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Composite Quadratic Lyapunov Functions for
Constrained Control Systems

Tingshu Hy Senior Member, IEEEand Zongli Lin Senior Member, IEEE

Abstract—A Lyapunov function based on a set of quadratic commonly used invariant sets for continuous-time systems are
functions is introduced in this paper. We call this Lyapunov func- invariant ellipsoids, resulting from the level sets of quadratic
tion a composite quadratic function. Some important properties of Lyapunov functions. The problem of estimating the domain

this Lyapunov function are revealed. We show that this function is f attraction b L iant ell ids has b tensivel
continuously differentiable and its level set is the convex hull of a of atraction Dy Using invariant eflipsoids Nas Deen extensively

set of ellipsoids. These results are used to study the set invarianceStudied, e.g., in [5]-[7], [9], [10], [19], and [28]. More recently,
properties of continuous-time linear systems with input and state we developed a new sufficient condition for an ellipsoid to be
constraints. We show that, for a system under a given saturated jnvariant in [13] (see also [11]). It was shown that this condition
linear feedback, the convex hull of a set of invariant ellipsoids is is less conservative than the existing conditions resulting from

also invariant. If each ellipsoid in a set can be made invariant with the circl iteri th t \vsis. Th fi tant
a bounded control of the saturating actuators, then their convex 1€ CIICI€ criterion or the vertex analysis. The most importan

hull can also be made invariant by the same actuators. For a set feature of this new condition is that it can be expressed as linear
of ellipsoids, each invariant under a separate saturated linear matrix inequalities (LMIs) in terms of all the varying param-
feedback, we also present a method for constructing a nonlinear eters and hence can be easily used for controller synthesis. A
continuous feedback law which makes their convex hull invariant. \oant discovery makes this condition even more attractive. In
Index Terms—Constrained control, invariant set, quadratic [12], we showed that, for single input systems, this condition
functions. is also necessary. Thus, the largest invariant ellipsoid obtained
with the LMI approach is actually the largest one.
I. INTRODUCTION _ In thi§ paper, we will introduce a new _type of _Lyapunqv func-
tion which is based on a set of quadratic functions. This is mo-

E CONSIDER linear systems subject to input saturatiotn o o :
i Ivated by problems arising from estimating the domain of at-
and state constraint. Control problems for these systems

have attracted tremendous attention in recent years bec traction and constructing controllers to enlarge the domain of

ause i . i o

X . - : attraction. Suppose that there are a set of invariant ellipsoids of
of their practical significance and the theoretical challeng Sa closed-10on svstem under a saturated feedback law. Itis clear
(see, e.qg., [1], [11], [20]-[22], and the references therein). For b sy ’

) o . . at the union of this set of ellipsoids is also an invariant set of
linear systems with input saturation, global and semlglob%

stabilization results have been obtained for semistable sy‘stemg closed-loop system. The question whether the convex hull of

(see, e.q.. [17], [18], and [24]-[27]) and systems with two ant. IS set_ofelllpsm_ds, a set potentially much Iarge_r than the union,
IS, invariant remains unclear. Another problem is related to en-
stable poles (see [11] and [14]). For more general systems wi h

both input saturation and state constraint, there are numer%:gmg the domain of attraction by merging two or more feed-

research reports on their stability analysis and design (see | ck 'a.WS- Suppose that we have two ellipsoids, each of which
[7], [8], [11], [20], [28], and the references therein). Whil S invarlant underaseparate feedback law. In [15], we showed
L ' ’ . : hhat a switching feedback law can be constructed to make the

Lﬁgon of the two ellipsoids invariant. We would further like to

extremely hard except for some special cases (see, e.g., [ﬁ]zke the convex hull of these ellipsoids invariant, possibly with

. . . o ; ontinuous feedback law. Although the discontinuity of the
most of the literature is dedicated to obtaining an estimate . . .

. ! . . witching feedback law in [15] does not cause chattering, a con-
of the domain of attraction with reduced conservatism or 0

. . ) - i . tinuous feedback law would be more appealing.
enlarging some invariant set inside the domain of attraction. . . :
Construction of Lyapunov functions is one of the most

Along this direction, the notion of set invariance has playefd :

: %mdamental problems in system theory. One type of Lyapunov

a very important role (see, e.g., [2], [3], and [28]). The mog . ’ ;

unctions that are constructed from quadratic functions are
piecewise quadratic functions [16], which may not be continu-

. . . ously differentiable and whose level sets may not be convex. For
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The composite quadratic function is motivated from thkis easy to see th@§(~), P(v) > 0forally € T and these two
study of control systems with saturating actuators and statrix functions are analytic if € I'. The composite quadratic
constraints. It is a potential tool to handle more general nofunction is defined as
linearities.

