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On Improving the Performance With Bounded In this way, the domain of attraction is ensured to include the largest
Continuous Feedback Laws ellipsoid £( Py, po) and as a state trajectory moves from an outer el-

lipsoid to an inner ellipsoid, the convergence rate is increased. Since

Tingshu Hu and Zongli Lin each ellipsoid is invariant under the corresponding feedback law, the

switch is safe (no chattering) and the existence and uniqueness of the
. . _solution to the closed-loop differential equation is ensured. Such a con-
Abstract—We present controller design methods to smooth the disconti-

nuity resulting from a piecewise linear control law which was proposed to ’Frol law is ref%rred to as PLC, in [7]. Becaus¢l’, pi) C ,L(Fi)’
improve the convergence performance for systems with input constraints. ¢ = 0. 1,..., N, the control: will never exceed the saturation bound
The continuous control laws designed in this note are explicit functions of if the initial statexzo € E(Fo, po).
the state and are easily implementable. We also show that the convergence = Since F; is generally different fromf;_1, the controlu in (2) is
performance can be further improved by using a saturated high-gain feed-  yisontinuous at the switching surfa2é( P, p;), the boundary of the
back law. The efficiency of the proposed methods is illustrated with the . e . -
PUMA 560 robot model. ellipsoid€ (P, p;). Effort has been made to smoothen the discontinuity
in [3]-[6], etc. In [6], a continuous feedback law was constructed from
the linear combination of, andFy1. Since this simple interpolation
may cause the control to exceed the constraint, smaller bounds on the
control were imposed and the ellipsoids were required to be “tightly”
I. INTRODUCTION nested P — Pr+1 should be sufficiently small). By using the gain
We consider a linear system subject to input saturation and state C%?{_ledullng methods in [3]_[5]’." has be_en shown that t'he discontl-
straint nuity can be smoothened by using a continuum of ellips6id3(=)),
wheres is a scheduling variable. The essence of these gain scheduling
methods is the following. For every > 0, P(z) is solved from a
@ . . , : .
parameter dependent Riccati equation along with an LQ gain matrix
wherer € R, u € R™, |ulee = max{|ui|, ¢ € [1,m]} andQp F(s). Asc is increased_, the ellipspi&_ﬂ(P(s)) becomes _smaller ar_1d
contains the origin in its interior. To achieve a large domain of attraf?® convergence rate withf( (<)) is increased. The gain scheduling
tion, we may try to find a large ellipsoid (see [2] and [7]) ideais to associate eache R" with a parameter, or to define a func-
tion=(z): « — =. The final controller has the form af = F(=(z))x.
E(P,p):i={r eR":2" Pxr < p} C Qo Since the function(z) is generally very hard to compute, technical is-
sues are involved in controller implementation. These issues were con-
with 0 < P € R"*", such that this ellipsoid is invariant under=  sidered in [3] and a method to simplify the computatiore of) was
Fz and proposed. The proposed method involves solving a convex optimiza-
tion problem for every point in the state space.
E(P,p) CL(F):={z e R":|Fz|e <1} This note is intended to propose explicit controller structures which
would achieve the objective of improving the convergence performance
For simplicity, we use®(P) to denoteS (P, 1). Generally, the max- using continuous control laws. For easy reference, here we collect some
imization of £( P, p) would result in low-feedback gaifi and slow simple mathematical facts as follows.
convergence rate, i.e., some eigenvalued of BF are close tothe  Fact 1: For two ellipsoidst (1) and& ()
imaginary axis. In [7], Wredenhagen and Belanger proposed a piece-
wise Iipear control (PLC) design method to reconcile Iargg domain of E(P) CE(R) < P, >P;
attraction and good convergence performance. The basic idea is to use S(Py) C int(E(Py)) PSP
a linear quadratic (LQ) method to construct a sequence of nested ellip- cli) Lottt Lot

Index Terms—Constrained control, convergence rate, invariant ellipsoid,
switching.

