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Stabilization of Exponentially Unstable Linear Systems
with Saturating Actuators

Tingshu Hu, Zongli Lin, and Li Qiu

Abstract—We study the problem of stabilizing exponentially unstable
linear systems with saturating actuators. The study begins with planar sys-
tems with both poles exponentially unstable. For such a system, we show
that the boundary of the domain of attraction under a saturated stabi-
lizing linear state feedback is the unique stable limit cycle of its time-re-
versed system. A saturated linear state feedback is designed that results in
a closed-loop system having a domain of attraction that is arbitrarily close
to the null controllable region. This design is then utilized to construct state
feedback laws for higher order systems with two exponentially unstable
poles.

Index Terms—Actuator saturation, domain of attraction, null control-
lable region, semiglobal stabilization.

I. INTRODUCTION

We consider the problem of stabilizing exponentially unstable linear
systems subject to actuator saturation. For systems that are not expo-
nentially unstable, this stabilization problem has been focus of study
and is now well addressed. For example, it was shown in [13] that
a linear system subject to actuator saturation can be globally asymp-
totically stabilized by nonlinear feedback if and only if the system
is asymptotically null controllable with bounded controls (ANCBC),
which, as shown in [11], is equivalent to the system being stabiliz-
able in the usual linear sense and having open-loop poles in the closed
left-half plane. A nested feedback design technique for designing non-
linear globally asymptotically stabilizing feedback laws was proposed
in [16] for a chain of integrators and was fully generalized in [14].
Alternative solutions to the global stabilization problem consisting of
scheduling a parameter in an algebraic Riccati equation according to
the size of the state vector was later proposed in [12], [17]. The question
of whether or not a general linear ANCBC system subject to actuator
saturation can be globally asymptotically stabilized by linear feedback
was answered in [3], [15], where it was shown that a chain of integrators
of length greater than two cannot be globally asymptotically stabilized
by saturated linear feedback.

The notion of semiglobal asymptotic stabilization on the null con-
trollable region for linear systems subject to actuator saturation was
introduced in [7], [8]. The semi-global framework for stabilization re-
quires feedback laws that yield a closed-loop system which has an
asymptotically stable equilibrium whose domain of attraction includes
ana priori given (arbitrarily large) bounded subset of the null control-
lable region. In [7], [8], it was shown that, for linear ANCBC systems
subject to actuator saturation, one can achieve semi-global asymptotic
stabilization on the asymptotically null controllable region (the whole
state space in this case) using linear feedback laws.
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Despite the existing results (see [2] for an extensive chronological
bibliography on the subject), the general picture of stabilizing expo-
nentially unstable linear systems with saturating actuators remains not
as clear as that of ANCBC systems. It is clear that this kind of systems
cannot be globally stabilized in any way since they are not globally
null controllable. The largest possible region on which a system can be
stabilized is the null controllable region. In [4], we gave an explicit de-
scription of the null controllable region for a general linear system in
terms of a set of extremal trajectories of the (time reversed) antistable
subsystem. We recall that a linear system is said to be antistable if all its
poles are in the open right-half plane and semistable if all its poles are
in the closed left-half plane. For example, for a second order antistable
system, the boundary of its null controllable region is covered by at
most two extremal trajectories; and for a third order antistable system,
the set of extremal trajectories can be described in terms of parameters
in a real interval.

Based on the description of the null controllable region in [4], we
begin our study of stabilization with planar antistable systems. We
show that for such a system the boundary of the domain of attraction
under any stabilizing saturated linear state feedback is the unique stable
limit cycle of its time-reversed system. Moreover, the domain of attrac-
tion is convex. We next show that any second order antistable linear
system can be semiglobally asymptotically stabilized on its null con-
trollable region by saturated linear feedback. That is, for anya priori
given set in the interior of the null controllable region, there exists a
saturated linear feedback law that yields a closed-loop system which
has an asymptotically stable equilibrium whose domain of attraction
includes this given set. This design is then utilized to construct state
feedback laws for higher order systems with two exponentially unstable
poles.

