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The estimator consisting of (19) and (20) is a sixth-order one. In
simulation, all initial conditions are set to be zero. Tingshu Hu and Zongli Lin

A simulation is also done wherg(¢) is corrupted by a uniform
random noise between0.01 and 0.01.

Fig. 3 shows the convergence of the first estimated frequencies forAbstract—t was recently established that a second-order antistable

. . _ linear system can be semiglobally stabilized on its null controllable region

both uncorrupted and Corrgpted versmry(:zf).. Fig. 4 shows the con by saturated linear feedback and a higher order linear system with
vergence of th? second estimated frequencies for both uncorrupted gflor more antistable poles can be semiglobally stabilized on its null
corrupted version of(t). controllable region by more general bounded feedback laws. We will show

It can be observed that the estimations are accurate for both undarthis note that a system with three real-valued antistable poles cannot
rupted and corrupted signals. Simulation is also done for large corrlj- Semiglobally stabilized on its null controllable region by the simple
. o . . ; aturated linear feedback.
tions, it is found that when corruptions are larger in magnitude, the

steady state errors are bigger. Index Terms—Actuator saturation, antistable systems, semiglobal stabi-
lizability.

V. CONCLUSION

A design of adaptive identifiers to globally estimate the frequencies |. INTRODUCTION
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linear feedback if it is stabilizable in the usual linear sense and has a )

its poles in the closed left-half plane. 2
It is notable that all the results mentioned above pertain to systemr
whose open-loop poles are all in the closed left-half plane. Such sy
tems are said to be semistable. If a system has some open-loop po ©-
in the open right-half plane, then it is exponentially unstable. A systen _
with all its poles in the open right-half plane is said to be antistable. It is
evident that the domain of attraction has to be a subset of the asymptc -2+
ically null controllable region, the set of initial states that can be driver _g |
to the origin asymptotically with bounded controls delivered by the sat: 1
urating actuators. Since the asymptotically null controllable region o
a semistable system is the whole state space (if it is stabilizable in tF
linear sense), it is possible to stabilize it globally/semiglobally. How-
ever, the asymptotically null controllable region of an exponentially
unstable system is not the whole state space, hence it cannot be glob- .
aIIy/semigI)(/)baIIy stabilized with saturater()j feedback. For this reas?)J:n?(;" 1. &C of athird-order system.
we generalized the notion of global/semiglobal stabilization, which
was only suitable for semistable systems, by giving it a new meaniitg interior. In this note, we will restrict our attention to third-order an-
[2], [3]. A linear system subject to actuator saturation is globally staistable systems with only real poles. For such a system, the boundary
bilizable if there is a saturated feedback law such that the closed-lasfithe null controllable region is (see [2])
system has a st_abili_ty_ regior_1 which is eql_ng to th_e a;ymptotical_ly nqll7 b e .
controllable region; it is semiglobally stabilizable if, given an arbitraryC = {i (—26 P42 - I) A7b

14

compact subset of the asymptotically null controllable region, there is 0<t <ty <oc}. (2
a saturated feedback law under which the closed-loop system has asta- ) _
bility region that includes this given compact set. Fig. 1 illustrates a typical shape 6fwith a bunch of curves ofC.

A first step toward global/semiglobal stabilization, which cannot be Denote
bypassed, is the characterization of the asymptotically null controllable, ,+ — At — At =17 .
region. We made this first step in [2], and then proceeded to construc‘?c - {(_26 P2 T I) ATb0<h <tr < OO}
stabilizing feedback laws for semiglobal stabilization. In [2] and [3], ¢~ = — aC™
we developed simple feedback laws for systems with two antistableg -0 _ {(:t(_Qe—Afz + I) ATB0<ty < x}
poles. For a second-order antistable system the controllers proposed are ‘ -
a family of saturated linear feedbacks of the farm= satkFox) and |t can be verified thalC = 9CT UaC~ UaC® anddCt. 8¢~ andac®
for a high-order system with only two antistable poles, each controllgfe disjoint. In Fig. 1, the solid curves are @@+ and the dashed ones
in the family switches between two saturated linear feedbacks. In [2le on9C~. The two smooth curves connectingj and=_ (one on the
and [4], we proposed a nonlinear switching feedback laws for mofgghest boundary and the other on the lowest boundary) fuffh It
general systems. The controllers are more complicated than thos¢,&4 been shown in [2] that all the curves are trajectories of the system
[3]. (1) under controls that only take values of 1 andl. They are called