& = Az + Bu, [uleo < 1; @ € Qo

soids 0
whereint(E(P,)) = {x € R":2' Pa < 1} is the interior of€ (P).
E(Po,po) D E(Pi,p1) D+ D E(Pn,pn) For an ellipsoid(P) and a matrixF” € R™*"
along with corresponding feedback gain matriées = 0,1,..., N, E(P) C L(F) @szfi <P ie[l,m]
such that® (P, po) C Qo, E(P, pi) C L(F;), and eacte (P, p;) is ' ‘ - el T .
; . ’ ' _ —f;P 7 <1, 1 1,
invariant under the feedbagk= F,z,: = 0,1,...,N. Also, as the f 1f - 'P*l i€ tm]
indexi is increased, the convergence rate under the feedbaclf’; « = | __.r fi _, | >0, € [1,m].
increases. The final controller takes the following form: P i P
Fnex, if z € E(PN,[)N)
Fyoyz, ifx € E(Pvoi,pn—1)\ E(Pn,pN) Il. A CONTINUOUS FEEDBACK LAW FOR IMPROVING
u=9q. 2 THE PERFORMANCE
Foz, if 2 € E(Po, po) \ E(Pr.pr). We consider the system
& = Ax + Bu, luloo <1; @ € Qo (3)
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where all the desired properties. We will also provide an explicit formula to

computey(x).
Po <P S0 E(R) Theorem 1: With P(+) defined in (11), there exists a uniqyee

€(fb) C L{Fo) &(11) C L(F) () [0,1] suchthat:” P(+)x = 1 foreverys € £(Py)\int(£(P1)). With

(A4 BF))' Py + Py(A+ BFy) < —ao P (6) ~(x) defined in (8), we have

(A =+ BFl) Pl =+ Pl(A + BFl) S —Ozlpl (7) “)(‘L) — Alnin [(QO _ Ql)*(l/Z)(QO _ ;L’;El )(QO _ Ql)(l/Z)J
and0 < agp < «ap. Assume thaty, anda; are the maximal positive 12)

numbers that satisfy (6) and (7), respectively. The inequalityc o,  forz € £(Po) \int(E(P1)). Lety(x) = 1 forx € int(E(P1)). Then,
implies that the convergence rate of the Lyapunov funclipp:) =  the controlu = F(v(x))x is continuous ine and|F(vy(x))x| < 1
2" Pz underu = Fyz is greater than that df; (2) = «” Pox under for all = € £(P). Moreover, each ellipsoid(P(v)), v € [0,1] is
u = Fox. We consider a feedback law (4) of only one switch becau#@variant and every trajectory starting frarn € £(I%) will converge
the method to be proposed can be readily extended to smoothentghthe origin with increasing rate.
discontinuity of a controller with multiple switches. Actually, because Before proving Theorem 1, we present two lemmas. Define
the pr.oposed continuous feedback law guarantees a progresswelyall;)};) = max{a > 0: (4 + BF(V))TP(V)
creasing convergence rate, we only need to use the outmost and the ‘
innermost ellipsoids (P, po) and&(Px, pn) along with their corre- TP(M(A+ BF(7)) < —aP(7)}.
sponding feedback gain matricés and Fiy. Without loss of gener- Then,a(y) is the convergence rate &f(z) = =7 P(v)z under the
ality, we have assumed tha = p1 = 1. Otherwisepo andp: canbe Jinear controlu = F(~)z.
absorbed into the matricd% andP;. Lemma 1:

The control (4). |s.d|scont|nuous at the sur.fac.e ofthg |n.ne.reII|p50|d, 1) £(p(~)) shrinks asy increases, namely, if, < 42, then
O&(Py). The main idea for smoothening this discontinuity is to con- E(P(2)) C int(E(P(71))).
struct a continuum qf e||IpSO!d§_(P(7)), v E _[0,1], betyveert?(Po) 2) For all € [0, 1]; 5(}3(7)) C L(F(7)).
and&(Py), progressively shrinking, along with a continuum of feed-

' 3) «(~) is strictly increasing for € [0, 1].
back matriced'(v), such that

Proof: From (5), we havé)o — Q, = P, ' — P > 0.