The remainder of this note is organized as follows. Section II con-
tains a brief summary of the description of the null controllable region
which will be used in this note. Section III determines the domain of
attraction for a second order antistable linear system under any satu-
rated stabilizing linear feedback law. Section IV constructs saturated
feedback laws that achieve semiglobal asymptotic stability on the null
controllable region for any linear systems having two exponentially un-
stable poles. Finally, Section V draws some brief conclusions.

II. RESULTS ON THENULL CONTROLLABLE REGION

Consider a linear system

_x(t) = Ax(t) + bu(t); juj � 1 (1)

wherex(t) 2 Rn is the state andu(t) 2 R is the control. Assume
that(A; b) is stabilizable. The null controllable region of the system,
denoted asC, is defined to be the set of states that can be steered to
the origin in a finite time by using a controlu that is measurable and
ju(t)j � 1 for all t. If A is antistable, thenC is a bounded convex
open set. For a general unstable system,C is the Cartesian product of
the null controllable region of its semistable subsystem, which is the
whole subspace, and that of its antistable subsystem. It was shown in
[4] that @C (the boundary ofC) of an anti-stable system is composed
of a set of extremal trajectories of its time reversed system. The time
reversed system of (1) is

_z(t) = �Az(t)� bv(t); jvj � 1: (2)

Suppose thatA is anti-stable, denote

E := fv(t) = sgn(c0

e
At

b); t 2 R: c 6= 0g (3)
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and for a controlv; jv(t)j < 1 for all t 2 R, denote the trajectory of
(2) under the control ofv as

�(t; v) :=
t

�1

e�A(t��)bv(� )d�: (4)

SinceA is antistable, the integral in (4) exists for allt 2 R, so�(t; v)
is well defined. It is shown in [4] that

@C = f�(t; v): t 2 R; v 2 Eg: (5)

In particular, for a second-order antistable system, ifA has two real
eigenvalues, then

@C = � e�Atz�e �
t

0

e�A(t��)b d� : t 2 [0; 1]

= f�(�2e�At + I)A�1b: t 2 [0; 1]g (6)

wherez�e = A�1b is the equilibrium point under the constant control
u = �1; if A has a pair of complex eigenvalues� � j�, �; � > 0,
then

@C = � e�Atz�s �
t

0

e�A(t��)b d� : t 2 [0; Tp]

= f�[e�Atz�s � (I � e�At)A�1b]: t 2 [0; Tp]g (7)

whereTp = �=� andz�s = (I + e�AT )�1(I � e�AT )A�1b.

III. D OMAIN OF ATTRACTION UNDER SATURATED LINEAR STATE

FEEDBACK

Also consider the open-loop system (1). A saturated linear state feed-
back is given byu = �(fx), wheref 2 R1�n is the feedback gain
and�(�) is the saturation function�(s) = sgn(s)minf1; jsjg. Such
a feedback is said to be stabilizing ifA + bf is asymptotically stable.
With a saturated linear state feedback applied, the closed-loop system
is

_x(t) = Ax(t) + b�(fx(t)): (8)

Denote the state transition map of (8) by�: (t; x0) 7! x(t). The do-
main of attractionS of the equilibriumx = 0 of (8) is defined by

S := x0 2 R
n: lim

t!1
�(t; x0) = 0 :

Obviously,S must lie within the null controllable regionC of the
system (1). Therefore, a design problem is to choose a state feedback
gain so thatS is arbitrarily close toC. We refer to this problem as
semiglobal stabilization on the null controllable region. We will first
deal with antistable planar systems, then extend the results to higher
order systems with only two antistable modes.

For the system (8), assume thatA 2 R2�2 is anti-stable. In [1], it
was shown that the boundary ofS , denoted by@S , is a closed orbit, but
no method to find this closed orbit is provided. Generally, only a subset
of S lying betweenfx = 1 andfx = �1 is detected as a level set of
some Lyapunov function (see, e.g., [5]). LetP be a positive–definite
matrix such that(A+ bf)0P +P (A+ bf) is negative–definite. Since
fz 2 R2: �1 < fz < 1g is an open neighborhood of the origin, it
must contain

Q0 := fz 2 R2: z0Pz � r0g (9)

for somer0 > 0. Clearly,Q0 is an invariant set insideS . However,Q0

as an estimation of the domain of attraction can be very conservative
(see, e.g., Fig. 1).

