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On Improving the Performance With Bounded
Continuous Feedback Laws

Tingshu Hu and Zongli Lin

Abstract—We present controller design methods to smooth the disconti-
nuity resulting from a piecewise linear control law which was proposed to
improve the convergence performance for systems with input constraints.
The continuous control laws designed in this note are explicit functions of
the state and are easily implementable. We also show that the convergence
performance can be further improved by using a saturated high-gain feed-
back law. The efficiency of the proposed methods is illustrated with the
PUMA 560 robot model.

Index Terms—Constrained control, convergence rate, invariant ellipsoid,
switching.

I. INTRODUCTION

We consider a linear system subject to input saturation and state con-
straint

_x = Ax +Bu; juj1 � 1; x 2 
0 (1)

wherex 2 Rn, u 2 Rm, juj1 = maxfjuij; i 2 [1; m]g and
0

contains the origin in its interior. To achieve a large domain of attrac-
tion, we may try to find a large ellipsoid (see [2] and [7])

E(P; �) := fx 2 Rn:xTPx � �g � 
0

with 0 < P 2 Rn�n, such that this ellipsoid is invariant underu =
Fx and

E(P; �) � L(F ) := fx 2 Rn: jFxj1 � 1g:

For simplicity, we useE(P ) to denoteE(P; 1). Generally, the max-
imization of E(P; �) would result in low-feedback gainF and slow
convergence rate, i.e., some eigenvalues ofA + BF are close to the
imaginary axis. In [7], Wredenhagen and Belanger proposed a piece-
wise linear control (PLC) design method to reconcile large domain of
attraction and good convergence performance. The basic idea is to use
a linear quadratic (LQ) method to construct a sequence of nested ellip-
soids

E(P0; �0) � E(P1; �1) � � � � � E(PN ; �N )

along with corresponding feedback gain matricesFi, i = 0; 1; . . . ; N ,
such thatE(P0; �0) � 
0, E(Pi; �i) � L(Fi), and eachE(Pi; �i) is
invariant under the feedbacku = Fix, i = 0; 1; . . . ; N . Also, as the
indexi is increased, the convergence rate under the feedbacku = Fix

increases. The final controller takes the following form:

u =

FNx; if x 2 E(PN ; �N )

FN�1x; if x 2 E(PN�1; �N�1) n E(PN ; �N )
...
F0x; if x 2 E(P0; �0) n E(P1; �1):

(2)
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In this way, the domain of attraction is ensured to include the largest
ellipsoidE(P0; �0) and as a state trajectory moves from an outer el-
lipsoid to an inner ellipsoid, the convergence rate is increased. Since
each ellipsoid is invariant under the corresponding feedback law, the
switch is safe (no chattering) and the existence and uniqueness of the
solution to the closed-loop differential equation is ensured. Such a con-
trol law is referred to as PLC in [7]. BecauseE(Pi; �i) � L(Fi),
i = 0; 1; . . . ; N , the controlu will never exceed the saturation bound
if the initial statex0 2 E(P0; �0).

SinceFi is generally different fromFi�1, the controlu in (2) is
discontinuous at the switching surface@E(Pi; �i), the boundary of the
ellipsoidE(Pi; �i). Effort has been made to smoothen the discontinuity
in [3]–[6], etc. In [6], a continuous feedback law was constructed from
the linear combination ofFk andFk+1. Since this simple interpolation
may cause the control to exceed the constraint, smaller bounds on the
control were imposed and the ellipsoids were required to be “tightly”
nested (Pk � Pk+1 should be sufficiently small). By using the gain
scheduling methods in [3]–[5], it has been shown that the disconti-
nuity can be smoothened by using a continuum of ellipsoidsE(P (")),
where" is a scheduling variable. The essence of these gain scheduling
methods is the following. For every" > 0, P (") is solved from a
parameter dependent Riccati equation along with an LQ gain matrix
F ("). As " is increased, the ellipsoidE(P (")) becomes smaller and
the convergence rate withinE(P (")) is increased. The gain scheduling
idea is to associate eachx 2 Rn with a parameter", or to define a func-
tion "(x): x 7! ". The final controller has the form ofu = F ("(x))x.
Since the function"(x) is generally very hard to compute, technical is-
sues are involved in controller implementation. These issues were con-
sidered in [3] and a method to simplify the computation of"(x) was
proposed. The proposed method involves solving a convex optimiza-
tion problem for every pointx in the state space.