E(P(v)) C LIF(v)) 1) If v < 42, then
and Q) = Q(y2) = (32 — 1)(Qo — Q1) > 0.
(A4 BF(7))" P(7) + P(7)(4 + BF(y)) < —a(y)P(7) Hence, P(v1) < P(v) and it follows from Fact 1 that

E(P(12)) C int(E(P(n)).

with «(+) monotonically increasing aschanges from zero to one. For ) .
a(y) y gas g 2) Since&(Py) C L(Fy) and&(Py) C L(Fy), it follows from

x € dE(P(v)), we use the contral = F(v)z. Suppose that for every

x € E(Ry) \ int(E(P)), there exists a unique € [0, 1] such that Fact 1 that .
2" P(y)z = 1, we can then define { } " fmpﬂ } >0
Py foe By -
y(x) = {y €[0.1]:2" P(y)z = 1} ®) e |
and the feedback law can be simply written as {Pflff; ! } 20, i€ flml
u = F(y(x))z. (9) ie.,
The control law (9) is implementable if the functigfz) and the feed- LIT hm} >0, LlT h“} >0, i€[l,m].
back matrixF'(~(x)) can be computed efficiently on line. That is, we i Qo i @
should be able to tell which ellipsoid surface the stats on. This de- By convexity, we have
pends on how we design the functioRéy) and F (). 1 hi(~) '
The following are the functions we propose. Let {hr(w) Q(V)} >0, i€[l,m], v€l[0,1].
Qo =PF;' That is
Qi =P 1 AP
—1 T —1 ZO

Hy :F(]Q(] p (h!')f‘i (F)) P (7)

H =F Q. i €[1l,m], ~€ [0,1].
Define Therefore, by Fact 1, we hav& P(~)) C L(F(y)) forall v €

[0,1].
Q(7) :==(1 = )Qo + Qs 3) By multiplying both sides of (6) and (7) witd, andQ, respec-
H(~) :=(1 - ~v)Ho + vH; (10) tively, we obtain
and QoA" + AQo + Hy B' + BHy < — aoQo
P(y) =) ! QA" + AQ: + H{ B" + BH, < — a1Q1.
F(v) :=H(y)P(7). (11) By convexity, we have

Itis clear thatQ(~) > 0 for all v € [0, 1]. HenceQ(~), H(~), P(7) QA" + AQ(v)+ H(v)' B" + BH(7)
andF'(~) are all continuous ir over the interval0, 1]. The same func- < —(1—=vaoQo — var @1, v €10,1].

tion Q(~) was used in [3], wherd'(~) was the solution to a Riccati
equation. In what follows, we show that, wiffi{ v) defined as previ-
ously shown, the continuous feedback law= F(~(x))z possesses (1 — v)aoQo + va1 Q1 = aoQ(7) + v(ar — a)Q1 > o Q(7).

Sincea; > ag and@ > 0, we see that
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It follows that a(v) > «o for all v € (0,1]. To show that Now, we consider the convergence of trajectories. Under the control

a(y2) > a(yi) for v2 > 1, we observe that u = F(~(z))=, on the boundary of eadh P(v)), v € [0, 1]
~ ~ ~ , 1 ,
_ (1 e ) Bt " P(1)i =507 (A+ BF(3))" P+ P(A+ BF(7)e
- M - N
1 T
Vo — 1 <= ca(y)x” P(y)x <.
Q(A/2)=<1— 17 )Q(r)-i‘ Lo, (7 ™
n We also have:” Py i < 0 for all 2z € £(P,). Hence, all the trajecto-
and ries starting from the boundary 6% P(~)) will be in the interior of
H(y) = <1 - W’i) H(m)+ ong. E(P(~)) forallt > 0. This proves the invariance 6f§P(«,~)). More-
1—m I—m over, the convergence ratd~) increases as the trajectory enters the
Following the same procedure by replacifig with Q(1), Ho in_ner ellipsoids. Thergfqre, if a trajectory strats fram € £(FP), it
with H (y1), and~ with (72 — v1)/(1 — v ), we can show that Will converge to the origin. o
( Ya) > (1(",’1) for~ > 7. |
Lemma 2: For everyx € £(P)\int(E(P)), there exists a unique 1ll. FURTHER IMPROVEMENT OF THECONVERGENCEPERFORMANCE

