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and the identifier output isyi(t) = 2:5�4 +10�2+ (5� �̂1)�3+ (3�
�̂2)�1. The parameter update law is defined by the standard gradient
algorithm in whichg1 = g2 = 7500

_�1 =7500(yi(t)� y(t))�3
_�2 =7500(yi(t)� y(t))�1: (20)

The estimations of!1 and!2 are then given by

!̂1;2 =
��̂1 � �̂2

1
� 4�̂2

2
:

The estimator consisting of (19) and (20) is a sixth-order one. In
simulation, all initial conditions are set to be zero.

A simulation is also done wherey(t) is corrupted by a uniform
random noise between�0.01 and 0.01.

Fig. 3 shows the convergence of the first estimated frequencies for
both uncorrupted and corrupted version ofy(t). Fig. 4 shows the con-
vergence of the second estimated frequencies for both uncorrupted and
corrupted version ofy(t).

It can be observed that the estimations are accurate for both uncor-
rupted and corrupted signals. Simulation is also done for large corrup-
tions, it is found that when corruptions are larger in magnitude, the
steady state errors are bigger.

V. CONCLUSION

A design of adaptive identifiers to globally estimate the frequencies
of a signal composed ofn sinosuoidal components was shown. Con-
vergence of the proposed estimator is proven. The new frequency esti-
mator is of 3n order, comparing with the order5n� 1 of the estimator
through Marino–Tomei observers. Results are demonstrated via simu-
lation.
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On Semiglobal Stabilizability of Antistable Systems by
Saturated Linear Feedback

Tingshu Hu and Zongli Lin

Abstract—It was recently established that a second-order antistable
linear system can be semiglobally stabilized on its null controllable region
by saturated linear feedback and a higher order linear system with
two or more antistable poles can be semiglobally stabilized on its null
controllable region by more general bounded feedback laws. We will show
in this note that a system with three real-valued antistable poles cannot
be semiglobally stabilized on its null controllable region by the simple
saturated linear feedback.

Index Terms—Actuator saturation, antistable systems, semiglobal stabi-
lizability.

I. INTRODUCTION

There has been a long history of exploring global or semiglobal sta-
bilizability for linear systems with saturating actuators. In 1969, Fuller
[1] studied global stabilizability of a chain of integrators of length
greater than two by saturated linear feedback and obtained a nega-
tive result. This important problem also attracted the attention of Suss-
mann and Yang [9]. They obtained similar results independently in
1991. Because of the negative result on global stabilizability with satu-
rated linear feedback, the only choice is to use general nonlinear feed-
back. In 1992, Teel [11] proposed a nested feedback design technique
for designing nonlinear globally asymptotically stabilizing feedback
laws for a chain of integrators. This technique was fully generalized by
Sussman, Sontag and Yang [8] in 1994. Alternative solutions to global
stabilization problem consisting of scheduling a parameter in an alge-
braic Riccati equation according to the size of the state vector were
later proposed in [7], [10], and [12].

Another trend in the development, motivated by the objective of de-
signing simple controllers, is semiglobal stabilizability with saturated
linear feedback laws. The notion of semiglobal asymptotic stabilization
for linear systems subject to actuator saturation was introduced in [5]
and [6]. The semiglobal framework for stabilization requires feedback
laws that yield a closed-loop system which has an asymptotically stable
equilibrium whose domain of attraction includes ana priori given (ar-
bitrarily large) bounded subset of the state space. In [5] and [6], it was
shown that, a linear system can be semiglobally stabilized by saturated
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linear feedback if it is stabilizable in the usual linear sense and has all
its poles in the closed left-half plane.

It is notable that all the results mentioned above pertain to systems
whose open-loop poles are all in the closed left-half plane. Such sys-
tems are said to be semistable. If a system has some open-loop poles
in the open right-half plane, then it is exponentially unstable. A system
with all its poles in the open right-half plane is said to be antistable. It is
evident that the domain of attraction has to be a subset of the asymptot-
ically null controllable region, the set of initial states that can be driven
to the origin asymptotically with bounded controls delivered by the sat-
urating actuators. Since the asymptotically null controllable region of
a semistable system is the whole state space (if it is stabilizable in the
linear sense), it is possible to stabilize it globally/semiglobally. How-
ever, the asymptotically null controllable region of an exponentially
unstable system is not the whole state space, hence it cannot be glob-
ally/semiglobally stabilized with saturated feedback. For this reason,
we generalized the notion of global/semiglobal stabilization, which
was only suitable for semistable systems, by giving it a new meaning
[2], [3]. A linear system subject to actuator saturation is globally sta-
bilizable if there is a saturated feedback law such that the closed-loop
system has a stability region which is equal to the asymptotically null
controllable region; it is semiglobally stabilizable if, given an arbitrary
compact subset of the asymptotically null controllable region, there is
a saturated feedback law under which the closed-loop system has a sta-
bility region that includes this given compact set.

