and|f(e)x(t)| < 1forall¢t > 0. Thatis,z(¢) will stay in the linear
region of the closed-loop system, andle).

Lemma 4.1: Denote

ri(e) : L
T = »
C2 R epee)
—|P ), 2
o) o= ZIP2F ¢||P.”<2|(|E)ﬁ LAGIILAGII
Then

Di(e) i= {o € R**": [Jas || < rie), [laall < r2(e)} C Do),

Moreover,lim¢_.q r2(¢) = oo, andr;(e) increases with an upper
bound as tends to zero.
Proof: It can be verified that

1P (lri(e) + 21| Pa(e)llri(e)rz(e) + [ P (o)l (e)
1

e — 18
16" P12 ()l 4o

Soforallz € Di(e), ' P(e)x < (1/||b'PY?(e)||?), i.e., Di(e) C
D(e). By the definition ofri(¢) andrz(¢), we have

ra(e) = IOl
IP2(e) |+ VTP + IR (N TP
1
2| P20 I Pl

Since as goes to zeroP: (€), Ps(e) — 0, andPi(e) — Pi, sori(e)
is bounded whereas (¢) — oc. It follows from the monotonicity of
P(¢) thatr, is a monotonically decreasing functioneof O

Theorem 4.2:Let f, = —b} P,. For anyy; < 1 andv. > 0, there
existak > 0.5 and are > 0 such that2, (v1) x Q2(~2) is contained
in the domain of attraction of the equilibrium= 0 of the closed-loop
system

2(t) = Ax(t) + bu(t) (19)
where
_ {a(kfg:rl(t)), x & D(e) 19)
a(f(e)x(t)), x€ D(e).

Proof: Sincey; < 1, by Theorem 4.1, there existska> 0.5
such that2 (v, ) lies in the interior of the domain of attraction of the
equilibriumaz;, = 0 of

Let e, > 0 be given. For an initial stateio € 21(+1), denote the
trajectory of (20) as)(¢, 10). Define

T(x10) == min{t > 0: ||[¢ (¢, z10)|| < r1(e0)}

then by Lemma 4.1, there exists ar< ey such thatr; () > r(eg),
ra(e) > ~ and

Di(e) = {z € R**": lau || < ma(e). [l ]| < r2()} C D(e)
lies in the domain of attraction of the equilibrium= 0 of (17).

Now consider an initial state of (19}, € Qi(71) X Qa2(72). If
zo € D(e), thenwz(t) will go to the origin sinceD(e) is an invariant
set and is contained in the domain of attractionzdf ¢ D(e), we
conclude that(¢) will enter D(¢) at somel’ < T under the control
u = o(kfox1(t)). Observe that under this contrak (¢) goes along
a trajectory of (20). If there is no switchy (#) will hit the ball {21 €
R?: |lz1]] < ri(e0)} atT(z10). ClearlyT(z10) < Ty and at this
instant||z2 (T (x10))|| < v < r2(e), sox(T(x10)) € Di(e). Thus,
we see that if there is no switch(¢) will be in D+ (¢) atT(x10). Since
Di(e) C D(e), =(t) must have entered(e) at some earlier time
T < T(x10) < Twr. So we have that conclusion. With the switching
control applied, once(t) enters the invariant sé(¢), it will remain
in it and go to the origin asymptotically. O

V. CONCLUSION

We provided a simple semiglobal stabilization strategy for exponen-
tially unstable linear systems with saturating actuators. For a planar
antistable system, the controllers are saturated linear state feedbacks
and for higher order systems with two antistable modes, the controllers
are piecewise linear state feedbacks with only one switch.

APPENDIX
PrROOF OFTHEOREM 4.1

For simplicity and without loss of generality, we assume that

SinceA is anti-stable andA, b) is controllable A, b can always be
transformed into this form. Suppose thahas already taken this form
andb = [}]. LetV = [-A~'b —b], thenV is nonsingular and it can
be verified thal’ ~' AV = 4 andV~'b = [ J].

—1
With this special form ofd andb, we have

0
1

—aq

0

A= .

as

:| R ay, az > 0, b= |:_

K
P = ay
O a2

0 —ay

f() = [0 2(1,2], fl-ﬁ- kbfo = [1 ag(1—2k)
[5']- We also havefo A" = 0.
For a givenk > 0.5, (13) has a unique limit cycle which is the
boundary ofS(%). To visualize the proof)C anddS(k) for somek
are plotted in Fig. 6, where the inner closed curvéi§k), and the
outer one iC.
We recall that when the eigenvaluesdfare real [see (6)]

ot
aC = {:I: |:(3_'4f’z€_ —/ c_A(f'_T)de:| 1t e|o, oo]}
0

],z =-A4""p =[] and

~e

(23)
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06 Y T T T T

and
0.4} E ) Y11
ke foe~(ATRbIOE 1 <1, vt e, T].
02k J 2kas

We also note that the upward movement of the trajectory &ndy;
of 2 1 implies thatry; < (2k — 1)/2k, y11 < (1 — 2k)/2k.