This note is intended to propose explicit controller structures which
would achieve the objective of improving the convergence performance
using continuous control laws. For easy reference, here we collect some
simple mathematical facts as follows.

Fact 1: For two ellipsoidsE(P1) andE(P2)

E(P1) � E(P2)() P1 �P2

E(P1) � int(E(P2))() P1 >P2

whereint(E(P2)) = x 2 Rn: xTP2x < 1 is the interior ofE(P2).
For an ellipsoidE(P ) and a matrixF 2 Rm�n

E(P ) � L(F )()f
T

i fi � P; i 2 [1;m]

()fiP
�1
f
T

i � 1; i 2 [1;m]

()
1 fiP

�1

P�1fTi P�1
� 0; 2 [1; m]:

II. A CONTINUOUS FEEDBACK LAW FOR IMPROVING

THE PERFORMANCE

We consider the system

_x = Ax +Bu; juj1 � 1; x 2 
0 (3)

with a two stage switching feedback law

u =
F1x; if x 2 E(P1)
F0x; if x 2 E(P0) n E(P1)

(4)
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where

P0 < P1 
0 � E(P0)

E(P0) � L(F0) E(P1) � L(F1) (5)

(A+BF0)
T
P0 + P0(A+BF0) � ��0P0 (6)

(A+BF1)
T
P1 + P1(A+BF1) � ��1P1 (7)

and0 < �0 < �1. Assume that�0 and�1 are the maximal positive
numbers that satisfy (6) and (7), respectively. The inequality�0 < �1
implies that the convergence rate of the Lyapunov functionV1(x) =
xTP1x underu = F1x is greater than that ofV0(x) = xTP0x under
u = F0x. We consider a feedback law (4) of only one switch because
the method to be proposed can be readily extended to smoothen the
discontinuity of a controller with multiple switches. Actually, because
the proposed continuous feedback law guarantees a progressively in-
creasing convergence rate, we only need to use the outmost and the
innermost ellipsoidsE(P0; �0) andE(PN ; �N ) along with their corre-
sponding feedback gain matricesF0 andFN . Without loss of gener-
ality, we have assumed that�0 = �1 = 1. Otherwise,�0 and�1 can be
absorbed into the matricesP0 andP1.

The control (4) is discontinuous at the surface of the inner ellipsoid,
@E(P1). The main idea for smoothening this discontinuity is to con-
struct a continuum of ellipsoidsE(P ()),  2 [0; 1], betweenE(P0)
andE(P1), progressively shrinking, along with a continuum of feed-
back matricesF (), such that

E(P ()) � L(F ())

and

(A+BF ())TP () + P ()(A+BF ()) � ��()P ()

with �() monotonically increasing as changes from zero to one. For
x 2 @E(P ()), we use the controlu = F ()x. Suppose that for every
x 2 E(P0) n int(E(P1)), there exists a unique 2 [0; 1] such that
xTP ()x = 1, we can then define

(x) := f 2 [0; 1]: xTP ()x = 1g (8)

and the feedback law can be simply written as

u = F ((x))x: (9)

The control law (9) is implementable if the function(x) and the feed-
back matrixF ((x)) can be computed efficiently on line. That is, we
should be able to tell which ellipsoid surface the statex is on. This de-
pends on how we design the functionsP () andF ().