A first step toward global/semiglobal stabilization, which cannot be
bypassed, is the characterization of the asymptotically null controllable
region. We made this first step in [2], and then proceeded to construct
stabilizing feedback laws for semiglobal stabilization. In [2] and [3],
we developed simple feedback laws for systems with two antistable
poles. For a second-order antistable system the controllers proposed are
a family of saturated linear feedbacks of the formu = sat(kF0x) and
for a high-order system with only two antistable poles, each controller
in the family switches between two saturated linear feedbacks. In [2]
and [4], we proposed a nonlinear switching feedback laws for more
general systems. The controllers are more complicated than those of
[3].

Given the results of [2]–[4], it is interesting to ask if a system with
three or more antistable poles can be semiglobally stabilized with
saturated linear feedback. In contrast to semistable systems, which
can be semiglobally stabilized by saturated linear feedback, this note
will show that a system with three or more antistable poles cannot be
semigloballystabilized by saturated linear feedback.

The remaining of this note is organized as follows. Section II re-
views some results on the asymptotically null controllable region and
develops some algebraic tools. Section III establishes the fact that a
third-order antistable system cannot be semiglobally stabilized by sat-
urated linear feedback. Some concluding remarks are given in Sec-
tion IV.

II. PRELIMINARY RESULTS ANDSOME ALGEBRAIC TOOLS

We recall from [2] a description of the asymptotically null control-
lable region. Consider a single-input linear system subject to actuator
saturation

_x = Ax + bu; x 2 Rn

; u 2 R; juj � 1: (1)

Assume that (A; b) is controllable in the usual linear sense. Then the
asymptotically null controllable region is the same as the null control-
lable region, which is the set of initial states that can be driven to the
origin in finite time. We useC to denote the null controllable region of
system (1). It is known that ifA is semistable, thenC = Rn and ifA is
antistable, thenC is a bounded convex open set containing the origin in

Fig. 1. of a third-order system.

its interior. In this note, we will restrict our attention to third-order an-
tistable systems with only real poles. For such a system, the boundary
of the null controllable region is (see [2])

@C = � �2e�At + 2e�At � I A
�1

b :

0 � t1 � t2 � 1g : (2)

Fig. 1 illustrates a typical shape ofC with a bunch of curves on@C.
Denote

@C+ = �2e�At + 2e�At � I A
�1

b : 0 < t1 < t2 <1

@C� =� @C+

@C0 = �(�2e�At + I A
�1

b : 0 � t2 � 1 :

It can be verified that@C = @C+[@C�[@C0 and@C+; @C� and@C0

are disjoint. In Fig. 1, the solid curves are on@C+ and the dashed ones
are on@C�. The two smooth curves connectingz+e andz�e (one on the
highest boundary and the other on the lowest boundary) form@C0. It
has been shown in [2] that all the curves are trajectories of the system
(1) under controls that only take values of 1 and�1. They are called
extremal trajectories. The solid curves on@C+ are trajectories of the
system (1) under the controlu = 1 and those on@C� are trajectories
under the controlu = �1. The curve on the highest boundary is a
trajectory going fromz�e to z+e under the controlu = �1 and the one
on the lowest boundary is a trajectory going fromz+e to z�e under the
controlu = 1.

From the definition, we see that@C+ and@C� are smooth surfaces
and@C0 is a closed curve connecting@C+ and@C�, i.e.,@C0 is com-
posed of all the common limit points of@C+ and@C�.

SinceC is an open set,@C \ C is empty. Here, we summarize some
facts from [2].

Fact 2.1: Under the constraint thatjuj � 1, the following hold true.