Fig. 1. Determination of@S from the limit cycle.

Lemma 3.1 [1]: The origin is the unique equilibrium point of
system (8).

Let us introduce the time-reversed system of (8)

_z(t) = �Az(t)� b�(fz(t)): (10)

Clearly (10) also has only one equilibrium point, an unstable one, at the
origin. Denote the state transition map of (10) by : (t; z0) 7! z(t).

Theorem 3.1:@S is the unique limit cycle of planar systems (8)
and (10). Furthermore,@S is the positive limit set of (�; z0) for all
z0 6= 0.

This theorem says that@S is the unique limit cycle of (8) and (10).
This limit cycle is a stable one for (10) (in a global sense), but an un-
stable one for (8). Therefore, it is easy to determine@S by simulating
the time-reversed system (10). Shown in Fig. 1 is a typical result, where
two trajectories, one starting from outside, the solid curve, and the other
starting from inside, the dashed curve, both converge to the unique limit
cycle. The straight lines in Fig. 1 arefz = 1 andfz = �1.

To prove Theorem 3.1, we need the following two lemmas, proofs
of which can be found in [4].

Lemma 3.2: Suppose thatA 2 R2�2 is anti-stable and(f; A) is
observable. Given ac > 0, let x1; x2; y1 andy2 (x1 6= x2) be four
points on the linefx = c, satisfying

y1 = eAT x1; y2 = eAT x2;

for someT1; T2 > 0 and

feAt x1 > c feAt x2 > c; 8 t1 2 (0; T1); t2 2 (0; T2)

then,ky1 � y2k > kx1 � x2k.
Shown in Fig. 2 is an illustration of Lemma 3.2. The curve from

xi to yi is x(t) = eAtxi; t 2 [0; Ti], a segment of a trajectory of
the autonomous system_x = Ax. Lemma 3.2 indicates that if any two
different trajectories leave a straight line on the same side, they will be
further apart when they return to it.

Lemma 3.3: Suppose thatA 2 R2�2 is asymptotically stable and
(f; A) is observable. Given ac > 0, let x1; x2 be two points on the
line fx = c andy1; y2 be two points onfx = �c such that

y1 = e
AT

x1; y2 = e
AT

x2

for someT1; T2 > 0, and

jfeAt x1j < c; jfeAt x2j < c;

8 t1 2 (0; T1); t2 2 (0; T2)

then,ky1 � y2k > kx1 � x2k.
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Fig. 2. Illustration of Lemma 3.2.

Shown in Fig. 3 is an illustration of Lemma 3.3. It says that if two
different trajectories of the autonomous system_x = Ax enter the re-
gion betweenfx = c andfx = �c, they will be further apart when
they leave the region. Notice that in Lemma 3.2,A is antistable, and in
Lemma 3.3,A is asymptotically stable.

Proof of Theorem 3.1:We first prove that for the system (10),
every trajectory (t; z0), z0 6= 0, converges to a periodic orbit as
t ! 1. Recall thatQ0 [defined in (9)] lies within the domain of
attraction of the equilibriumx = 0 of (8) and is an invariant set. It
follows that, for every statez0 6= 0 of (10), there is somet0 � 0 such
that (t; z0) lies outsideQ0 for all t � t0. The state transition map of
the system (10) is

 (t; z0) = e�Atz0 �
t

0

e�A(t��)b�(fz(� ))d�: (11)

Since�A is stable, the first term converges to the origin. Since
j�(fz(�))j � 1, the second term belongs toC, the null controllable
region of (1), for all t. It follows that there exists anr1 > r0
such that 0(t; z0)P (t; z0) � r1 < 1 for all t � t0. Let
Q = fz 2 R2: r0 � z0Pz � r1g. Then (t; z0), t � t0, lies
entirely inQ. It follows from the Poincaré–Bendixon theorem that
 (t; z0) converges to a periodic orbit.

The preceding paragraph shows that (8) and (10) have periodic or-
bits. We claim that the system (8) and (10) each has only one periodic
orbit. For direct use of Lemma 3.2 and Lemma 3.3, we prove this claim
through the original system (8).