The following are the functions we propose. Let

Q0 =P
�1
0

Q1 =P
�1
1

H0 =F0Q0

H1 =F1Q1:

Define

Q() :=(1� )Q0 + Q1

H() :=(1� )H0 + H1 (10)

and

P () :=Q()�1

F () :=H()P (): (11)

It is clear thatQ() > 0 for all  2 [0; 1]. Hence,Q(),H(), P ()
andF () are all continuous in over the interval[0; 1]. The same func-
tion Q() was used in [3], whereF () was the solution to a Riccati
equation. In what follows, we show that, withF () defined as previ-
ously shown, the continuous feedback lawu = F ((x))x possesses

all the desired properties. We will also provide an explicit formula to
compute(x).

Theorem 1: With P () defined in (11), there exists a unique 2
[0; 1] such thatxTP ()x = 1 for everyx 2 E(P0)n int(E(P1)). With
(x) defined in (8), we have

(x) = �min (Q0 �Q1)
�(1=2)(Q0 � xx

T )(Q0 �Q1)
�(1=2)

(12)
for x 2 E(P0) n int(E(P1)). Let(x) = 1 for x 2 int(E(P1)). Then,
the controlu = F ((x))x is continuous inx and jF ((x))xj � 1
for all x 2 E(P0). Moreover, each ellipsoidE(P ()),  2 [0; 1] is
invariant and every trajectory starting fromx0 2 E(P0) will converge
to the origin with increasing rate.

Before proving Theorem 1, we present two lemmas. Define

�() := maxf� > 0: (A+BF ())TP ()

+P ()(A+BF ()) � ��P ()g:

Then,�() is the convergence rate ofV (x) = xTP ()x under the
linear controlu = F ()x.

Lemma 1:

1) E(p()) shrinks as increases, namely, if1 < 2, then
E(P (2)) � int(E(P (1))).

2) For all 2 [0; 1], E(P ()) � L(F ()).
3) �() is strictly increasing for 2 [0; 1].

Proof: From (5), we haveQ0 �Q1 = P�10 � P�11 > 0.

1) If 1 < 2, then

Q(1)�Q(2) = (2 � 1)(Q0 �Q1) > 0:

Hence,P (1) < P (2) and it follows from Fact 1 that
E(P (2)) � int(E(P (1)).

2) SinceE(P0) � L(F0) andE(P1) � L(F1), it follows from
Fact 1 that

1 f0iP
�1
0

P�10 fT0i P�10

�0

1 f1iP
�1
1

P�11 fT1i P�11

�0; i 2 [1; m]

i.e.,

1 h0i

hT0i Q0
� 0;

1 h1i

hT1i Q1
� 0; i 2 [1;m]:

By convexity, we have

1 hi()

hTi () Q()
� 0; i 2 [1;m];  2 [0; 1]:

That is
1 fi()P

�1()

P�1()fTi () P�1()
�0

i 2[1;m];  2 [0; 1]:

Therefore, by Fact 1, we haveE(P ()) � L(F ()) for all  2
[0; 1].

3) By multiplying both sides of (6) and (7) withQ0 andQ1, respec-
tively, we obtain

Q0A
T + AQ0 +H

T
0 B

T +BH0 �� �0Q0

Q1A
T + AQ1 +H

T
1 B

T +BH1 �� �1Q1:

By convexity, we have

Q()AT +AQ() +H()TBT +BH()

� �(1� )�0Q0 � �1Q1;  2 [0; 1]:

Since�1 > �0 andQ1 > 0, we see that

(1� )�0Q0 + �1Q1 = �0Q() + (�1 � �0)Q1 > �0Q():
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It follows that �() > �0 for all  2 (0; 1]. To show that
�(2) > �(1) for 2 > 1, we observe that

2 = 1�
2 � 1
1� 1

1 +
2 � 1
1� 1

Q(2) = 1�
2 � 1
1� 1

Q(1) +
2 � 1
1� 1

Q1

and

H(2) = 1�
2 � 1
1� 1

H(1) +
2 � 1
1� 1

H1:

Following the same procedure by replacingQ0 with Q(1),H0

with H(1), and with (2 � 1)=(1� 1), we can show that
�(2) > �(1) for 2 > 1.