1) All the states inC can be driven to the origin.
2) All the states outside ofC [ @C will grow unbounded no matter

what control is applied.
3) All the states on@C cannot be driven to the interior ofC. The

only way to keep them bounded is to make them stay on@C with
a controlu = 1 or u = �1. Forx(0) 2 @C+, the only control
to keepx(t); t 2 [0; ") for some" > 0 on@C is u = 1 and for
x(0) 2 @C�, the only control isu = �1.

From Fact 2.1, we know thatC [ @C is the largest bounded set that
can be rendered invariant by means of admissible controls.

The basic fact we will use to prove our main result is that any segment
on@C0 is three dimensional, i.e., it cannot be fit into any plane. Before
proving this fact, we need an algebraic result which will be used several
times in this note.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 7, JULY 2002 1195

Lemma 2.1: Suppose that (A; b) is controllable,A 2 R3�3 is anti-
stable andA has no complex eigenvalues. Lett1; t2; t3 be distinct real
numbers. Then, for all(k1; k2; k3) 6= (0; 0; 0)

k1e
At + k2e

At + k3e
At b 6= 0: (3)

Proof: See Appendix A.
We note that, ifA has complex eigenvalues��j� and(t1; t2; t3) =

(�N1=�; �N2=�; �N3=�), whereN1; N2 andN3 are integers, there
may exist(k1; k2; k3) 6= (0; 0; 0) that satisfy (3). For instance, suppose
that A has eigenvalues1; 1 � j1. Let t1 = 0; t2 = �; t3 = 2�,
k1 = 1; k2 = 0; k3 = �e�2� , thenk1eAt + k2e

At + k3e
At = 0.

Proposition 2.1: Let

x(t) = �2e�At + I A�1b:

If t1; t2; t3 andt4 are distinct numbers, thenx(ti); i = 1; 2; 3; 4; are
not in the same plane.

Proof: For simplicity, assume thatt1 < t2 < t3 < t4. We first
show thatx(ti); i = 1; 2; 3, are not on the same straight line. Suppose,
on the contrary, that they are, then

x(t3)� x(t2) = c(x(t2)� x(t1))

for somec, i.e.,

e�At � e�At A�1b� c e�At � e�At A�1b = 0:

This can be written as

A�1e�At I � (1 + c)e�A(t �t ) + ceA(t �t ) b = 0

which contradicts Lemma 2.1. Here, we note thatA andeAt commute.
Now thatx(ti); i = 1; 2; 3, are not on the same straight line, they

uniquely determine a plane. Let this plane befx = 1. Suppose, on the
contrary, thatx(t4) is also in this plane, then

fx(t1) = fx(t2) = fx(t3) = fx(t4) = 1:

By mean value theorem, there existt01 2 (t1; t2), t02 2 (t2; t3) and
t03 2 (t3; t4) such that

f _x(t01) = f _x(t02) = f _x(t03) = 0

which is equivalent to

fe�At b = fe�At b = fe�At b = 0:

This equality can be written as

f [ e�At b e�At b e�At b ] = 0

which implies that the 3� 3 matrix

M = [ e�At b e�At b e�At b ]

is singular. This again contradicts Lemma 2.1. Hence we conclude that
x(ti); i = 1; 2; 3; 4, are not in the same plane.

Recalling that

@C0 = � �2e�At + I A�1b : 0 � t � 1

Proposition 2.1 implies that any segment of@C0 is three dimensional
and cannot be placed in one plane.

III. M AIN RESULTS

For anx0 2 R3 and a positive numberr, denote

B(x0; r) = x 2 R3 : kx� x0k � r

wherek � k is the Euclidean norm. We use sat(�) to denote the standard
saturation function, i.e., sat(u) = sign(u)minf1; jujg. LetX1 andX2

be two subsets ofRn. Then their distance is defined as

d(X1;X2) := inf
x 2X ;x 2X

kx1 � x2k :

In terms of@C+; @C� and@C0, the spaceR3 can be divided into
three subsets

E
+ = 
x : 
 2 (0;1); x 2 @C+

E
� =�E+

E
0 = 
x : 
 2 [0;1); x 2 @C0 :

We see thatE+ andE� are simply connected open sets andE0 is a
surface consisting of the common limit points ofE+ andE�. In other
words,E+ andE� are connected byE0.

Theorem 3.1:A third-order antistable system with real poles cannot
be semiglobally stabilized by saturated linear feedback on its null con-
trollable regionC. Specifically, for any saturated linear feedback law
u = sat(Fx), there exists a ballB(x�; r�) � C, wherer� > 0 is inde-
pendent ofF , such that all the trajectories starting fromB(x�; r�) will
grow unbounded.