This paper is organized as follows. In Section Il, we intro-
duce the composite quadratic Lyapunov function and show that ) . . )
this function is continuously differentiable and its level set i§ €@ Ve() is @ positive-definite function. Fgr > 0, the
the convex hull of a set of ellipsoids. In Sections -V, we us&'e! set ofV.(-) is
the_se propertie§ of the Lyapunov function to stgdy the set in- Ly.(p):={z e R": V.(2) < p}.
variance of continuous-time linear systems with input and state
constraints. In particular, we will show in Section Il that undef very useful property of this composite quadratic function is
a given saturated linear feedback, the convex hull of a set of that its level set is the convex hull of the level setstdfP; =,
variant ellipsoids is also invariant. In Section IV, we will studyhe ellipsoids (P, p), j € I[1, N]. Another nice property of
the controlled invariance of the convex hull. In Section V, w&.(-) is thatitis continuously differentiable. In order to establish
will present a method for constructing a nonlinear continuodigese results, we need some simple preliminaries which will be
controller which makes the convex hull invariant. Section Wiseful throughout this paper.
draws the conclusions to this paper. Fact 1 [11]: For a row vectorf, € R'™ and a matrixP >

Notation: We usesat(-) to denote the standard vector value, £(P) C L(fo) if and only if
saturation function. Fos € R™, theith component ofat(u)
is {sat(u)}; = sign(u;) min{l, |u;|}. We use|u|, and |u|s
to denote respectively the infinity norm and the 2-norm. For
two integersky, ko, k1 < ko, we denotd [k, ko] := {k1, k1 +
1,..., k).

For a positive—definite (semidefinite) matiX, we denote it
asP > 0 (P > 0). When we say positive—definite (semidef-
inite), it is implied that the matrix is symmetric. Forfa €
R™*"™, P > 0,and ap € (0,00), denote

Vo(z) := minzT P(v)x. 1)

ver

1 foP~?

foP7lff <1 poigr p |20

1) The equalityfoP~1fI = 1 holds if and only if the el-
lipsoid £(P) touches the hyperplangz = 1 atzy =
P~1fT (the only intersection), i.e.,

1= foxo > for Yze&(P)\{zo}

2) If foP~1fT < 1, then

E(P,p):={zeR": 2" Pz < p}. 1 foP-1 -

For simplicity, we use€(P) to denote€(P,1). For a matrix pP-lfy Pt

F € R™*™, denote theth row of F' as f; and define
L(F):={zeR": |fiz| <1,ieI[l,m]}.

If F isthe feedback matrix, thef(F') is the region in the state
space where the control= sat(F'z) is linear inz. For anz, €
R™ and anr > 0, denoteB(zp,r) = {x € R" : |z — 9|2 <

r}.

and the ellipsoidS(P) lies strictly between the hyper-
planesfyz = 1 and foz = —1 without touching them.
A dual result, which will be useful, can be obtained by ex-
changing the roles of, andz!. Givenz, and suppose that
g:gP:vo =1, fg = Pxy, then

L= foxo > fzo V[T €&(PTH\{fq}.

ForanF € R™ ", L(F) = n7,L(f;). The relation
S _ E(P) C L(F) holds if and only if f,P~1fT < 1 for all
A. Definition and General Properties i € I[1,m] [11]. Denote the convex hull of the ellipsoids

With a positive—definite matri € R"*", a quadratic func- £(Pj,p), j € I[1,N], as
tion can be defined a8 (x) = =¥ Px. For a positive numbey, _ p
a level set of/(-), denotedLy (p), is co{&(P;,p),j € I[1, N]}

N

Lv(p) = {z €R" : V(2) < p} = £(P.p). =S v ay € E(Pyp)y €T

j=1

IIl. COMPOSITEQUADRATIC LYAPUNOV FUNCTION

In this paper, we are interested in a function determined by a
set of positive—definite matricel,, P», ..., Py € R™™. Let Then, we have the following.

Qj = P; ', j €1, N].For a vectory € R, define Theorem 1:
a) Lv.(p) =

Uyer E(P(Y), p)-
b) The functionV.(-) is continuously differentiable. Let
v*(z) be an optimaly such thatz” P(v*(z))z =

N Co{g(Pjvp)JEI[l/N]} =
Q) =Y _7Q; P():=Q (7).
Jj=1

Let min,er z7 P(v)z, then
N
— . — aV,
F=37eRY:) qi=17; = 2P(y* (x))x.
j=1 ox
>0,5€I[1,N]}. Proof: See Appendix A.1. O
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Remark 1:Let us justify our definition of the com-

posite quadratic functionV,(-). With a set of matrices osh
Py, P,...,Py > 0, there are different ways to generate

positive—definite functions. For example, we can define three o
other functions in a way similar t.(-) as follows: 0ol

-1

N
V. :=maxxz! P = maxz’ i Q) ;
1(z) max (7)z max .z ]Ezl v Qj T

N
Veo(z) :==minzT Z’yij x
1=1

,Yel" - -06
N -0'21 -018 -018 -014 -0‘.2 c'» 0:2 (;.l 0?6 ofa 1
Ves(z) ;== maxzT E v Pj | = ‘ _ _
~ver = Fig. 1. Two-dimensional level sty (1).