Lemma 2: For everyx 2 E(P0)n int(E(P1)), there exists a unique
 2 [0; 1] such thatxTP ()x = 1. Let (x) be defined in (8). Then,
for x 2 E(P0) n int(E(P1))

(x) = �min (Q0 �Q1)
�(1=2)(Q0 � xxT )(Q0 �Q1)

�(1=2) :

(13)
Proof: For eachx 2 E(P0) n int(E(P1)), we havexTP0x � 1

andxTP1x � 1, i.e.,xTP (0)x � 1 andxTP (1)x � 1. SinceP ()
is continuous in for  2 [0; 1], there exists a 2 [0; 1] such that
xTP ()x = 1. By Lemma 1 (item 1), there exists a unique 2 [0; 1]
such thatxTP ()x = 1. Hence, the function(x) is well defined by
(8).

Let  be the unique number in[0; 1] such thatxTP ()x = 1, i.e.,
x 2 @E(P ()). By Lemma 1 (item 1),x 2 int(E(P (1))) for all
1 2 [0; ), i.e.,

xTP (1)x < 1 8 1 2 [0; ):

It follows from the Schur complement that

1 xT

x Q(1)
=

1 xT

x Q0 � 1(Q0 �Q1)
> 0

()Q0 � 1(Q0 �Q1)� xxT > 0

()1I < (Q0 �Q1)
�(1=2)(Q0 � xxT )(Q0 �Q1)

�(1=2)

1 2 [0; ):

By continuity, we have

I � (Q0 �Q1)
�(1=2)(Q0 � xxT )(Q0 �Q1)

�(1=2): (14)

FromxTP ()x = 1, we have

0 =det
1 xT

x Q()

=det[Q()� xxT ]

= det[Q0 � (Q0 �Q1)� xxT ]:

Hence

det I � (Q0 �Q1)
�(1=2)(Q0 � xxT )

�(Q0 �Q1)
�(1=2) = 0 (15)

which implies that  is an eigenvalue of the matrix(Q0 �
Q1)

�(1=2)(Q0 � xxT )(Q0 � Q1)
�(1=2). In view of (14), we obtain

(13).
Proof of Theorem 1:The first statement and (12) have been

proved in Lemma 2. From the continuity of the eigenvalues of a
matrix in its elements, it follows that(x) is continuous inx at every
x 2 E(P0) n int(E(P1)). Since(x) = 1 for all x 2 @E(P1),
the function(x) can be extended continuously to allx 2 E(P0)
by letting (x) = 1 for x 2 E(P1). SinceF () is continuous in
, the controlu = F ((x))x is continuous inx. The claim that
jF ((x))xj1 � 1 for all x 2 E(P0) follows directly from Lemma
1 (item 2).

Now, we consider the convergence of trajectories. Under the control
u = F ((x))x, on the boundary of eachE(P ()),  2 [0; 1]

xTP () _x =
1

2
xT ((A+BF ())TP + P (A+BF ())x

��
1

2
�()xTP ()x < 0:

We also havexTP1 _x < 0 for all x 2 E(P1). Hence, all the trajecto-
ries starting from the boundary ofE(P ()) will be in the interior of
E(P ()) for all t > 0. This proves the invariance ofE(P ()). More-
over, the convergence rate�() increases as the trajectory enters the
inner ellipsoids. Therefore, if a trajectory strats fromx0 2 E(P0), it
will converge to the origin.