To prove Theorem 3.1, we first examine the difference between the
control under a saturated linear feedback and the control that is required
to keep the state bounded. Unlike the case for a second order system,
here for a third order system, there is always a ball of fixed size where
the difference between the two controls is greater than a fixed positive
number. The result is stated in the following lemma.

Lemma 3.1: There exist positive numbersr0 andd0 such that for
anyF 2 R1�3, there is a ballB(x0; r0), wherex0 2 @C+ such that
d(B(x0; r0);E

0) � d0 and sat(Fx) � 1=2 for all x 2 B(x0; r0).
Proof: For anF 2 R1�3, denote the distance between the two

planesFx = 1 andFx = �1 by g(F ). By Proposition 2.1,@C0 is
a three dimensional closed curve. So there exists a minimal distance
g0 betweenFx = 1 andFx = �1 such that@C0 lies completely
between these two planes. In other words, ifg(F ) = g1 < g0, then
the total length of the segments of@C0 which are in the half space
Fx � �1 must be greater than a positive number depending only on
g1. Also by Proposition 2.1, there are no more than two segments of
fx(t) = (�2e�At + I)A�1b : 0 � t � 1g which are in the half
space, otherwise, there would be four pointsx(ti); i = 1; 2; 3; 4, in
the planeFx = �1. Hence, there is a segment of@C0, with length
greater than a fixed positive number, that is completely in the half space
Fx � �1.

Let us first consider anF such thatg(F ) � (1=2)g0. By the fore-
going arguments, there is a segment of@C0, with length greater than
l0 > 0, that is completely in the half spaceFx � �1. Since@C0 is
a compact set and any segment on it is three dimensional, the largest
distance from a point of the segment to the planeFx = �1 is greater
than a fixed positive number. Recalling that@C0 is the closed curve
that connects@C+ and@C�, we know that there is a simply connected
region on the surface of@C+ that is in the half spaceFx � �1 and
the surface area of this region is greater than a fixed-positive number.
It follows that there exists a ballB(x1; r1) with x1 2 @C+ andr1 a
fixed-positive number such thatB(x1; r1) is in the half spaceFx � �1
andd(B(x1; r1);E0) � d1, whered1 is also a fixed positive number.
Here, forx 2 B(x1; r1), sat(Fx) = �1.

Next, we consider anF such thatg(F ) > (1=2)g0. Then there ex-
ists a segment of@C0, of length greater than a fixed-positive number,
which is between the two planesFx = �1=2 andFx = 1=2. Fol-
lowing similar arguments as in the previous paragraph, there is a ball
B(x2; r2) with x2 2 @C+ andr2 a fixed-positive number such that
B(x2; r2) is between the two planesFx = �1=2 andFx = 1=2 and
d(B(x2; r2);E

0) � d2, whered2 is also a fixed positive number. Here,
for x 2 B(x2; r2), jsat(Fx)j � 1=2.

If we let d0 = minfd1; d2g andr0 = minfr1; r2g, then the result
of Lemma 3.1 readily follows.

To prove Theorem 3.1, we need to show that, under the control of
any feedbacku = sat(Fx), there exists a ball inC of radius greater
than a fixed positive number, such that all the trajectories starting from
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the ball will go out ofC and diverge. We will use Lyapunov function
analysis to show this result. The Lyapunov function is defined in terms
of @C as follows:

V (x) := 
 � 0; such that
x



2 @C (or x 2 
@C): (4)

SinceC is a bounded convex open set, any ray starting from the origin
has a unique intersection with@C and hence any vector in the state
space can be uniquely scaled to be exactly on@C. Therefore,V (x) is
a well-defined positive–definite function.

Clearly,V (x) = 1 for all x 2 @C andV (x) < 1 for all x 2 C. We
also see thatV (�x) = �V (x) for any� > 0. Moreover, if@V=@x
exists at somex0, then

@V

@x
x=�x

=
@V

@x
x=x

: (5)

To see this, note that

V �x0 +

�

0

0

� V (�x0)

�
=

V x0 +

1

�
�

0

0

� V (x0)

1

�
�

and the aforementioned equality is also true if we replace
�

0

0

with

0

�

0

or
0

0

�

.