12

It is easy to see that

Veo(z) =min {z" Pjz : j € I[1, N]} "
Ves(z) =max {7 Pz : j € I[1,N]}. o

As to V1 (-), we note that for a fixed:, z7 P(v)x is a convex
function of v (this can be verified by Schur complement).
Hence, its maximum is attained at the verticed oft follows " oaf
thatV,,(-) = V.3(+). The computation of these functions is easy
and straightforward, but they are not well behaved as compared o
with V(). It can be verified that the level set &f:(-) and
Ve3(+) is the intersection of the ellipsoid¥ P}, p), j € I[1, N],
and the level set oF.»(-) is the union of these ellipsoids. Both o2 . \ . . . .

of these level sets have nonsmooth surfaces and the functions - T
Ve1(+), Vea(-) andV,3(-) have nondifferentiable points.

061

Yoty Yy

Fig. 2. ~* along the boundary ot v, (1).
B. Computational Issues .

Next, we consider some computational issues with regard to
the functionV,.(-). From the definition ofV.(-), we have

Vo(x) = min{a : a > 2T P(v)z for somey € T'}.

By the Schur complement, we obtain

Ve(z) = min (2)
¥
a N T
t >0
° T Y@ =
j=1

N Fig. 3. Three-dimensional level sét, (1)
j=1

of 9Ly, (1) overlap with segments ad&(P;), ¢ = 1,2,3.
which is an optimization problem with linear matrix inequalityrhe overlapped segments correspond to the intervals in Fig. 2,
(LMI) constraints and can be easily solved with the techniquq,shereﬁ (z) = 1 for somei. Fig. 3 illustrates a three dimen-
in [3]. sional level set. It is also the convex hull of three ellipsoids.

We see that the optimal value ®is v*(z) such thal/.(x) =
T P(v*(z))z. In some situations, the optimal value-ofs not C. Special Case: Two Ellipsoids

unique. For example, this may happen if so@gcan be ex- it e only have two ellipsoids, there exists a more efficient

pressed a_ts the convex compinatio_n of other matrice; in fche s‘;nvgy to obtainV,(z) through computing the generalized eigen-
Fig. 1 illustrates a two-dimensional level set which is the, es of certain matrices. In this case. we have

convex hull of three ellipsoids. Fig. 2 plots the values of

v (z) = (v¥(x),v4 (), v (x)) asz varies along the boundary Ve(z) = min z"(AQ1 + (1 — A)Q2) "a.
of Ly, (1) in the counterclockwise direction, where the abscissa Aelo.

is the angle ofr (from 0 to ). From Fig. 1, we see that partsDenotea(\, z) = 27 (AQ1 + (1 — A\)Q2) ta.
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Proposition 1: Assume that); — (- is nonsingular. For Sincef), is generally not an invariant set, we would like to deter-
everyz € R", the functiona(-,z) : [0,1] — R is strictly mine a maximal subset 6%, such that, for any initial state, in
convex and there exists a uniqué(z) € [0,1] such that this subset, the state trajectory of (5) will stay in it and converge
a(X*(z),2) = minyep,1] (A, z). Moreover,A* : R* — R to the origin. Because of the intrinsic difficulty involved in de-

is a continuous function. termining the maximal invariant set insi€lg, alternative prob-
Proof: See Appendix A.2. O lems have been formulated such as determining the invariant
Remark 2: The assumption tha®; — Q- is nonsingular is ellipsoids and searching for the largest invariant ellipsoid inside
without loss of generality. For the case where- 2, det(Q1 — .
Q2) = 0impliesthateithe€); > Q2 0rQ; < Q2. 1f Q1 > Qo, In [13], we derived a sufficient condition for checking the
thenP; < P, andV,(-) = Vi(-), which is trivial. o invariance of a given ellipsoid. This condition turns out to be