First notice that a periodic orbit must enclose the unique equilibrium
pointx = 0 by the index theory, see e.g., [6], and must be symmetric
to the origin (�� is a periodic orbit if� is, hence if the periodic orbit
is not symmetric, there will be two intersecting trajectories). Also, it
cannot be completely contained in the linear region betweenfx =
1 andfx = �1. (Otherwise the asymptotically stable linear system
_x = (A + bf)x would have a closed trajectory in this region. This is
impossible). Hence, it has to intersect each of the linesfx = �1 at
least twice. Assume without loss of generality that(f; A; b) is in the
observer canonical form, i.e.,f = [0 1], A = [ ], b = b

b
,

with a1; a2 > 0, and denotex = �

�
. In this case,fx = �1 are

horizontal lines. The stability ofA + bf requires that�a1 + b1 < 0
anda2 + b2 < 0. Observe that on the linefx = 1, we have�2 = 1
and _�2 = �1 + a2 + b2. Hence, if�1 > �a2 � b2, then _�2 > 0, i.e.,
the trajectories go upwards; if�1 < �a2 � b2, then _�2 < 0, i.e., the
trajectories go downwards. This implies that any periodic orbit crosses

Fig. 3. Illustration of Lemma 3.3.

Fig. 4. Illustration for the proof of Theorem 3.1.

fx = 1 exactly twice and similarly forfx = �1. It also implies that
a periodic orbit goes counter-clockwise.

Now, suppose on the contrary that (8) has two different periodic or-
bits�1 and�2, with �1 enclosed by�2, as illustrated in Fig. 4. Note
that any periodic orbit must enclose the origin and any two trajectories
cannot intersect. Hence, all the periodic orbits must be ordered by en-
closement. Letx1 andy1 be the two intersections of�1 with fx = 1,
andx2; y2 be the two intersections of�2 with fx = 1. Then, along�1,
the trajectory goes fromx1 to y1; �x1; �y1 and returns tox1; along
�2, the trajectory goes fromx2 to y2; �x2; �y2 and returns tox2.

Let x+e = �A�1b. Sincex1 ! y1 along�1 andx2 ! y2 along�2

are on trajectories of_x = Ax + b (or d(x� x+e )=dt = A(x � x+e )),
we have

y1 � x+e = eAT (x1 � x+e ) y2 � x+e = eAT (x2 � x+e )

for someT1; T2 > 0. Furthermore,f(x1 � x+e ) = f(x2 � x+e ) =
f(y1�x

+
e ) = f(y2�x

+
e ) = 1�fx+e > 0 (sincefx+e = b1=a1 < 1)

and for allx on the two pieces of trajectories,f(x� x+e ) � 1� fx+e .
It follows from Lemma 3.2 that

ky2 � y1k > kx2 � x1k:

On the other hand,y1 ! �x1 along�1 andy2 ! �x2 along�2 are
on trajectories of_x = (A+ bf)x satisfying�x1 = e(A+bf)T y1 and
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�x2 = e(A+bf)T y2 for someT3; T4 > 0. It follows from Lemma
3.3 that

kx2 � x1k > ky2 � y1k

which is a contradiction. Therefore,�1 and�2 must be the same pe-
riodic orbit. This shows that the systems have only one periodic orbit
and, hence, it is a limit cycle.

We have so far proven that both (8) and (10) have a unique limit
cycle and every trajectory (t; z0), z0 6= 0, of (10) converges to this
limit cycle. This implies that a trajectory�(t; x0) of (8) converges to
the origin if and only ifx0 is inside the limit cycle. This shows that the
limit cycle is@S .

In the above proof, we also showed that@S is symmetric and has
two intersections withfx = 1 and two withfx = �1. Another nice
feature ofS , as shown in [4], is that it is convex.