7 € [0,1] such thatL P(y)z = 1. Lety(x) be defined in (8). Then,  Aqcan be seen from Lemma 1 (item 2), the control law constructed in
for x € E(Po) \ int(E(F1)) Section |l satisfies the control constraint by avoiding saturation. Since
() = Amin [(Qo — 1) Y(Qo = 22 ) (Qo = Q1) S(_P(v_)) c L(F(v)), there are at most two intersections between the

13) ellipsoid E(P(q))'and a pair of hyperplan'egf.v(v);c = =1. Hence,

Proof: For each: € £(P) \ int(£(P)), we haver! Pox < 1 thg controlu; = f;(v)x may takg the maximal valuﬁll only at two

andz” Pz > 1,i.e.,27 P(0)z < 1 andzT P(1)z > 1. SinceP(~) points ond&(P(~)). A!ong a trajectory, the pontrol ;lgnal could be

is continuous iny for v € [0, 1], there exists & € [0, 1] such that well b_elow the saturation !evel most of_t_he time. This means that the
' p(~)e = 1. By Lemma 1 (item 1), there exists a unique [0, 1] capacW of Fhe actuators is not fully utilized and we still hg\(e much
such that:” P(~)x = 1. Hence, the function (=) is well defined by potential to improve the convergence performance. In [1], it is shown

@). that the con_trol law that rpaximizes the convergence ratg of_ a Lya-
Let 4 be the unique number if9, 1] such that:? P(7)x = 1, i.e., punov fupctlon;/(m) == Pz under actuator saturation is simply
+ € 08(P(v)). By Lemma 1 (item 1)z € int(€(P(1))) for all % = —sign (b{ Pz),i = 1,2,...,m. Due to the discontinuity of
€ 0,7),ie., this bang-bang control, a satL_Jrated high gain I|n_ear feedback .Iaw of
’ ’ " the formu = —sat(kB” Px) is proposed to achieve a suboptimal
z Plyi)z <1 Vy €10,7). convergence rate. Hereyt(+) is the standard vector-valued saturation
It follows from the Schur complement that function:{sat(u)}i = sign(ui) min{|u,
1 Lt 1 e maximal convergence rate depends on the choice oPtheatrix (see
{ , } = { >0 [1, Ch. 11] for more details). Generally, the objective of producing a
r Q) ¢ Qo= m(Qo =) high convergence rate conflicts with the objective of achieving a large
=Qo—1(Qo—Q1)—zz’ >0 invariant ellipsoid. In other words, # is chosen such that the maximal
=T < (Qo— Q1) Qo= 22" ) Qo — Qr)~/¥ convergence rate is high, then the largest ellipsdif, p) that can be
. made invariant would be small. A simple way to reconcile the objective
T € [07 V) . . . . . .. .
of producing a large invariant ellipsoid and that of achieving a high con-
By continuity, we have vergence rate with a contral = —sat(kB” Px) is also to adjust the
T < (Qo— Q)" V(Qo — 22" )(Qo — Qi)™ /2. (14) P matrix according to the size of the state. Using the method in Sec-
T tion Il, a state dependent matriX(~(x)) can be determined. While
Froma" P(y)a = 1, we have the state feedback = F(~(z))x mcreases the convergence rate as
0 = det { 1 af’T } the trajectory enters smaller ellipsdidP(v)), a state feedback of the
x Qy) formu = —sat(kB7 P(y(x))x) with a high gaink can be used for
= det[Q(7) — wa] further improvement of the convergence performance.
o, Theorem 2:Let F;, = —-GoBTR and F, = -G:BTP
=det[Qo = 7(Qo — Q1) —xa”]. be the feedback matrices of two LQ controllers such that
Hence E(Py) C L(Fy), E(P) C L(F1)and Py < P,. Assume that
T _ —(1/2) A Gy = di'dg{gol,goz,gog} > 0, andG; = diag{gn,glz.gw} > 0.
det |: a (QD Ql) (QD e ) Let ko = max{gm , Jo2, 903, 911, 912, g13}. Then, for anyk: > ko,