By Proposition 1y = (A*(x), 1 — A*(z)) is the unique value also necessary for single input systems [12]. We need some
such thatrT P(vy)z = V.(z) and hencey*(z) = (A\*(x),1 — notation to state the set invariance condition of [13]. et
A*(x)). Since\*(+) is continuousy*(+) is also continuous. This be the set ofn x m diagonal matrices whose diagonal ele-
property ofy*(-) will be useful in Section V to our construc-ments are either 1 or 0. There &€ elements irD. Suppose
tion of continuous feedback laws. Here we provide a methdidat each element dP is labeled asD;, i € I[1,2™]. Then,
for computingh such thaba/0X = 0 for a givenz. By Propo- D = {D; : i € I[1,2™]}. DenoteD; = I — D,. Given two
sition 1, this will give us\*(z) and~*(z). matricesF, H €¢ R™*"

Proposition 2: Letz € R™ and@, Q> > 0 be given. As- m
sume that); — Q4 is nonsingular. LeV/ € R™*™ be such that {D B+ D H i el[l,2 ]}

Utu = TUUT =1 and[iTxxTU diag{z"2,0,...,0}. Let s the set of matrices formed by choosing some rows fiom
Q1 =UTQ U, Q> = UTQ-U and partltlonQ1 andQ2 as and the rest frondi.

A A A A L Given a positive—definite matri, let V (z) = z” Pz. The
— _ nxl1 ’
Q=101 Q] Q2=162 Q2] @6 cR™ ellipsoid (P, p) is said to be contractively invariant if

Then,da/OX = 0 at € [0,1] if and only if V(z) = 227 P(Az + Bsat(Fz)) < 0 (6)
det AM@r2 — Q22) + G2 ) @1 - QZT = forall z € &E(P,p) \ {0}. The invariance of (P, p) can be
0(n—1)x (n—1) A (Q12 - ng) + Q% defined by replacing<” in (6) with “ <.” Clearly, if £(P, p) is
(3) contractively invariant, then for every initial statg € £(P, p),
Proof: See Appendix A.3. O the state trajectory will converge to the origin afdP, p) is
All the \’s satisfying (3) can be obtained by computing thénside the domain of attraction.
generalized eigenvalues of the matrix paif, Y') where Proposition 3 [11], [13]: Given an ellipsoid (P, p), if there

R . exists anH € R™*" such that
yo| @Q2—Q2  Oun o ~
Om—tyx(ne1y Qf — Q1 (A+B(D:F'+D; H))" P+ P(A+ B(D;F'+ D; H))

Y:{ Q2 Q1 - QQ] <(<)0 VielIl,2™ (7)

O-txn-1) Qo and&(P,p) C L(H), Then,&(P,p) is a (contractively) in-
By Propositions 1 and 2,X,Y’) has at most one generalized/ariant set.
eigenvalue in[0, 1]. If there is none in0,1], then \* = 0 The condition in Proposition 3 is easy to check with the LMI
or 1. Experience shows that computing the matrifeandy” method. To impose the state constraint, we only need to re-
and their generalized eigenvalues requires much less time tiigiire thaté (P, p) C €o. In the case tha®, is a symmetric

solving the LMI problem (2). polytope, there exists a matri¥, € R‘*" for some integer

¢ such thaty = L(Gy). In light of Fact 1, the requirement

IIl. I NVARIANT SETS UNDER A GIVEN SATURATED that £(P,p) C Qo can be easily transformed into LMIs. In
LINEAR FEEDBACK [11]-[13], we also developed LMI methods for choosing the

largest invariant ellipsoid with respect to some shape reference
set, where the matri®¥ was taken as an optimizing parameter.
The shape reference set could be a polygon or a fixed ellip-
soid. It could also be a single poiny € R”. In this case, the

wherez(t) € R" isthe state and(t) € R™ is the output of sat- largest invariant ellipsoid insidey is the one that includesz,
urating actuators and is assumed to satisfy the boufid]., < With the maximala > 0. By choosing different, say,zo ;,
1. The state constraint is represented by a conveRgehich J € I[1,N], we can obtainV optimized invariant ellipsoids
contains the origin in its interior. It is required that the systefh(£ PJ) C o, 5 € I[1, N]. Itis easy to see that the union
operate irf), for all t > 0. Suppose that we have a stabilizingf these e"'DSO'dSU 1 £(Pj, p;), is also an invariant set in-

feedback law, = sat(Fz), under which the closed-loop systenide(2. But this union does not necessarily include the convex
is hull of ¢ ;, j € I[1, N]. What is desired here is that the convex

hull of the ellipsoidsco{E(P;, pj),j € I[1, N]}, is also an in-
& = Az + Bsat(Fx). (5) variant set.