IV. SEMIGLOBAL STABILIZATION ON THE NULL CONTROLLABLE

REGION

A. Second Order Antistable Systems

In this subsection, we continue to assume thatA 2 R2�2 is an-
tistable and(A; b) is controllable. We will show that the domain of
attractionS of the equilibriumx = 0 of the closed-loop system (8)
can be made arbitrarily close to the null controllable regionC by judi-
ciously choosing the feedback gainf . To state the main result of this
section, we need to introduce the Hausdorff distance. LetX1; X2 be
two bounded subsets ofRn. Then, their Hausdorff distance is defined
as

d(X1; X2) := max ~d(X1; X2); ~d(X2; X1)

where

~d(X1; X2) = sup
x 2X

inf
x 2X

kx1 � x2k:

Here, the vector norm used is arbitrary.
LetP be the unique positive–definite solution of the following Ric-

cati equation:

A
0
P + PA � Pbb

0
P = 0: (12)

Note that this equation is associated with the minimum energy regula-
tion, i.e., an LQR problem with cost

J =
1

0

u
0(t)u(t)dt:

The corresponding minimum energy state feedback gain is given by
f0 = �b0P . By the infinite gain margin and 50% gain reduction margin
property of LQR regulators, the origin is a stable equilibrium of system

_x(t) = Ax(t) + b�(kf0x(t)) (13)

for all k > 0:5. LetS(k) be the domain of attraction of the equilibrium
x = 0 of (13).

Theorem 4.1: limk!1 d(S(k); C) = 0.
Proof: See the Appendix.

Note that the use of high gain feedback is crucial here. The minimum
energy feedbackf0 itself does not give a domain of attraction close
to C. This is quite different from the related result in [8] and [9] for
semistable open-loop systems. In these two papers, it was shown that
if (A; B) is ANCBC, then low-gain feedback gives arbitrarily large
domain of attraction.

Fig. 5. Domains of attraction under different feedbacks.

Example 4.1: LetA = [ ] andb = 0
�1

. Thenf0 = [0 3].
In Fig. 5, the boundaries of the domains of attraction corresponding to
differentf = kf0, k = 0:50005; 0:65; 1; 3, are plotted. The regions
do become bigger for greaterk. The outermost boundary is@C. When
k = 3, it can be seen that@S is already very close to@C.

B. Higher Order Systems with Two Exponentially Unstable Poles

Consider the following open-loop system:

_x(t) = Ax(t) + bu(t) =
A1 0

0 A2

x(t) +
b1

b2
u(t) (14)

wherex = [x01 x02]
0, x1 2 R2; x2 2 Rn, A1 2 R2�2 is anti-

stable andA2 2 R
n is semi-stable. Assume that(A; b) is controllable.

Denote the null controllable region of the subsystem

_x1(t) = A1x1(t) + b1u(t)

asC1, then the null controllable region of (14) isC1 � Rn[4]. Given

1; 
2 > 0, denote


1(
1) := 
1x1 2 R
2: x1 2 C1


2(
2) := fx2 2 R
n: kx2k � 
2g: (15)

When
1 = 1, 
1(
1) = C1 and when
1 < 1, 
1(
1) lies in the
interior ofC1. In this section, we will show that given any
1 < 1 and

2 > 0, a state feedback can be designed such that
1(
1)� 
2(
2)
is contained in the domain of attraction of the equilibriumx = 0 of the
closed-loop system.

For � > 0, letP (�) = [ ] 2 R(2+n)�(2+n) be the unique
positive–definite solution to the ARE

A
0
P + PA� Pbb

0
P + �

2
I = 0: (16)

Clearly, as� # 0, P (�) decreases. Hence,lim�!0 P (�) exists.
Let P1 be the unique positive definite solution to the ARE

A
0
1P1 + P1A1 � P1b1b

0
1P1 = 0:

Then by the continuity property of the solution of the Riccati equation
[19]

lim
�!0

P (�) =
P1 0

0 0
:
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Let f(�) := �b0P (�). First, consider the domain of attraction of the
equilibriumx = 0 of the following closed-loop system:

_x(t) = Ax(t) + b�(f(�)x(t)): (17)

It is easy to see that

D(�) := x 2 R2+n: x0P (�)x � 1=kb0P 1=2(�)k2

is contained in the domain of attraction of the equilibriumx = 0 of
(17) and is an invariant set. Note that ifx0 2 D(�), thenx(t) 2 D(�)
andjf(�)x(t)j � 1 for all t > 0. That is,x(t) will stay in the linear
region of the closed-loop system, and inD(�).