III. FURTHERIMPROVEMENT OF THECONVERGENCEPERFORMANCE

As can be seen from Lemma 1 (item 2), the control law constructed in
Section II satisfies the control constraint by avoiding saturation. Since
E(P ()) � L(F ()), there are at most two intersections between the
ellipsoidE(P ()) and a pair of hyperplanes,fi()x = �1. Hence,
the controlui = fi()x may take the maximal value�1 only at two
points on@E(P ()). Along a trajectory, the control signal could be
well below the saturation level most of the time. This means that the
capacity of the actuators is not fully utilized and we still have much
potential to improve the convergence performance. In [1], it is shown
that the control law that maximizes the convergence rate of a Lya-
punov functionV (x) = xTPx under actuator saturation is simply
ui = �sign bTi Px , i = 1; 2; . . . ; m. Due to the discontinuity of
this bang-bang control, a saturated high gain linear feedback law of
the formu = �sat(kBTPx) is proposed to achieve a suboptimal
convergence rate. Here,sat(�) is the standard vector-valued saturation
function:fsat(u)gi = sign(ui)minfjuij; 1g. It is also shown that the
maximal convergence rate depends on the choice of theP matrix (see
[1, Ch. 11] for more details). Generally, the objective of producing a
high convergence rate conflicts with the objective of achieving a large
invariant ellipsoid. In other words, ifP is chosen such that the maximal
convergence rate is high, then the largest ellipsoidE(P; �) that can be
made invariant would be small. A simple way to reconcile the objective
of producing a large invariant ellipsoid and that of achieving a high con-
vergence rate with a controlu = �sat(kBTPx) is also to adjust the
P matrix according to the size of the state. Using the method in Sec-
tion II, a state dependent matrixP ((x)) can be determined. While
the state feedbacku = F ((x))x increases the convergence rate as
the trajectory enters smaller ellipsoidE(P ()), a state feedback of the
form u = �sat(kBTP ((x))x) with a high gaink can be used for
further improvement of the convergence performance.

Theorem 2: Let F0 = �G0B
TP0 and F1 = �G1B

TP1
be the feedback matrices of two LQ controllers such that
E(P0) � L(F0), E(P1) � L(F1) and P1 < P0. Assume that
G0 = diagfg01; g02; g03g > 0, andG1 = diagfg11; g12; g13g > 0.
Let k0 = maxfg01; g02; g03; g11; g12; g13g. Then, for anyk > k0,
under the control of

u = �sat(kBTP ((x))x) (16)

all the trajectories starting fromE(P0) will converge to the origin. The
convergence rate increases ask increases.

Proof: DenoteG() = (1� )G0 + G1. Then,0 < G() �
k0I for all  2 [0; 1] andF () = �G()BTP (). It follows from
Theorem 1 that under the control ofu = F ((x))x, all the trajec-
tories starting fromE(P0) will converge to the origin. We also have
jF ((x))xj1 � 1 for all x 2 E(P0). The fact that the convergence
rate is faster under (16) fork � k0 can be seen from

�xTP ()bisat kbTi P ()x �� xTP ()bisat gi()b
T
i P ()x

=xTP ()bifi()x (17)
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Fig. 1. Time responses of the states: PLC versus continuous control.

wheregi() is theith diagonal element ofG(). As k increases, the
left-hand side of (17) decreases. Hence, the convergence rate increases
ask increases.

Since bothsat(�) andP ((�)) are continuous functions, the control
(16) is continuous inx. We call (16) the fast continuous control law.
As will be seen in the example, the feedback law (16) can improve the
convergence rate significantly overu = F ((x))x.

Example: We consider the Puma 560 robot model that was used in
[7]. The robot has three joints: the trunk (Joint 1), the shoulder (Joint
2), and the elbow (Joint 3). These joints are controlled by three actua-
tors which are subject to different saturation bounds, 97.8 Nm, 136.4
Nm, and 89.4 Nm, respectively. The linear model was calculated about
(�1; �2; �3) = (57�; 115�; 172�) with resulting system matrices

A =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 �0:0451 �0:0451 0 0 0

0 �0:0457 �0:0457 0 0 0

0 �4:5551 �4:5551 0 0 0

B =

0 0 0

0 0 0

0 0 0

0:0925 0:0000 0:0026

0:0000 0:0979 �0:0952

0:0026 �0:0952 0:3616

:

In [7], a PLC control law with five switches was designed. Based on
the outmost and the innermost ellipsoids of [7], with corresponding
feedback matrices, we designed a continuous feedback law of the form
u = F ((x))x. (Here, we need to take into account the nonunity satu-
ration bounds of the three actuators). Figs. 1 and 2 illustrate the simu-
lation results under the PLC law and the continuous feedback law. The
initial condition isx0 = 10[ 1 1 1 1 1 1 ]T =

p
6, which is the

Fig. 2. Control signals: PLC versus continuous control.

same as that in [7]. From Fig. 1, we can see that the time response of
the states under the PLC control and that under the continuous feedback
control are almost identical. The control signals under the PLC law are
however discontinuous and display big spikes (see Fig. 2). These spikes
can be reduced by increasing the number of the nested ellipsoids and
the controllers used in switching. However, this would increase the nu-
merical burden when determining the smallest ellipsoid that includes a
given state and would also increase the data storage for the controller.
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Fig. 3. Time response of the states: continuous control versus fast continuous control.

Fig. 4. The control signals: continuous control versus fast continuous control.

The control signals under the continuous control law are continuous,
as expected.

From Fig. 2, we also see that the control signals are well below
the saturation level. This indicates that there is a potential for further
improvement of the performance. We use the controller (16) for
this purpose. Recall that we have assumed unity saturation level
in (1) and (16) is only suitable for systems with unity saturation
level. To transform the system into the standard form of (1), let
� = diagf97:8;136:4;89:4g, �B = B� and �u = ��1u. Then
the system_x = Ax + �B�u has a unity saturation level. For this

system, the fast continuous control law is�u = �sat(k �BTP ((x))x.
Equivalently,u = ��u = ��sat(k�BTP ((x))x). The actual
controllers have the following forms:

u1 = �97:8 sat 97:8kbT1 P ((x))x

u2 = �136:4 sat 136:4kbT2 P ((x))x

u3 = �89:4 sat 89:4kbT3 P ((x))x :

(18)

Here, in the construction ofP (), we have used the outmost and the
innermost ellipsoids in [7]. To make full use of the actuator capacities,
we have takenk = 6 in simulation. Figs. 3 and 4 illustrate the sim-
ulation results under the control (18) (the solid curves) as compared
with those under the controlu = F ((x))x (the dashed curves). From
Fig. 3, we see that the performance of the state response is significantly
improved by using the fast continuous control law (18). Fig. 4 shows
that this control law has utilized more potential of the actuator capaci-
ties. We notice that there is a sharp turn (not discontinuity) in the torque
at Joint 1. This may happen when the state trajectory enters the smaller
ellipsoidE(P1), since at the intersection between a trajectory with the
boundary of this ellipsoid, the function(x) is continuous but not dif-
ferentiable inx.

IV. CONCLUSION

We developed simple continuous feedback laws for improving the
convergence performance of linear systems subject to actuator and state
constraints. The control laws are expressed as explicit functions of
the state and are easily implementable. The efficiency of the proposed
methods is illustrated with a PUMA 560 robot model.
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Guaranteed Cost Control of Uncertain Nonlinear Systems
Via Polynomial Lyapunov Functions

Daniel Coutinho, Alexandre Trofino, and Minyue Fu

Abstract—In this note, we consider the problem of guaranteed cost con-
trol for a class of uncertain nonlinear systems. We derive linear matrix in-
equality conditions for the regional robust stability and performance prob-
lems based on Lyapunov functions which are polynomial functions of the
state and uncertain parameters. The performance index is calculated over
a set of initial conditions. Also, we discuss the synthesis problem for a class
of affine control systems. Numerical examples illustrate our method.

Index Terms—Convex optimization, guaranteed cost control, uncertain
nonlinear systems.