Given the results of [2]{4], it is interesting to ask if a system witkxtremal trajectories. The solid curves &A@ are trajectories of the
three or more antistable poles can be semiglobally stabilized wi)stem (1) under the contrel= 1 and those odC~ are trajectories
saturated linear feedback. In contrast to semistable systems, wWhiglier the controk = —1. The curve on the highest boundary is a
can be semiglobally stabilized by saturated linear feedback, this n%ectory going fronme, to le' under the control = —1 and the one
will show that a system with three or more antistable poles cannot §g the lowest boundary is a trajectory going freff to == under the
semigloballystabilized by saturated linear feedback. controlu = 1.

The remaining of this note is organized as follows. Section Il re- From the definition, we see thatt anddC~ are smooth surfaces
views some results on the asymptotically null controllable region aRghdoc® is a closed curve connectidy’™ anddC~, i.e.,dC° is com-
develops some algebraic tools. Section Ill establishes the fact thgigsed of all the common limit points 6 anddC~.

third-order antistable system cannot be semiglobally stabilized by satSinceC is an open sef)C N C is empty. Here, we summarize some
urated linear feedback. Some concluding remarks are given in Sggts from [2].

tion IV. Fact 2.1: Under the constraint thét| < 1, the following hold true.

1) All the states irC can be driven to the origin.
Il. PRELIMINARY RESULTS AND SOME ALGEBRAIC TOOLS 2) All the states outside @f U 9C will grow unbounded no matter

We recall from [2] a description of the asymptotically null control- what control is applied.

lable region. Consider a single-input linear system subject to actuator?) All the states oC cannot be driven to the interior of. The
saturation only way to keep them bounded is to make them sta§@with

acontrolu = 1 oru = —1. Forz(0) € dCT, the only control
f=Ar+bu, z€R"u€ER,|u <L (1) to keepz(t),t € [0, ) for somes > 0 ondC isw = 1 and for
2(0) € dC™, the only control isu = —1.
Assume that 4, b) is controllable in the usual linear sense. Then the From Fact 2.1, we know th& U 9C is the largest bounded set that
asymptotically null controllable region is the same as the null contratan be rendered invariant by means of admissible controls.
lable region, which is the set of initial states that can be driven to theThe basic fact we will use to prove our main result is that any segment
origin in finite time. We us& to denote the null controllable region of ondC° is three dimensional, i.e., it cannot be fit into any plane. Before
system (1). Itis known that ift is semistable, theh = R" andif A is  proving this fact, we need an algebraic result which will be used several
antistable, thed is a bounded convex open set containing the origin itimes in this note.
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Lemma 2.1: Suppose that4, b) is controllable,A € R**? is anti- In terms ofdCt, aC~ andaC’, the spacdR® can be divided into
stable andd has no complex eigenvalues. ltett., 5 be distinct real three subsets
numbers. Then, for allk:, k2, k3) # (0,0,0) Et = {” . €(0,00),x € 0C+}
(kle““l T kSeA‘B) b 0. 3) E- —_E'
Proof: See Appendix A. E’ ={yr:y€[0,00),2 €C"}.
We note that, it4 has complex eigenvaluest j 3 and(t1, t2,£3) = \je see thaE+ andE~ are simply connected open sets d&lis a

(7N /8,7 N2/, wNs//3), whereNy, N, and N are integers, there g rface consisting of the common limit pointslst andE . In other
may exist k1, k2, k3) # (0,0, 0) that satisfy (3). For instance, suppos§yords E+ andE— are connected bE°.

that A has eigenvalues, 12 =+ j1. Let 2 = 0, tzt = Tr,t:i“: 2m, Theorem 3.1: A third-order antistable system with real poles cannot
ki =1, ””’2. = 0, ks = —e™°7, thenk et 4 kze™2 4 kye™ = 0. pe semiglobally stabilized by saturated linear feedback on its null con-
Proposition 2.1: Let trollable regionC. Specifically, for any saturated linear feedback law
w(t) = (_QefAt + I) A, u = sa{ Fr), there exists a balf(z., .) C C, wherer. > 0 is inde-

pendent off’, such that all the trajectories starting frd.., .. ) will

If t1,t2, ¢35 andt4 are distinct numbers, the(t;),: = 1,2, 3,4, are grow unbounded.
not in the same plane. To prove Theorem 3.1, we first examine the difference between the