Lemma 4.1: Denote

r1(�) :=
1

2 P
1=2
1 (�) kb0P 1=2(�)k

;

r2(�) :=
�kP2(�)k+ kP2(�)k2 + 3kP1(�)kkP3(�)k

kP3(�)k
r1(�):

Then

D1(�) := x 2 R2+n: kx1k � r1(�); kx2k � r2(�) � D(�):

Moreover, lim�!0 r2(�) = 1, and r1(�) increases with an upper
bound as� tends to zero.

Proof: It can be verified that

kP1(�)kr
2
1(�) + 2kP2(�)kr1(�)r2(�)+ kP3(�)kr

2
2(�)

=
1

kb0P 1=2(�)k
2 : (18)

So for allx 2 D1(�), x0P (�)x � (1=kb0P1=2(�)k2), i.e.,D1(�) �
D(�). By the definition ofr1(�) andr2(�), we have

r2(�) =
3kP1(�)k

kP2(�)k+ kP2(�)k2 + 3kP1(�)kkP3(�)k

�
1

2 P
1=2
1 (�) kb0P 1=2(�)k

:

Since as� goes to zero,P2(�); P3(�)! 0, andP1(�)! P1, sor1(�)
is bounded whereasr2(�) ! 1. It follows from the monotonicity of
P (�) thatr1 is a monotonically decreasing function of�.

Theorem 4.2:Let f0 = �b01P1. For any
1 < 1 and
2 > 0, there
exist ak > 0:5 and an� > 0 such that
1(
1)� 
2(
2) is contained
in the domain of attraction of the equilibriumx = 0 of the closed-loop
system

_x(t) =Ax(t) + bu(t) (19)

where

u(t) =
�(kf0x1(t)); x =2 D(�)

�(f(�)x(t)); x 2 D(�).
(19)

Proof: Since
1 < 1, by Theorem 4.1, there exists ak > 0:5
such that
1(
1) lies in the interior of the domain of attraction of the
equilibriumx1 = 0 of

_x1(t) = A1x1(t) + b1�(kf0x1(t)): (20)

Let �0 > 0 be given. For an initial statex10 2 
1(
1), denote the
trajectory of (20) as (t; x10). Define

T (x10) := minft � 0: k (t; x10)k � r1(�0)g

thenT (x10) is the time when (t; x10) first enters the ballfx1 2
R

2: kx1k � r1(�0)g. Let

TM = maxfT (x10): x10 2 @
1(
1)g (21)

and


 = max
t2[0; T ]

keA tk
2 +
T

0

eA (T ��)b2 d� (22)

then by Lemma 4.1, there exists an� < �0 such thatr1(�) � r1(�0),
r2(�) � 
 and

D1(�) = fx 2 R2+n: kx1k � r1(�); kx2k � r2(�)g � D(�)

lies in the domain of attraction of the equilibriumx = 0 of (17).
Now consider an initial state of (19),x0 2 
1(
1) � 
2(
2). If

x0 2 D(�), thenx(t) will go to the origin sinceD(�) is an invariant
set and is contained in the domain of attraction. Ifx0 =2 D(�), we
conclude thatx(t) will enterD(�) at someT � TM under the control
u = �(kf0x1(t)). Observe that under this control,x1(t) goes along
a trajectory of (20). If there is no switch,x1(t) will hit the ball fx1 2
R

2: kx1k � r1(�0)g at T (x10). ClearlyT (x10) � TM and at this
instantkx2(T (x10))k � 
 � r2(�), sox(T (x10)) 2 D1(�). Thus,
we see that if there is no switch,x(t) will be inD1(�) atT (x10). Since
D1(�) � D(�), x(t) must have enteredD(�) at some earlier time
T � T (x10) � TM . So we have that conclusion. With the switching
control applied, oncex(t) enters the invariant setD(�), it will remain
in it and go to the origin asymptotically.

V. CONCLUSION

We provided a simple semiglobal stabilization strategy for exponen-
tially unstable linear systems with saturating actuators. For a planar
antistable system, the controllers are saturated linear state feedbacks
and for higher order systems with two antistable modes, the controllers
are piecewise linear state feedbacks with only one switch.