I. INTRODUCTION

The development of robustness and performance analysis, as well
as design techniques for nonlinear systems, is an important field of
research. Despite the existence of powerful techniques to cope with
these problems in the context of uncertain linear systems, the gen-
eralization to the nonlinear case is a difficult task that has motivated
many researchers to study these problems. To deal with nonlinear sys-
tems, many control design methods use linear control methodologies
applied to quasi-linear parameter varying (LPV) representations [1],
or by means of polytopic differential inclusions [2]. For instance, the
works of [1] and [3] consider LPV techniques (gain-scheduling), and
[4] and [5] use robust controllers. However, these approaches may lead
to conservativeness since the nonlinearities of the system are not taken
into account and they only consider quadratic Lyapunov functions [6].
Moreover, there are some shortcomings related with the quasi-LPV
form that may lead to an infinite-dimensional problem [7] or to the
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instability of the nonlinear closed-loop system [8]. On the other hand,
it is well known that the nonlinear optimal control due to difficulties in
the solution of the Hamilton–Jacob equation is not a practical approach
[9].

Since the work [10] that showed a solution for rational systems in
terms of linear matrix inequalities (LMIs) and based on quadratic Lya-
punov functions, some authors have proposed more sophisticated Lya-
punov functions to derive less conservative conditions using the LMI
framework for uncertain nonlinear systems [11], [6]. The advantage
of these techniques over the quasi-LPV or polytopic modeling is that
they allow the use of polynomial Lyapunov functions by only requiring
that the state and parameter vectors belong to a polytopic set instead of
all (state and parameter) nonlinearity. As a result, the number of LMI
tests is finite overcoming the problems associated with the quasi-LPV
(and/or polytopic) methods for uncertain nonlinear systems.

In this note, we derive LMI conditions for the guaranteed cost con-
trol problem for a class of uncertain nonlinear systems. These condi-
tions assure the regional stability of the unforced system and deter-
mine a bound on the energy of output signal for a given set of initial
conditions. Via an iterative algorithm, this approach is extended to the
synthesis problem. The main contributions of this technical note are
two fold. First, we consider a polynomial Lyapunov function of the
typev(x; �) = x0P(x; �)x, whereP(x; �) is a quadratic function of
the statex and uncertain parameters�, that may result in less conser-
vative conditions. Second, the nonlinear system is modeled in an aug-
mented space in which all nonlinearities are taken into account by using
scaling matrices associated with them leading to a convex optimization
problem in terms of LMI constraints.

The structure of this note is as follows. We state the problem of con-
cern and derive an upper bound on the two-norm of the output perfor-
mance for a set of initial conditions in Section II. Section III presents
an application of the derived method to the guaranteed cost control
problem. Section IV presents some concluding remarks.

The notation used in this work is standard. For a real matrixS, S0

denotes its transpose,S > 0 means thatS is symmetric and posi-
tive–definite, and He(S) = S + S0. The constant matricesIn, 0n�m
and0n denoten� n identity matrix,n�m andn� n zero matrices
respectively. The time derivative of a functionr(t) will be denoted by
_r(t) and the argument(t) is often omitted. For two polytopesBx � n

andB� � l, the notationBx�B� represents that(Bx�B�) � (n+l)

is a metapolytope obtained by the Cartesian product. The matrix and
vector dimensions are omitted whenever they can be determined from
the context.

II. ROBUSTNESS ANDPERFORMANCE OFNONLINEAR SYSTEMS

Consider the uncertain nonlinear system

_x =f(x; �) = A(x; �)x; x(0) = x0

z =h(x; �) = C(x; �)x (1)

wherex 2 n denotes the state vector,� 2 l denotes the uncertain
parameters andz 2 r denotes the output performance vector.

With respect to the system (1), we consider the following assump-
tions:

A1) uncertain parameter vector�, and its time-derivative_� lie in a
given polytopeB� , with known vertices, i.e.,(�; _�) 2 B� ;

A2) origin x = 0 of the system is an equilibrium point;
A3) right-hand side of the differential equation is bounded for all

values ofx; �; _� of interest;
A4) Bx is a given polytope specifying a desired neighborhood of

the equilibrium pointx = 0 of the system.
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