%(Qo — Q1) (1/7)] =0 (15) under the control of

T
which implies that~ is an eigenvalue of the matrixQo — u = —sat(kB" P(y(x))r) (16)
Ql)i(l/Q)(QO — :v.rT)(Qo - Ql)*(l/z). In view of (14), we obtain all the trajectories starting frodi( P, ) will converge to the origin. The

(13). OO convergence rate increaseskasicreases.
Proof of Theorem 1:The first statement and (12) have been  Proof: DenoteG(~) = (1 — v)Go + vG1. Then,0 < G(v) <
proved in Lemma 2. From the continuity of the eigenvalues of /I for all v € [0,1] andF(+) = —G(7)BT P(v). It follows from

matrix in its elements, it follows that(x) is continuous in: at every Theorem 1 that under the control ef = F(~y(x))x, all the trajec-
E(Py) \ int(E(Py)). Sincey(x) = 1 forall z € 9E(P), tories starting fromE(Fy) will converge to the origin. We also have
the function~(x) can be extended continuously to all € £(Fy) [F(v(x))x|e < 1forallx € £(1%). The fact that the convergence
by letting v(x) = 1 for = € E(P). SinceF(~) is continuous in rate is faster under (16) fdr > ko can be seen from
, the controlu = F(~(z))z is continuous inx. The claim that TNt wnt (13T Pl T DN N Pl
|F(7( Nit)oo < 1 L for éllg é &(Py) follows directly from Lemma P()bisat (kbl P /')'L) < —a” P(7)bisat (gl(wbl 2 ’)‘L)
1 (item 2). =" P()b; fi(y)x (17)
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Fig. 1. Time responses of the states: PLC versus continuous control.
whereg; () is theith diagonal element afi(~). As k increases, the 60 Torque at Joint 1

left-hand side of (17) decreases. Hence, the convergence rate increase
ask increases. O

Since bothsat(-) andP(+(+)) are continuous functions, the control
(16) is continuous in:. We call (16) the fast continuous control law.
As will be seen in the example, the feedback law (16) can improve the
convergence rate significantly over= F(~(x))x.

Example: We consider the Puma 560 robot model that was used in
[7]. The robot has three joints: the trunk (Joint 1), the shoulder (Joint
2), and the elbow (Joint 3). These joints are controlled by three actua-
tors which are subject to different saturation bounds, 97.8 Nm, 136.4
Nm, and 89.4 Nm, respectively. The linear model was calculated about
(61,02,03) = (57°,115°,172°) with resulting system matrices

N
(=]
T

torque(Nm)
n
(=]

-:PLC
—-: continuous control

2 4 6 8 10
time(sec)
Torque at Joint 2

torque(Nm)

ro 0 0 1 0 0 8 10
time(sec)
0 0 0 0 Torque at Joint 3
4= 0 0 0 0 0 1 50 T
710 —0.0451 —0.0451 0 0 O T o
0 —0.0457 —-0.0457 0 0 O =3
L0 —4.5551 —4.5551 0 0 0 g s
r 0 0 0
0 0 0 ; : ; ; 70
B 0 0 0 time(sec)
~10.0925  0.0000 0.0026 Fio. 2. Control signals: PLC i irol
0.0000 0.0979 —0.0952 1g. 2. ontrol signails: versus continuous control.
L0.0026 —-0.0952 0.3616