Consider the open-loop system

& = Az + Bu (4)
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For simplicity and without loss of generality, we will con-The inequalities in (13) and the condition (14) jointly show that
sider a set of invariant ellipsoid3(P;, p;),j € I[1,N], with £(P) is an invariant set by Proposition 3. Hence, a trajectory
p; = 1. The following theorem says that if ea¢i{P;) sat- starting fromz, will stay inside of£(P), which is a subset of
isfies the condition of Proposition 3, then their convex hulto {£(P;) : j € I[1, N]}. Sincez, is an arbitrary point inside

co{&(Pj),j € I[1,N]}, is also invariant. co{&(P;) : j € I[1, N]}, it follows that this convex hull is an
Theorem 2:Given a set of ellipsoid§(P;), j € I[1, N]. If invariant set. If ‘<” holds for all the inequalities in (8), then
there exist matrice#l;, j € I[1, N], such that we also have £” in (13), which guarantees that the trajectory
starting formz( will converge to the origin. O

) “H)NT p. . ) “H-
(A+B(D:F'+D; Hy))" P Jr_PJ(A +5(D’fF+Di ;) For single input systems, it was shown in [12] that the
<0 Vielll,2™], jeI[l,N] (8) set invariance condition in Proposition 3 is also necessary.
and&(P;) C L(H;), j € I[1, N, thenco{&(P;), j € I[1, N]} Hence, if each ellipsoid (P;) is contractively invariant, then
is an invariant set. If £” holds for each of the aforementionea®®{€(Py), j € I[1, N]} is an invariant set inside the domain of

inequalities, then for every initial state, € co{£(P;),j € attraction.
I[1, N]}, the state trajectory will converge to the origin.
Proof: LetQ; = P;' andZ; = H;Q;. The inequalities IV. CONTROLLED INVARIANT SETS
in (8) are equivalent to In this section, we investigate the possibility that a level set
Q;(A+ BD;F)T + (A+ BD;F)Q; can be made invariant with controls delivered by the saturating

actuators. Given a positive—definite functigiiz), suppose that

T y— nT — .
+2; Dy B® + BD; Z; the level setl.y-(1) is bounded and’ (kx) = k2V (z). A level

<0 Viell1,2™], jelIl,N] (9) setLy(p) is said to be controlled contractively invariant if for
The conditionf (P;) C L(H;), j € I[1, N], can be written as ?r:lstryx € Lv(p) \ {0}, there exists & € R™, |u| < 1, such
& gzo em keriml o) | o\
ik & V(z,u) = B (Az 4+ Bu) <0
€T

where z;;, is the kth row of the matrixZ;. Considerz, €
co{&(P;),j € I[1,N]}. There eX'StSLJ € £(P;) andv; > The controlled invariance can be defined by replaciag with
0,j € I[l,N] suchthatyy + 72 + -+ + 9~ = landzo = “<.” Since V(kz) = k*V(z), we have(dV /Or)|pmpe, =
Y1T1+7222+ - +yNeN . LetQ = 71Q1+72Q2+ “H+INQN  k(OV /Ox)| 2=z, - Hence, if Ly (p) is controlled (contractively)
andP = Q~'. Then, by Theorem 1£(P) C co{&(P;),j € invariant, thenLy (py) is for all p; < p. Therefore, to deter-
I[1, N]}. Fromz; € E(P;), we haver] Pix; < 1, which is mine the controlled (contractive) invariancelaf (p), it suffices

equivalent to to check all the points id Ly (p). For the composite quadratic
1 27 ' Lyapunov functionV,(z) defined in (1), we have
[xj Q]]] 20 J € I[1,N]. Theorem 3: Suppose that each of the ellipsoifi§P;), j €
. I[1, N], is controlled (contractively) invariant, thely- (1) is
By the convexity, we have controlled (contractively) invariant.
[ 1 xq >0 Proof: We only prove controlled invariance. The con-
zo Q trolled contractive invariance can be shown similarly.
L DenoteV;(x) = T P;z. The condition implies that for all
which implies thatrg P < 1 andzg € £(P). z € OE(P}), there exists a ¢ R™, |u|s < 1, such that
LetZ = v1Z1 + 925+ - - - +ynZ N, andzy, be thekth row -
of Z, then by (9), (10), and the convexity, we have Vj(a,y u) = 227 P;(Ax + Bu) < 0. (15)

Q(A+BD;F)' +(A+BD;F)Q+ 7" D; B" + BD; Z <0 Now, we consider an arbitrany, dLv,(1). If g € DE(P;)
VielIll,2™] (11) for somej € I[1,N], then(0V./0r)|z=z, = 2Pjzo and
Vo(w,u) = Vj(x,u) < 0 follows from (15) Hence we as-

and sume thatzg ¢ 0&(P;) for anyJ Then, there exist an in-
1 tegerNy < N, some numbera € (0,1) and vectorse; €
>0,kelll 12 = J J
[sz Q} € IlL,m]. (12) E(P)),j € I[1, Ny], such that
Let H = ZQ~! = ZP. The inequalities in (11) and (12) can No
be rewritten as Z aj =1 == Z T,