Lemma 3.2: The Lyapunov functionV (x) is continuously differen-
tiable inx for x 2 E+. For allx 2 E+, bT (@V=@x) 6= 0.

Proof: Everyx 2 E+ can be expressed as

x = 
 �2e�At + 2e�At � I A�1b

for some
 2 (0;1), 0 < t1 < t2 <1. It follows from the definition
thatV (x) = 
. We see thatx is analytic in
, t1, andt2. Moreover

dx = T

d


dt1
dt2

where

T =
@x

@


@x

@t1

@x

@t2

= �2e�At + 2e�At � I A�1b
...� 2
e�At b

...2
e�At b :

We claim thatT is nonsingular. This can be seen as follows. For sim-
plicity, consider anx0 2 @C+, then
 = 1. Applying Lemma 2.1, we
see that@x=@t1 = �2e�At b and@x=@t2 = 2e�At b are indepen-
dent and they determine a planefx = 1 that containsx0. Since@C+ is
smooth, this plane is tangential to@C+ at x0. SinceC is a bounded
convex set containing the origin in its interior, this planefx = 1
does not contain the origin. Hence, the vector fromx0 to the origin,
�x0 = �(�2e�At +2e�At � I)A�1b, must be independent of the
two vectors that determine the plane. That is, the three column vectors
in T are independent.

Now thatT is nonsingular, we have

d


dt1
dt2

= T�1dx:

It is also clear thatT andT�1 are continuous. Hence,
; t1 andt2 are
continuously differentiable inx for x 2 E+. Therefore,V (x) = 
 is
continuously differentiable inx for x 2 E+.

Noting thatV (x) = 
, we have

@V

@x
= [ 1 0 0 ] T�1

T

and

@V

@x

T

b = [ 1 0 0 ]T�1b:

Suppose on the contrary that(@V=@x)T b = 0, then

T�1b =

0

k1
k2

for some(k1; k2) 6= (0; 0). It follows that:

b = T

0

k1
k2

= �2k1
e
�At b+ 2k2
e

�At b

which contradicts Lemma 2.1. Therefore, we must have
(@V=@x)T b 6= 0 for all x 2 E+.

Since(@V=@x)T b is continuous inE+, from Lemma 3.2, we con-
clude that(@V=@x)T b either “> 0” or “< 0” in E+ and for any com-
pact subset ofE+, j (@V=@x)T bj is greater than a positive number.
Now we are ready to prove the main result of this note.

Proof of theorem 3.1:Let F 2 R1�3 be an arbitrary feedback
gain matrix. From Lemma 3.1, we know that there always exists a ball
B(x0; r0), x0 2 @C+, such that sat(Fx) � 1=2 for all x 2 B(x0; r0)
andd(B(x0; r0);E0) � d0. Here,d0 andr0 are independent ofF .

SinceB(x0; r0) contains one pointx0 in E+ and has a distance
greater thand0 from E0, we haveB(x0; r0) � E+. Without loss of
generality, assume thatB(x0; r0) � E+\(5=4)Cn(3=4)C. Otherwise,
we can choose a smallerr0. Let M be the maximal compact set in
E
+ \ (5=4)C n (3=4)C such thatd(M;E0) = d0. By Lemma 3.2,

there is a positive number� such that

min
@V

@x

T

b : x 2M � �:

Sinced(B(x0; r0);E0) � d0, we must haveB(x0; r0) � M. There-
fore

@V

@x

T

b � �; 8x 2 B(x0; r0): (6)

Consider the derivative of the Lyapunov functionV (x) along the
trajectory of the system

_x = Ax + b u:

We have

_V (x; u) =
@V

@x

T

Ax +
@V

@x

T

bu:

From Fact 2.1, we know that if a controlu = 1 is applied atx 2
@C+, the trajectory will stay on@C+ andV (x) will remain to be 1.
Hence, forx 2 @C+

_V (x; 1) =
@V

@x

T

Ax +
@V

@x

T

b = 0: (7)

Since(@V=@x)T b 6= 0 and any controlu < 1 is unable to bring a state
on@C+ into a smaller level set
1C, 
1 < 1, we must have

_V (x; u) =
@V

@x

T

Ax +
@V

@x

T

bu > 0

for all u < 1. This implies that(@V=@x)T b < 0 for x 2 @C+ and also
for x 2 E+. It follows from (6) that:

@V

@x

T

b < ��; 8x 2 B(x0; r0): (8)
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By (5) and (7), if a controlu = 
 = V (x) is applied atx 2 
@C+, we
will have

@V

@x

T

Ax +
@V

@x

T

bV (x) = 0: (9)

Now consider the system under the saturated linear feedbacku =
sat(Fx). Recalling from Lemma 3.1 that sat(Fx) � 1=2 andV (x) �
3=4 for all x 2 B(x0; r0), we have

sat(Fx)� V (x) �
1

2
�

3

4
= �

1

4
: (10)

It follows from (9), (8), and (10) that:

_V (x; sat(Fx)) =
@V

@x

T

Ax +
@V

@x

T

b sat(Fx)

=
@V

@x

T

Ax +
@V

@x

T

bV (x)

+
@V

@x

T

b(sat(Fx)� V (x))

=
@V

@x

T

b(sat(Fx)� V (x))

>
�

4
for allx 2 B(x0; r0). We see that there exists a positive numberN such
thatk _xk � N for all x 2 (5=4)C under any saturated feedback control.
Hence, there exists at0 2 (0; 4=�) and anr1 2 (0; r0) independent of
x0, such that all the trajectories starting fromB(x0; r1) will stay inside
B(x0; r0) for t 2 [0; t0]. Therefore,V (x(t0)) � V (x(0)) � �t0=4.
Also, there exists ar2 2 (0; r1) such that

B(x0; r2) � E
+ n 1�

�t0
4

C:

Clearly, for all x(0) 2 B(x0; r2), V (x(0)) > 1 � �t0=4. Hence,
for any trajectory starting fromB(x0; r2), we will haveV (x(t0)) >
V (x(0)) + �t0=4 > 1, which means that the trajectory has gone out
of @C at t0 and will diverge by Fact 2.1.

It is easy to see that there exists a ballB(x�; r�) � B(x0; r2) \ C,
with r� greater than a fixed positive number. In summary, no matter
whatF is, there always exists a ballB(x�; r�) � C from which the tra-
jectories will diverge under the saturated linear feedbacku = sat(Fx).
This completes the proof.

IV. CONCLUSION

We have shown in this note that a third-order antistable system with
real eigenvalues cannot be semiglobally stabilized with saturated linear
feedback. The study is based on examining a Lyapunov function de-
fined in terms of the null controllable region. The level sets of the Lya-
punov function are the null controllable region scaled by positive num-
bers. The main idea is to show the existence of a ball inside the null con-
trollable region, with radius greater than a fixed-positive number, from
which the Lyapunov function will grow unbounded. The increasing of
the Lyapunov function is caused by the difference between the control
u = sat(Fx) and the one that is required to keep the state within a level
set. The difference between the two controls cannot be reduced to an
arbitrarily small level because the two surfaces@C+ and@C� cannot
be separated with a plane, or, the closed curve that connects these two
surfaces is three dimensional. For systems with complex eigenvalues,
if we define@C+ to be the set of states on@C which can only be kept
on@C by u = 1 and@C� to be the set of states on@C which can only
be kept on@C by u = �1, then intuitively, these two surfaces are not
separable with a plane. With a similar procedure, the negative result
in this note can be extended to systems with complex eigenvalues, al-
though it is somewhat harder to characterize the curve that separates
@C+ and@C�.

APPENDIX

PROOF OFLEMMA 2.1

For simplicity, we assume that the smallestti is t3 and t3 = 0.
Otherwise, we can multiply (3) from left withe�At . We also assume
that t2 > t1 > 0.
We will first show that

k1e
At + k2e

At + k3I 6= 0; 8 (k1; k2; k3) 6= (0; 0; 0): (11)

We assume thatA has three distinct eigenvalues�1; �2; �3, with 0 <
�1 < �2 < �3. For the case whereA has two or three identical eigen-
values, we can prove the result in a simpler way using similar ideas.
We further assume thatA = diag[�1; �2; �3]. Then (11) can be reor-
ganized as

e� t e� t 1

e� t e� t 1

e� t e� t 1

k1
k2
k3

6= 0; 8(k1; k2; k3) 6= (0; 0; 0): (12)

This is equivalent to

det

e� t e� t 1

e� t e� t 1

e� t e� t 1

6= 0: (13)

Direct computation shows that

det

e� t e� t 1

e� t e� t 1

e� t e� t 1

= e� t � e� t e� t � e� t

� e� t � e� t e� t � e� t :