Proof: For simplicity, assume that < #» < #3 < f4. We first  control under a saturated linear feedback and the control that is required
show thatz(t;).7 = 1.2, 3, are not on the same straight line. SUPPOS§g keep the state bounded. Unlike the case for a second order system,
on the contrary, that they are, then here for a third order system, there is always a ball of fixed size where
x(ts) — x(ta) = c(a(ty) — x(t1)) the difference between the two controls is greater than a fixed positive

number. The result is stated in the following lemma.
Lemma 3.1: There exist positive numbers andd, such that for
(ef’“3 - e,”“z) A7 — ¢ ((‘“2 — e*‘“l) A % =0. anyF € R'*3, there is a balB(xo, 7o), wherexo € C* such that
d(B(xo,70), E°) > dy and satF'z) < 1/2 for all z € B(o, r0).
Proof: For anF € R'*? denote the distance between the two

for someg, i.e.,

This can be written as

AT e M (I — (14 c)e A=) 4 (:(3/4(*3_“)) b=0 planesFz = 1 andFax = —1 by g(F). By Proposition 2.19C° is
) ) ar a three dimensional closed curve. So there exists a minimal distance
which contradicts Lemma 2.1. Here, we note thainde”* commute. go betweenFz = 1 andFz = —1 such thatdC® lies completely

Now that:c(ti)_,i =1,2,3, are n_ot on the same straight line, theyoetween these two planes. In other wordg;(iff) = g1 < go, then
uniquely determine a plane. Let this planefe= 1. Suppose, onthe e total length of the segments &° which are in the half space
contrary, thatr(t.) is also in this plane, then Fa < —1 must be greater than a positive number depending only on

fa(t)) = fa(ta) = fa(ts) = fa(ts) = 1. g1 Also by Proposition 2.1, there are no more than two segments of
{x(t) = (=2 A 4+ A" : 0 < + < oo} which are in the half

t1,ta), th to, t: . ; ; .
By mean value theorem, there exist€ (1,1), ; € (f2,%) and space, otherwise, there would be four points;),i = 1,2,3,4, in

ty € (t3,t4) such that

the planeF2 = —1. Hence, there is a segment@f®, with length
fa(t)) = fi(ty) = fi(ts) =0 greater than a fixed positive number, that is completely in the half space
Fr < —1.
which is equivalent to Let us first consider a#” such thaty(F) < (1/2)go. By the fore-

going arguments, there is a segmenbaf, with length greater than
Io > 0, that is completely in the half spadé: < —1. SincedC" is
This equality can be written as a compact set and any segment on it is three dimensional, the largest
-1, At —At] —Athyq _ distance from a point of the segment to the pléhe= —1 is greater
fle b e72h 78] =0 ; » : 0 :
than a fixed positive number. Recalling thaf" is the closed curve
which implies that the & 3 matrix that connect®C* anddC~, we know that there is a simply connected
M =]e b e A Ay region on the surface @fC* that is in the half spac&» < —1 and
o . . ) the surface area of this region is greater than a fixed-positive number.
is singular. This again contradicts Lemma 2.1. Hence we conclude thahiows that there exists a bali(x1, 1) with 21 € 9C* andr, a
w(ti),i = 1,2,3,4, are notin the same plane. L fixed-positive number such th&(z1, 1 ) isin the half spac&s < —1
Recalling that andd(B(xz1,71), E®) > di, whered, is also a fixed positive number.
ac° = {:I: (_QC—At +1) A7p0<t < OQ} Here, forx € B(x1,r1), sat Fa) = —1.
Next, we consider ait” such thaty(F) > (1/2)go. Then there ex-
Proposition 2.1 implies that any segmenigaf’ is three dimensional sts a segment afC°, of length greater than a fixed-positive number,

Fem M = feM2h = FomMap = 0.