same as that in [7]. From Fig. 1, we can see that the time response of
In [7], a PLC control law with five switches was designed. Based dhe states under the PLC control and that under the continuous feedback
the outmost and the innermost ellipsoids of [7], with correspondirgpntrol are almost identical. The control signals under the PLC law are
feedback matrices, we designed a continuous feedback law of the fdrawever discontinuous and display big spikes (see Fig. 2). These spikes
v = F(~v(z))z. (Here, we need to take into account the nonunity satean be reduced by increasing the number of the nested ellipsoids and
ration bounds of the three actuators). Figs. 1 and 2 illustrate the sintlve controllers used in switching. However, this would increase the nu-
lation results under the PLC law and the continuous feedback law. Timerical burden when determining the smallest ellipsoid that includes a
initial condition iszo = 10[1 1 1 1 1 1]"/+/6, whichisthe given state and would also increase the data storage for the controller.
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Fig. 3. Time response of the states: continuous control versus fast continuous control.

Torgue at Joint 1 . system, the fast continuous control lawiis= —sat(kB” P(~(x))x.

£ ol —_—: continuous control | Equivalently,u = Az = —A sztt(%:ABTP(v(w)):L’). The actual
2 _ - fast continuous control controllers have the following forms:
=2 ~
g of U uy = —97.8sat (97.8kb] P(y(x))x)
. _ ‘ . uy = —136.4sat (136.4kb P(~(z))z) (18)
) 2 4 6 8 10 us = —89.4sat (89.4kby P(v(z))x).
time(sec)
200 Torque at Joint2 : Here, in the construction dP(v), we have used the outmost and the

innermost ellipsoids in [7]. To make full use of the actuator capacities,
we have takerk = 6 in simulation. Figs. 3 and 4 illustrate the sim-
=== == ulation results under the control (18) (the solid curves) as compared
with those under the contral = F(~(z))z (the dashed curves). From
Fig. 3, we see that the performance of the state response is significantly

torque(Nm)
o

L

=)

3
=

20 2 4 5 8 10 improved by using the fast continuous control law (18). Fig. 4 shows
time(sec) that this control law has utilized more potential of the actuator capaci-
50 Torque at Joint3 : ties. We notice that there is a sharp turn (not discontinuity) in the torque

at Joint 1. This may happen when the state trajectory enters the smaller
ellipsoid&( P ), since at the intersection between a trajectory with the
boundary of this ellipsoid, the functiopn( ) is continuous but not dif-
ferentiable inc.

torque(Nm)

IV. CONCLUSION

time(sec)

We developed simple continuous feedback laws for improving the
Fig. 4. The control signals: continuous control versus fast continuous controbnvergence performance of linear systems subject to actuator and state
constraints. The control laws are expressed as explicit functions of

The control signals under the continuous control law are continuotia® State and are easily implementable. The efficiency of the proposed
as expected. methods is illustrated with a PUMA 560 robot model.

From Fig. 2, we also see that the control signals are well below
the saturation level. This indicates that there is a potential for further
improvement of the performance. We use the controller (16) for [1] T. Hu and Z. Lin,Control Systems With Actuator Saturation: Analysis
this purpose. Recall that we have assumed unity saturation level and Design Boston, MA: Birkhduser, 2001.
in (1) and (16) is only suitable for systems with unity saturation [2] —, On enlarging the basin of attraction for linear systems under sat-
level. To transform the system into the standard form of (1), let l,f/lr:;egolg%ear feedback3yst. Control Lett.vol. 40, no. 1, pp. 59-69,