(A+ B(D;,F+D;H))"P+ P(A+B(D;F +D; H)) <0

ieI[,2m (13) (Here, we have assumed for simplicity thag is only re-

lated to the first Vy ellipsoids. Otherwise, the ellipsoids

and can be reordered to meet this assumption). ket=(1/2)
T

1 hp P! ((0Ve/0x)|,—,. ) » then by Theorem 1lhozy = i P

P~ Pt 2 Ok € I[1,m] <= £(P) € L(H). (v*(wo))zo = 1. It follows that the hyperplanéoz = 1 is

(14) tangential to the convex sét, (1) atx = z0. HenceLy, (1)
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lies betweerhgz = 1 andhoz = —1, i.e., Ly, (1) C L(ho). thatthe unionu’_, £(P;) is invariant. In this section, we would
Therefore like to construct a continuous feedback law from thégés
. such that the convex hull of the ellipsoids{{E(P;) : j €

5(Pj) C L(ho) Vj€I1,No] (16) [ N]} = LV( ) is invariant.

and Theorem 4: Given ellipsoids€(P;) and feedback matrices

F; e R™*",j € I[1,N]. Supposethatthere exigt, e R™*"
1= ho.’lio Z hod?j \V/J € I[I,No]. SUCh thaﬁ( ) - ‘C(H]) and

We claim thathgz; = 1 for all j € I[1, No]. Suppose on the (A + B(D;Fj + D H;))" P + P;(A + B(D;F; + Di H;))
contrary thatvyz; < 1 for somej, say,hoz; < 1, then <0(<0) (18)
Yo forall i € I[1,2"] andj € I[1,N]. LetQ; = P71, Y; =
L =howo = arhozy + ) ajhox; F;Q,. Let~*(z) be such that” P(v*(z))z = V,(z). Define

o F(y) = Y(1)Q(3), where

0
Salhol’l —f—ZQ] < Z(Yj =1
=2 i=1 Z’Y]Y Qv Z’YJQJ
which is a contradiction. Because of (16) ande £(P;), the
equality hoz; = 1 implies that€(P;) touches the hyperplaneThen Ly, (1) is (contractively) invariant under the feedback
hox = latz = z;. Hence, the hyperplad@x = listangential u = sat(F(vy*(z))z). Moreover, if the vector functiory*(-)
to £(P;) atz; foreveryj € I[1, No]. It follows from Fact 1 that is continuous, them = sat(F'(y*(z))x) is a continuous feed-
. back law.
hg = Piz; ¥ j € I[1, No]. Proof: In the following, we only prove the invariance of
By assumption, there existsa € R™, |u|. < 1, such that Ly, (1). The contractive invariance follows from similar argu-
. - ments. LetZ; = H;Q;. DenoteZ(y) = ZJ 172, and
Vi(j,u;) = 2z Pj(Awj + Bu;) <0 H(v) = Z(7)Q (7). We see that (18) can be rewritten as
S el < 1 and by the comvexty, we nave 47 A% + (DY DI 2B
ZJ 1 Uy 1| U0 joo > y \A +B(D7‘,Yj+Di_Zj)§0
Ve(wo, o) = 2ho(Azo + Buo) < 0. foralli € I[1,2™] andj € I[1, N]. It follows from the con-
Sincex is an arbitrary point ird Ly (1), this implies that the vexity that€(P(v)) C L(H(v)) (see the proof of Theorem 2,
level setLy. (1) is controlled invariant. O (14), where the dependence 9tis suppressed) and
If a level setLy, (1) is controlled contractively invariant, a T _ T T
simple feedback law to make it contractively invariant is QMA” +AQ(Y) + (DY (v) + D7 Z(v)))" B
+B(DiY (v) + D Z(7))) <0

u; = —sign <b7T %Zj) , i€ I[1,m] a7)

whereb; is thesth column of B. However, due to the discon-
tinuity of the sign function, the closed-loop system under this (A+ B(D;F(v) + D7 H(v)))" P(y)

control may be not well behaved. For instance, the closed-loop ’ ‘ , _

differential equation may have no solution. It can be shown with ' + P(Q(A +B(D:iF(y) + D H(7))) <0
methods in [11, Ch. 11] that there exists a positive nuniber VieI[1,2™].

such thatLy, (1) is contractively invariant under the saturate%y Proposition 3, this inequality along With(P(7)) €

inear feedbackfaw L(H(v)) ensures thaf(P(~)) is invariant under the control
u = —sat <kBT%> ) of u = sat(F(vy)z), i.e.,