and cannot be placed in one plane. which is between the two plandd: = —1/2 and Fz = 1/2. Fol-
lowing similar arguments as in the previous paragraph, there is a ball
Ill. MAIN RESULTS B(xa,72) with 2o € 9CT andr» a fixed-positive number such that

B(x2,72) is between the two plandSz = —1/2 andFx = 1/2 and

For anzy € R* and a positive number, denote . ) o
vo € P d(B(x2,72), E%) > do, whereds is also a fixed positive number. Here,

Blao.r) = {r € R* : [lo — wol| < 7} forx € B(wa,r2), [sal Fa)| < 1/2.
where]| - || is the Euclidean norm. We use atto denote the standard ! we letdo = min{dy, d2} andro = min{r,,r2}, then the result
saturation function, i.e., siat) = sign(u) min{1, |u|}. LetX; and.x, Of Lemma 3.1 readily follows. U
be two subsets dR™. Then their distance is defined as To prove Theorem 3.1, we need to show that, under the control of

’ . any feedback: = satf Fx), there exists a ball i@ of radius greater
d(X, ) = - eA’ﬂI}fQGXQ [l — 2] than a fixed positive number, such that all the trajectories starting from
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the ball will go out ofC and diverge. We will use Lyapunov functionand
analysis to show this result. The Lyapunov function is defined in terms

of 9C as follows: <E;V)T b=[1 0 0]T'b.
V(z):=~ >0, such that% €9C (orx € ~3C). 4 !

SinceC is a bounded convex open set, any ray starting from the origﬁyppose on the contrary tr@‘"’/a‘”ﬂ b =0, then

has a uniqgue intersection withC and hence any vector in the state 0

space can be uniquely scaled to be exactlpy6nThereforeV (z) is T %= |k

a well-defined positive—definite function. ko

Clearly,V(xz) = 1 forallx € 0C andV (x) < 1 forall x € C. We

. ki, k ,0). :
also see that’ (ax) = oV (x) for anya > 0. Moreover, if0V/dx for some(k:, ko) # (0,0). It follows that

exists at some, then 0
ov ov b=T |k | = —2k1ve b + 2kpve 4120
= — 5 .
To see this. note that which contradicts Lemma 2.1. Therefore, we must have
A 1A (0V/dx)" b # 0forallz € ET. O

Since(dV/dx)" b is continuous ifE*, from Lemma 3.2, we con-

Vifame+ | 0 = Viazo) Vit 0 ~ V@) Gude that 0V/dx)" b either “> 0" or “< 0" in ET and for any com-
0 ? pact subset oE™, | (9V/dx)" b| is greater than a positive number.
A A Now we are ready to prove the main result of this note.
A Proof of theorem 3.1:Let F € R'*? be an arbitrary feedback
and the aforementioned equality is also true if we replade | with  gain matrix. From Lemma 3.1, we know that there always exists a ball
0 B(xo,70), 20 € OCT, such that s&a») < 1/2 forall z € B(xg, 7o)
0 0 andd(B(zo,70), E®) > do. Here,do andr, are independent df .
Alor|o0]. Since B(xo, 7o) contains one poinko in ET and has a distance
0 A greater thanl, from E°, we haveB(x¢,r) C ET. Without loss of
Lemma 3.2: The Lyapunov functio® () is continuously differen- generality, assume thB{(zo, 7o) C ETN(5/4)C\(3/4)C. Otherwise,
tiable inz for = € ET. Foralle € E*, 0" (9V/dzx) # 0. we can choose a smalles. Let M be the maximal compact set in
Proof: Everyxz € E* can be expressed as ET N (5/4)C\ (3/4)C such thati(M,E°) = dy. By Lemma 3.2,
v =~ (—2(3"“2 Loe—An I) A-1p there is a positive number such that
AN T
for somey € (0,00),0 < ¢ < t2 < oc. Itfollows from the definition Inin{ <ﬂ> bl:x € M} > 9.
thatV(x) = v. We see that is analytic inv, ¢;, and¢.. Moreover 9
d~ Sinced(B(xo,70), E®) > do, we must havéd(ze,r0) C M. There-
de =T | dt fore
dts N
where ‘<0l> bl > n, Vo € B(xo,10). (6)
. {&r Ox ax} gz
97 9t 9tz Consider the derivative of the Lyapunov functidi{=) along the
_ |:(_26Atz 19e At _ I) Al 2’}’,67At1b52,\/674412b _ trajectory of the system
= Ax+Dbu.
We claim thafl" is nonsingular. This can be seen as follows. For sim-
plicity, consider anzo € ACT, then~ = 1. Applying Lemma 2.1, we Ve have
see thabz/9t; = —2e~4"1b anddx/dt. = 2¢~*'2b are indepen- ) v\ 7 oV \T
dent and they determine a plafie = 1 that contains:o. SincedC™ is Viz,u) = <8/ ) Ax + <—) bu.
. . . + . . T Oz
smooth, this plane is tangential &&™ at =:p. SinceC is a bounded
convex set containing the origin in its interior, this plafie = 1 From Fact 2.1, we know that if a contrel = 1 is applied atz €
does not contain the origin. Hence, the vector fremto the origin, 9C™, the trajectory will stay oCT andV (z) will remain to be 1.
—xg = —(=2e A2 4 274" — T)A~"D, must be independent of the Hence, forz € AC*
two vectors that determine the plane. That is, the three column vectors _ o\ T PN
in T are independent. Viz,1) = <—) Az + < ) b=0. )
Now thatT is nonsingular, we have dx dx
dy Since(dV/dx)"b # 0 and any controk < 1 is unable to bring a state
dt, | = T 'da. ondC™t into a smaller level set,C, 71 < 1, we must have
dty . ov\T o T
s — A y
Itis also clear thal” andT~" are continuous. Hence, t; andt. are Vie,u) = <8.1) Av+ <E) bu>0