Ask — oo, A+ kbfo = [¢ az(la_lm] has two distinct real eigen-
2f E values—\; and—A\:. (Their dependence dnis also omitted.) Assume
Ao > Ap. Sincedi Ay = a; andA; + Ay = as(2k — 1), we have

limg—oo A1 = 0, limp—oo A2 = +00.

=041 E
With the special form ofd + kb fo, it can be verified that
-08}+ R —1
SAFRDF)T [A'z A {G*AIT (A)T} [/\2 M} -
—A2
o8 , , , , , 1 1 0 e 11
-1.5 -1 <05 0 05 1 1.5

Hence, from (27), we obtain
Fig. 6. The domain of attraction and the null controllable region.

T Ao — A+ doe 2T — Ao M7

. 11 = 57 B S I
and when the eigenvalues dfare complex [see (7)] 2kas emnel —emh B
ot ) _ 1 )\2 —)\1 +)\26)\21 —)\16)\11
aC = {:I: |:e_‘4[zs_ - / e_A(L_T)de:| 1t e [Ova]}. Y= Sas eMT — eraT )
0 . P
(24) Sinceyir < (1—2k)/2k = —(A\1 +X2)/(2kaz) andet? — 2t <
0, we have
On the other hand)S (k) is the limit cycle of the time reversed system
of (13), Me2T < x = A+ AaeMT < 20eMT
it) = —Az(t) — bo(kfoz(t)). (25) and
Here, the limit cycle as a trajectory goes clockwise. From the proof of In 2y )
Theorem 3.1, we know that the limit cycle is symmetric and has two T < Moo 1 n 2A3
intersections withk fo = = 1 and two withk foz = —1, see Fig. 6. Let Ao =AM AN
T be the time required for the limit cycle trajectory to go frgmto noting that A\ = ai/\s. Sincelimi_o. ds = oo, we get

21, and7: the time fromz; to —y1, then limg—. T = 0. It follows that

_ —(A+kbfo)t,
OS(k) = {:l:(«’ 0) y1: t € [0, T]} b Y~ i Ao — A1 + doer2T = NetT
ot . Fooo 111 koo (Az — A1 )e1FA)T 4 Ay edl — N erel
u {:I: |:e_"4t'r,1 — / S_AU_T')IJ(IT:| 1t €10, TQ]}. " (% ' L4 T ’ '
0 Ao — A —
(26) = lim : ekt =1
. AT T
) ) oo \ AT )\ e (1 + € )
Here and in the sequel, the dependenceofy;, 7" andZ:; on k is Az€ - 1+ erel

omitted for simplicity.
Ask — oo, the distance between the lihgyz = 1 andk foz = —1  Where we have used the fact thiah ... A+ = 0. Sincer; andy, are
approaches zero. By comparing (23), (24) and (26), we see that to pré@ginded by the null controllable region, we have
the theorem, it suffices to show
klglalc(yu —x11) = 0. (28)
AIEIOIQT =0, kll_I)IolQ x1 = kll_I)IolQ y1 =z (Orz;) )

khm T, = oc(or T)). On the limit cycle of (25), we also have

T )
In this case, the length of the part of the limit cycle between the lines —yr = ay — / =M= gy
kfoz = 1l andkfoz = —1 will tend to zero. We will first show that 0
limg oo T = 0. ie.,
Let
1 Y1 AT i AT: 1
P P L= [ L[+ T—e T
2kas ” _2A7a,2 2kas 2kas
- Y11
thenkfo;L‘l — 1’ kfoy1 = _1 (I+C_/4T2) |: 0 :| :(I— (3_/47’2)14—1{}
ri1 Y11 Yir — X1 0
[ 1 } = e~ (AFRbIO)T 1 (27) + e 1 + 1 } .
2kas _Qkaz _m 2kas
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It follows from (28) that [18] G. F. Wredenhagen and P. R. Belanger, “Piecewise-linear LQ control
for systems with input constraintsfutomatica vol. 30, pp. 403-416,
1994.
lim b (I+ 67‘4T2)71(I —e A4 Y =0, [19] J. C. Willems, “Least squares stationary optimal control and the alge-
k—oo braic Riccati equationsfEEE Trans. Automat. Contivol. AC-16, pp.

621-634, Dec. 1971.

Hence

For different cases, it can be shown from the above equality that

Jim [0 1](1+ ey I — e AT D = 0.

On Stabilization and Spectrum Assignment in Periodically

1) ifthe eigenvalues ofl are real, then Time-Varying Continuous-Time Systems
. . . . [yu } - Joseph J. Yamé and Raymond Hanus
lim 15 = ¢, lim y1 = lim z; = lim =z, ;
k—oo k—oo k—oo :— 00 0
. . Abstract—This note discusses the stabilization and spectrum assignment
2) if the eigenvalues afl are complex, then problems in linear periodically time-varying (LPTV) continuous-time
systems withsampledstate or output feedback. The hybrid nature of the
Y11 overall feedback system in this case imposes some carefulness in handling
lim T =1T,, lim y; = lim x; = lim =z, . classical concepts related to purely LPTV continuous-time systems. In
k—oo k—eo k—oo —oo | () particular, this note points out the fact that the stabilization of such

This completes the proof.
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