€Xr
Tp Az + Bsat 0 Vzxef& . (19
This control is continuous im since bothsat(-) and(0V./dx) o) (F(m)e)) < (P()- (19)
are continuous. The value #fmay be however difficult to de-  For an arbitraryzy € 9Ly, (1), letvg = ~*(zo). Then,
termine. In the next section, we will provide a method for coref P(v0)zo = 1, i.e.,z¢ € 9E(P(79)), and from Theorem 1

foralli € I[1,2™] andy € T'. The previous inequality is equiv-
alent to

structing a controller from a set of saturated linear feedback oV
laws. - = 2P(vo)o.
ox e=zo
V. CONSTRUCTION OFCONTINUOUS FEEDBACK LAWS It follows from (19) that
Suppose that we have a set of ellipsafd$>;), j € I[1, N], V.(x0) = 2 P(0)(Ao + Bsat(F(v0)o))) < 0.

each of which is (contractively) invariant under a corresponding
saturated linear feedbaek= sat(Fj;z). It was shown in [11] This shows that.y, (1) is invariant under the control af =
and [15] that a switching feedback law can be constructed sueh(F(v*(z))z).
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Fig. 4. Convex hull of two ellipsoids.

Let us now address the continuity of the feedback law. As we '\

have noted earlier, the matrix(~y) is nonsingular for ally € T.

Hence,@Q~!(«) is continuous iny € I'. Since the saturation

functionsat(-) is continuous and by assumptiefi(-) is con-
tinuous, it follows that the feedback law= sat(F(y*(z))z)
is continuous. O

Remark 3: In Theorem 4, we assumed that the functiéi-)
is continuous. For the case whe¥e= 2 and(); — Q)5 is non-

singular,y*(-) is continuous by Proposition 1 and can be com-
puted with Proposition 2. IfV > 2, as we have noted earlier,
~*(z) could be nonunique in some special cases where one of
the Q; is the convex combination of other matrices in the set.
Such special cases may be considered as degenerated. We may

exclude such special cases by assuming that none 6{#g’s
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is in the convex hull of other ellipsoids. Whether this assumpi9- 6-  Control signak(#) and the Lyapunov functioli. («(t)).

tion will lead to the uniqueness and continuity ¢f(-) is an
interesting problem and needs further study. o
Example: Consider system (4) with

=t 75) s=[4)
We have designed two feedback matrices
Fy =[0.9471 1.6000] F,=[—0.1600 1.6000]
along with two ellipsoid<(P;) and&(Pz), where

[ 1.6245 —1.5364
| —1.5364 15.3639
[ 5.9393 —0.2561

=1 02561  2.5601 } '

P =

The matricesP; and F; are designed such that the valugis

maximized, wherey; (1) € £(P) andV(z) = 2T Pz has a

guaranteed convergence rate insidé ) underu = sat(Fix).
The matrices” and F; are designed such that the valugis

maximized, wherexs (1) € £(P;) andVa(z) = 2T Pyx has a

guaranteed convergence rate insid#, ) underu = sat(Fyx)

dotted curves. It can be verified th@y — Q; = P;t — Pyt

is nonsingular. So we can use the method in Proposition 2 to
computey*(z), which is guaranteed to be continuous by Propo-
sition 1. Simulation is carried out under the feedback law
sat(F(y*(z))x), where

F(7) =(mY1 +72Y2)(mQ1 + 12Q2) "
Yi =[0.75270.1794]  Ya = [0.00000.6250]

and

0 = 0.6799 0.0680 Qs = 0.1691 0.0169
1= 10.0680 0.0719 27 10.0169 0.3923 | "

In Fig. 5, a trajectory starting fro@Ly_ (1) is plotted. Fig. 6
plots the control signak(¢) (in solid curve) and the composite
quadratic functiori.(«(¢)) (in dashed curve).

VI. CONCLUSION

This paper introduced the composite quadratic Lyapunov
function and showed that it is a powerful tool to handle satura-
tion nonlinearity. The composite quadratic Lyapunov function
is continuously differentiable and its level set is the convex
hull of a set of ellipsoids. Using these results, we studied some

(see [11] for the detailed design method). In Fig. 4, the bounset invariance properties of continuous-time linear systems
aries of the two ellipsoids are plotted in solid curves. The dottedth input saturation. In particular, we showed that if every

curves are the boundaries &(P()) as+ varies in the sef'.