APPENDIX

PROOF OFTHEOREM 4.1

For simplicity and without loss of generality, we assume that

A =
0 �a1

1 a2
; a1; a2 > 0; b =

0

�1
:

SinceA is anti-stable and(A; b) is controllable,A; b can always be
transformed into this form. Suppose thatA has already taken this form
andb = b

b
. LetV = [�A�1b �b], thenV is nonsingular and it can

be verified thatV �1AV = A andV �1b = 0
�1

.
With this special form ofA andb, we have

P =

a2
a1

0

0 a2

f0 = [0 2a2], A + kbf0 = [ ], z+e = �A�1b = 1
0

and
z�e = �1

0
. We also havef0A�1b = 0.

For a givenk > 0:5, (13) has a unique limit cycle which is the
boundary ofS(k). To visualize the proof,@C and@S(k) for somek
are plotted in Fig. 6, where the inner closed curve is@S(k), and the
outer one is@C.

We recall that when the eigenvalues ofA are real [see (6)]

@C = � e�Atz�e �
t

0

e�A(t��)b d� : t 2 [0; 1]

(23)
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Fig. 6. The domain of attraction and the null controllable region.

and when the eigenvalues ofA are complex [see (7)]

@C = � e�Atz�s �
t

0

e�A(t��)b d� : t 2 [0; Tp] :

(24)

On the other hand,@S(k) is the limit cycle of the time reversed system
of (13),

_z(t) = �Az(t)� b�(kf0z(t)): (25)

Here, the limit cycle as a trajectory goes clockwise. From the proof of
Theorem 3.1, we know that the limit cycle is symmetric and has two
intersections withkf0z = 1 and two withkf0z = �1, see Fig. 6. Let
T be the time required for the limit cycle trajectory to go fromy1 to
x1, andT2 the time fromx1 to�y1, then

@S(k) = �e�(A+kbf )ty1: t 2 [0; T ]

[ � e�Atx1 �
t

0

e�A(t��)b d� : t 2 [0; T2] :

(26)

Here and in the sequel, the dependence ofx1; y1; T andT2 on k is
omitted for simplicity.

Ask !1, the distance between the linekf0z = 1 andkf0z = �1
approaches zero. By comparing (23), (24) and (26), we see that to prove
the theorem, it suffices to show

lim
k!1

T =0; lim
k!1

x1 = lim
k!1

y1 = z�e (or z�s )

lim
k!1

T2 =1(or Tp):

In this case, the length of the part of the limit cycle between the lines
kf0z = 1 andkf0z = �1 will tend to zero. We will first show that
limk!1 T = 0.

Let

x1 =
x11
1

2ka2

; y1 =
y11

�
1

2ka2

thenkf0x1 = 1; kf0y1 = �1

x11
1

2ka2

= e�(A+kbf )T
y11

�
1

2ka2

(27)

and

kf0e
�(A+kbf )t

y11

�
1

2ka2

� 1; 8 t 2 [0; T ]:

We also note that the upward movement of the trajectory atx1 andy1
implies thatx11 < (2k � 1)=2k; y11 < (1� 2k)=2k.

As k ! 1, A + kbf0 = [ ] has two distinct real eigen-
values��1 and��2. (Their dependence onk is also omitted.) Assume
�2 > �1. Since�1�2 = a1 and�1 + �2 = a2(2k � 1), we have
limk!1 �1 = 0; limk!1 �2 = +1.

With the special form ofA + kbf0, it can be verified that

e(A+kbf )T =
�2 �1

1 1

e�� T 0

0 e�� T

�2 �1

1 1

�1

:

Hence, from (27), we obtain

x11 =
1

2ka2

�2 � �1 + �2e
�� T � �1e

�� T

e�� T � e�� T

y11 =
1

2ka2

�2 � �1 + �2e
� T � �1e

� T

e� T � e� T
:

Sincey11 < (1�2k)=2k = �(�1+�2)=(2ka2) ande� T �e� T <
0, we have

�1e
� T < �2 � �1 + �2e

� T < 2�2e
� T

and

T <
ln

2�2
�1

�2 � �1
=

1

�2 � �1
ln

2�22
a1

noting that �1 = a1=�2. Since limk!1 �2 = 1, we get
limk!1 T = 0. It follows that

lim
k!1

y11
x11

= lim
k!1

�2 � �1 + �2e
� T � �1e

� T

(�2 � �1)e(� +� )T + �2e� T � �1e� T

= lim
k!1

�2 � �1
1 + e� T

1 + e� T

�2e� T � �1
e� T (1 + e� T )

1 + e� T

= 1

where we have used the fact thatlimk!1 �1 = 0. Sincex1 andy1 are
bounded by the null controllable region, we have

lim
k!1

(y11 � x11) = 0: (28)

On the limit cycle of (25), we also have

�y1 = e�AT x1 �
T

0

e�A(T ��)b d�

i.e.,

y11

�
1

2ka2

=�e�AT
x11
1

2ka2

+ (I � e�AT )A�1b

(I + e�AT )
y11

0
= (I � e�AT )A�1b

+ e�AT
y11 � x11

�
1

2ka2

+
0
1

2ka2

:
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It follows from (28) that

lim
k!1

y11

0
� (I + e

�AT )�1(I � e
�AT )A�1b = 0:

Hence

lim
k!1

[ 0 1 ] (I + e
�AT )�1(I � e

�AT )A�1b = 0:

For different cases, it can be shown from the above equality that

1) if the eigenvalues ofA are real, then

lim
k!1

T2 =1; lim
k!1

y1 = lim
k!1

x1 = lim
k!1

y11

0
= z

�

e ;

2) if the eigenvalues ofA are complex, then

lim
k!1

T2 = Tp; lim
k!1

y1 = lim
k!1

x1 = lim
k!1

y11

0
= z

�

s :

This completes the proof.
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On Stabilization and Spectrum Assignment in Periodically
Time-Varying Continuous-Time Systems

Joseph J. Yamé and Raymond Hanus

Abstract—This note discusses the stabilization and spectrum assignment
problems in linear periodically time-varying (LPTV) continuous-time
systems withsampledstate or output feedback. The hybrid nature of the
overall feedback system in this case imposes some carefulness in handling
classical concepts related to purely LPTV continuous-time systems. In
particular, this note points out the fact that the stabilization of such
systems by periodic feedback gains withsampledstate or output does not
imply the relocation of the original characteristic exponents of the LPTV
systems as stated previously in the literature. It is also shown that the
concept of monodromy matrix as extended to LPTV hybrid systems has
not all the features of a true monodromy matrix.

Index Terms—Characteristic exponents, monodromy matrix, periodic
systems, sampled-data feedback.

I. INTRODUCTION

The foundations of the theory of periodic systems can be traced
back to the work of Floquet who first brought the initial time-varying
system into a transformed equivalent one with a time-invariant evolu-
tion matrix [9]. An important result of Floquet theory states that the
stability of a linear periodically time-varying (LPTV) continuous-time
system can be inferred from the location of the eigenvalues of the time-
invariant matrix of its transformed equivalent. These eigenvalues are
called the characteristic exponents or Poincaré exponents of the peri-
odic system. In control engineering, the interest for continuous-time pe-
riodic systems is mainly motivated by numerous application-oriented
problems such as sampled-data control, multirate digital control, gen-
eralized hold design, control of mechanical systems in rotation, etc. A
central issue in the control literature centers around the stabilization of
LPTV continuous-time systems by periodic controllers and essentially
two different approaches have been used for the design of such sta-
bilizing controllers. In the first approach [3], the input to the periodic
controller is a continuous-time signal, whereas in the second approach,
the input is a sampled signal. In this latter case, an important feature
of the overall system is its hybrid continuous/discrete nature. It has
been shown that when a LPTV system is controllable, the whole “mon-
odromy matrix” is assignable by periodic feedback gains with sampled
state or sampled output feedback [6], [1]. In [4], a further step has been
taken by arguing that thecharacteristic exponentsare all relocated with
this feedback scheme. This note motivated by this last statement dis-
cusses issues pertaining to therelationshipbetween the stabilization
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