continuously differentiable in for = € ET. Therefore} (x) = ~ is
continuously differentiable in for » € ET.
Noting thatl (x) = ~, we have

v\’
a@i — ([1 0 O]Tfl)T <E) b< -1, VYa€ B(xo,r0). (8)

forallu < 1. Thisimplies thatdV/dz)"b < 0 for = € 3CT and also
for 2 € E*. It follows from (6) that:
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By (5) and (7), if a control: = v = V () is applied at: € v9C", we APPENDIX

will have PROOF OFLEMMA 2.1
ovNT ovNT For simplicity, we assume that the smallestis t; andt; = 0.
— ) Az + bV (x) = 0. 9 ; ; i Aty
A ox Otherwise, we can multiply (3) from left with . We also assume

. . thatts > t; > 0.
Now consider the system under the saturated linear feedbaek \we will first show that

saf Fz). Recalling from Lemma 3.1 that $dtz) < 1/2 andV (z) >

3/4 for all € B(zo,r0), we have ke 4 fpe™ 4 ks T £ 0, V (k1, k2, k3) # (0,0,0). (12)
Lol 3 1
sa(Fe) - V(x) < 5 4 1 (10) We assume that has three distinct eigenvalugs, Az, Az, with 0 <
It follows from (9), (8), and (10) that: A1 < A2 < As. For the case wheré has two or three identical eigen-
avN\T av\T values, we can prove the result in a simpler way using similar ideas.
V(z,salFz)) = <3J) Ax + <8w ) bsatF) We further assume that = diag\;. A2. As]. Then (11) can be reor-
anized as
v\” av\” g
=| — AT - /(x
<0r> Az + <().17> bVix) Mt gritz g ky
- Aty Azta . S A
1Y% T . € € 1 A,Q ;ﬁ O, V(kl , A,Q, k;g) ;ﬁ (0 0, 0) (12)
+ <0—7> b(sa(Fl') -V (l‘)) 6)\311 6)\3t2 1 ks
_ <0_V>1 b(salFz) — V(x)) This is equivalent to
7 oz ettt pAitz q
>Z det | ettt M2tz 1| £0. (13)
forallz € B(xo, ro). We see that there exists a positive numiesuch et ghatz

that|||| < N forall= € (5/4)C under any saturated feedback control. .