We claim that

e� t � e� t

e� t � e� t
>

e� t � e� t

e� t � e� t
(14)

from which (13) and (11) will follow.
We now proceed to prove (14). Define

f(�) :=
e�t � e� t

e�t � e� t
�

e� t

e� t
=

e(��� )t � 1

e(��� )t � 1
:

It suffices to show thatf(�) is an increasing function of� for � > �1,
or, equivalently, that

f1(�) =
e�t � 1

e�t � 1

is an increasing function of� for � > 0. Let g(�) =

(df1=d�) e�t � 1
2
, then

g(�) =(t2 � t1)e
�(t +t ) � t2e

�t + t1e
�t

=e�t (t2 � t1)e
�t � t2e

�(t �t ) + t1 :

Let

g1(�) = g(�)e��t = (t2 � t1)e
�t � t2e

�(t �t ) + t1:

Then

dg1
d�

= (t2 � t1)t2 e�t � e�(t �t ) > 0; 8� > 0:

Sinceg1(0) = 0, it follows thatg1(�) > 0 and henceg(�) > 0 for
all � > 0. Therefore,df1=d� > 0 for all � > 0 and hencef1(�) is an
increasing function of�. It follows that (14) and (11) are true.
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We next show (3). Suppose, on the contrary, that there exist
(k1; k2; k3) 6= (0; 0; 0) such that

k1e
At + k2e

At + k3I b = 0:

Noting that

k1e
At + k2e

At + k3I = 
1A
2 + 
2A + 
3I

for some(
1; 
2; 
3) 6= (0; 0; 0), we would have

[A2b Ab b ]


1


2


3

= 0

which contradicts the assumption that (A; b) is controllable.
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Adaptive Control of Robots With an Improved Transient
Performance

Marco A. Arteaga and Yu Tang

Abstract—By using a robust control technique, this note proposes an
adaptive control for rigid robots with the following important features:
under a parameter-dependent persistent excitation (PE) condition, it gives
a guaranteed transient performance of tracking a smooth desired trajec-
tory while assuring the parameter estimation error to go to a residual set
of the origin arbitrarily fast. Simulations are included to support the theo-
retical results.

Index Terms—Adaptive control, robot manipulators, transient perfor-
mance.

I. INTRODUCTION

The dynamics of rigid robots can be described by a set of non-
linear differential equations. In order to be able to carry out accurate
tracking control, the knowledge of the robot model parameters is nec-
essary. However, it is a rather difficult task to calculate the parameter
vector accurately. Fortunately, the nonlinear model of rigid robots is
linear in its parameters [2], [3]. Thus, adaptive control of robots has re-
ceived considerable attention during the last two decades (see [4]–[9]).
Since the main goal of robot control is to achieve accurate tracking of
desired trajectories, many globally stable algorithms have been devel-
oped that result in zero tracking error in the steady state (see [10] and
[11]). Nevertheless, parameter convergence does not necessarily take
place. In fact, even if there is persistent excitation (PE) it may take
long time before the estimated parameters tend to the real ones, what
decreases the transient performance of the tracking error. Also, without
the PE condition being satisfied, in the presence of external perturba-
tions and/or unmodeled dynamics most of the existing adaptation al-
gorithms may present parameter drifting phenomena similar to those
observed in adaptive controllers studied in the 1980s. A solution to this
consists in modifying the adaptation algorithms.

Since robot manipulators constitute a class of passive systems, many
authors have exploited this property in order to design and prove the
stability of their adaptive control approaches [12]–[14]. In fact, the pas-
sivity property can be exploited in a very general framework to design
adaptive algorithms, i.e., it can be shown that any adaptive algorithm
which is passive can be used to have zero tracking error in the steady
state [15]. This fact was used in [16] to slightly relax the general PE
condition required for most algorithms in order to guarantee param-
eter convergence by taking advantage of the transient response of the
system. Since a well-known problem in most adaptive controllers is
the poor transient response observed when the adaptation is initiated,
[17]–[19] present adaptive schemes which give a guaranteed transient
performance. In the absence of disturbances, these algorithms are able
to guarantee that the tracking errors will tend to zero as well. The tran-
sient performance is improved arbitrarily by a proper choice of some
control gains. However, tuning these control gains too large to improve
the transient performance usually implies that the output torques/forces
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