A = diag{97.8,136.4,89.4}, B = BA anda = A~ 'u. Then [3] A. Megretski, “L, BIBO output feedback stabilization with saturated
the systemi = Az + Bu has a unity saturation level. For this control,” in Proc. 13th IFAC World Congrvol. D, 1996, pp. 435-440.
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7] gelcz's'\xl?e%nednﬁgg;?';ﬁgefl;{enge\(gg; I:’lj%gfg\,’vg‘;'_#r?j:r_ &gzgént'%pnov functions to derive less conservative conditions using the LMI

for systems with input constraints&utomatica vol. 30, pp. 403-416, framework for uncertain nonlinear systems [11], [6]. The advantage
1994. of these techniques over the quasi-LPV or polytopic modeling is that

they allow the use of polynomial Lyapunov functions by only requiring
that the state and parameter vectors belong to a polytopic set instead of
all (state and parameter) nonlinearity. As a result, the number of LMI
tests is finite overcoming the problems associated with the quasi-LPV
(and/or polytopic) methods for uncertain nonlinear systems.
Guaranteed Cost Control of Uncertain Nonlinear Systems In this note, we derive LMI conditions for the guaranteed cost con-

Via Polynomial Lyapunov Functions trol problem for a class of uncertain nonlinear systems. These condi-
tions assure the regional stability of the unforced system and deter-
Daniel Coutinho, Alexandre Trofino, and Minyue Fu mine a bound on the energy of output signal for a given set of initial

conditions. Via an iterative algorithm, this approach is extended to the
synthesis problem. The main contributions of this technical note are

. ; A g two fold. First, we consider a polynomial Lyapunov function of the
trol for a class of uncertain nonlinear systems. We derive linear matrix in- ) I3 , . . .
equality conditions for the regional robust stability and performance prob-  tYP€v(x.8) = z'P(x, 5)Iv whereP(z,0) is a quadraF'C function of
lems based on Lyapunov functions which are polynomial functions of the the stater and uncertain parametefsthat may result in less conser-
state and uncertain parameters. The performance index is calculated over vative conditions. Second, the nonlinear system is modeled in an aug-
a set_of initial conditions. Also, we discuss the s_ynthesis problem for a class mented space in which all nonlinearities are taken into account by using
of affine control systems. Numerical examples illustrate our method. scaling matrices associated with them leading to a convex optimization
Index Terms—Convex optimization, guaranteed cost control, uncertain  problem in terms of LMI constraints.
nonlinear systems. The structure of this note is as follows. We state the problem of con-
cern and derive an upper bound on the two-norm of the output perfor-
mance for a set of initial conditions in Section Il. Section Il presents
an application of the derived method to the guaranteed cost control
The development of robustness and performance analysis, as "M?Hblem. Section IV presents some concluding remarks.
as design techniques for nonlinear systems, is an important field ofrhe notation used in this work is standard. For a real matris’
research. Despite the existence of powerful techniques to cope Wihotes its transpos$, > 0 means thatS is symmetric and posi-
these problems in the context of uncertain linear systems, the gg@e—definite, and HeS) = S + §'. The constant matrices, , 0,, xm
eralization to the nonlinear case is a difficult task that has motivatg@édo,, denoten x » identity matrix,» x m andn x n zero matrices
many researchers to study these problems. To deal with nonlinear s¢spectively. The time derivative of a functiof) will be denoted by
tems, many control design methods use linear control methodolog}g@ and the argumerit) is often omitted. For two polytopée3, C R"
applied to quasi-linear parameter varying (LPV) representations [bhdB, c R!, the notatiori3, x Bs represents thaf3, x Bs) C R0
or by means of polytopic differential inclusions [2]. For instance, thg a metapolytope obtained by the Cartesian product. The matrix and

works of [1] and [3] consider LPV techniques (gain-scheduling), angbctor dimensions are omitted whenever they can be determined from
[4] and [5] use robust controllers. However, these approaches may g8l context.

to conservativeness since the nonlinearities of the system are not taken

into account and they only consider quadratic Lyapunov functions [6]. || RosUSTNESS ANDPEREORMANCE OENONLINEAR SYSTEMS
Moreover, there are some shortcomings related with the quasi-LPV

form that may lead to an infinite-dimensional problem [7] or to the Consider the uncertain nonlinear system

& =f(x,6) = Az, §)x, x(0) = ao
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