Hence, there existsta € (0,4/n) and anr; € (0, o) independent of Diréct computation shows that

xo, such that all the trajectories starting frd#f,, r1 ) will stay inside Ml Mtz g

B(xo,70) for t € [0,%0]. ThereforeV (x(to)) — V(2(0)) > nto/4. dot | eretn etz 1| = (ekztl _ 6A1t1) (ekgtz _ 6A1t2)

Also, there exists a; € (0,r,) such that et ate |

B(;I?DJ'Q) C :E+ \ <1 — %) C. _ (cz\zfz _ c)qu) (cz\gh _ c)qfl) X

Clearly, for allz(0) € B(xo,r2), V(2(0)) > 1 — nto/4. Hence,

for any trajectory starting fron(zo, r2), we will haveV (z(to)) > We claim that

V(«(0)) + nto/4 > 1, which means that the trajectory has gone out etstz _ Mtz ghale _ pAils

of 9C att, and will diverge by Fact 2.1. eXatl — pAity > eXotl _ pAity (14)
It is easy to see that there exists a Bk, r7.) C B(zo,r2) NC, ) .

with . greater than a fixed positive number. In summary, no mattf?™ which (13) and (11) will follow.

whatF is, there always exists a b#( ., ) C C fromwhichthetra- e now proceed to prove (14). Define

jec_tories will diverge under the saturated linear feedhaeksat F'r). Mz _ Mtz At (A=At _

This completes the proof. O f(A) = p Ve verl el ey iy v vy TR

IV. CONCLUSION It suffices to show thaf () is an increasing function of for A > A4,

We have shown in this note that a third-order antistable system with equivalently, that

real eigenvalues cannot be semiglobally stabilized with saturated linear M2 _

feedback. The study is based on examining a Lyapunov function de- fi(A) = P —

fined in terms of the null controllable region. The level sets of the Lya-
punov function are the null controllable region scaled by positive nuris an increasing function ofA for A > 0. Let g(\) =
bers. The main idea is to show the existence of a ball inside the null carif: /d\) (c”‘ — 1)2, then
trollable region, with radius greater than a fixed-positive number, from
which the Lyapunov function will grow unbounded. The increasing of gON) =(ty — 1) 2 ez g M
the Lyapunov function is cau§ed by .the difference between the control —M ((tQ _ h)emz etz =t) 4 t1>.
u = sal F'z) and the one that is required to keep the state within a level
set. The difference between the two controls cannot be reduced tg g
arbitrarily small level because the two surfades” anddC™~ cannot
be separated with a plane, or, the closed curve that connects these two g4, ()) = g(,\)@—M1 =(ta —t )(;”2 — toe M2 g
surfaces is three dimensional. For systems with complex eigenvalues,
if we definedC™ to be the set of states @t which can only be kept Then
ondC byu = 1 anddC™ to be the set of states @t which can only d
be kept ordC by « = —1, then intuitively, these two surfaces are not 2= (t2 — t1)to (e”? - eW?_t‘)> >0, VA >0.
. . o . dA
separable with a plane. With a similar procedure, the negative result
in this note can be extended to systems with complex eigenvalues,Sihceg: (0) = 0, it follows thatg: (A) > 0 and hencey(\) > 0 for
though it is somewhat harder to characterize the curve that separaiea > 0. Thereforedf, /d\ > 0 forall A > 0 and hencef; (A) is an
act andaC™. increasing function oA. It follows that (14) and (11) are true.
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We next show (3). Suppose, on the contrary, that there exighdaptive Control of Robots With an Improved Transient
(K1, ka2, k3) # (0,0,0) such that Performance

(kleAtl + kzeAfz + kﬁj) b=0. Marco A. Arteaga and Yu Tang

Noting that

Abstract—By using a robust control technique, this note proposes an
adaptive control for rigid robots with the following important features:
under a parameter-dependent persistent excitation (PE) condition, it gives
a guaranteed transient performance of tracking a smooth desired trajec-

kl(iAtl + k;g(.’Afz + kJI = ’)"1142 + ')21‘1 + ’)JI

for some(v1,12.73) # (0,0,0), we would have tory while assuring the parameter estimation error to go to a residual set

of the origin arbitrarily fast. Simulations are included to support the theo-
T retical results.

42 / “ _
[A% Ab ] |52 | =0 Index Terms—Adaptive control, robot manipulators, transient perfor-

13 mance.

which contradicts the assumption that, ¢) is controllable. O
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