ellipsoid in a set is invariant under a saturated feedback, then

The shape oLy, (1) = [, £(P(v)) can be seen from thesetheir convex hull is also invariant. Similar results on controlled
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invariance have also been established. We also proposed(&(v))} = 1 and the hyperplankg.z = 1 touches the ellip-

method to construct a continuous feedback law based on as@t £(P(y)) at only one pointz.. It is obvious that

of saturated linear feedback laws to make the convex hull of

set of ellipsoids invariant. a}l # < hatip < hute =1 Vo € co{E(F;),j € I1, NI}
There still exist some interesting problems about the corfihis implies that each ellipsoiél(P;) is between the hyper-

posite quadratic Lyapunov function. For example, the computglanesh.x = 1 andh,z = —1 Wlthout touching them. By

tion of this function is carried out by solving an LMI problem Fact 1, we have

The simplification for the cas& = 2 motivates us to find a 1 heQ;

more efficient way to compute this function fof > 2. Also T ! Jj € I[1,N]. (20)
’ Qjhy  Q; ’

we have only given condition for the continuity of(-) for
N = 2 and the condition for more general cases remains UgY the convexity, we should have

known. Nevertheless, the composite quadratic function is rela- 1 hQ(%) 0 ; W <1 21
tively easier to handle than a general nonlinear Lyapunov func- | Q(v)hT  Q(v) >0 = hQMhy <1 (21)
tion and we expect to use it to study more general nonlin

r . .
systems. eI5a|owever, since the hyperplagxz = 1 touches the ellipsoid

E(P(7)), we also have

APPENDIX heQ(y)hT =

PROOFS OFTHEOREM 1 AND PROPOSITIONS1 AND 2 which contradicts (21). Therefore, we conclude that there exists

A. Proof of Theorem 1 nozo € £(P(v)) such thatey ¢ co{E(P;),j € I[1, N]}. This
a) It is obvious thatV,(kz) = k2V.(z), s0 Ly (p) = Provesthat(P(y)) C co{E(F;),j € 1[1 NI}

; _ ; : inally, we show thaLy, (1 )c U, e £(P(7)). Suppose that
5Ly (1). Since€ (P, p) = /p€(P), it suffices to show that ~ Finally Ve ~ver
ve ve z € Ly, (1). Then there exists@ € I" such that:” P(y)z < 1.

Ly, (1) =co{&(Pj),j € I[1,N]} = U E(P(7)). Itfollows thatz € £(P (7)) C U, cr E(P(7))-
~er Combining the previous set inclusion results, we obtain
We first show thato {€(F;), j € I[1, NI} C Ly.(1). Sup- Ly, (1) C | J £(P(v)) C co{€(P)),j € I[1,N]} C Ly, (1).
poser € co{E(F;),7 € I[1, N]} then there exists@a e I"and ~ET
z; € E(P;),j € I[l N1, such that Therefore
T =mT1+Y2T2 + -+ INTN- Ly (1 UE )) =co{&(P)),j € I[1,N]}.
Sincex; € £(P;), we haver] Pjz; < 1, which is equivalent el
(by the Schur complement) to b) Let us first establish a property about the differentiability
- which will simplify the proof. Suppose thaf.(x) is differen-
[ I = } >0, j e I[1,N]. tiable atzo with partial derivative(dV./dx)|,_, and letk be
zj Qj given. SinceV,(kz) = k*V,(z) for all z € R™, we have
Recalling that)(y) = v1Q1 + 72Q2 + - - - + ywQn, We have, Az
by the convexity Ve(kxo + Az) — Ve(kzo) =k <Vc (a:o + T) - %(l‘o))
T
[1 zT } >0 2 V. Az
z Q(v) - or |,_,. ) Tk
which implies that:” P(y)x < 1. It follows thatV.(x) < 1 and Az
x € Ly, (1). o < 2 >>
We next prove that U .p&(P(7)) C T
co{E(P;),j € I[1,N]}. 1t sufices to show that i Ve A
S(P(w)) C co{&(Pj),j € I[1,N]} for everyy € I'. Letry I 2 .
be any vector in the sdt. One way for the proof is to show +o(|Az)),

that for anyz € £(P(v)), there exist &y € I' and a set of

z; € E(P;),j € I[1,N], such thatr = 4121 + -+ - + AnaN. where| - | can be any norm. It follows that
However, this approach seems to be not easy. Instead, we will v, V.
prove E(P(v)) C co{&(P;),j € I[1,N]} by using Fact 1. O O
Suppose on the contrary that there existszane E£(P(7))
andzy ¢ co{&(P;),j € I[1,N]}. Then, there exists a vector!n view of this equality, we only need to consider thasen the

rx=kxg T=x(

h € RY¥*" such that boundary ofLy. (1), 0Ly, (1). Here, we used” to denote both
the boundary of a set and the partial derivative.
hxo > hx V€ co{&(F;),j € I[1,N]}. Since the sef.y. (1) is convex, for each, € dLy. (1), there

i 1xn
Letz,. € E(P(y)) be the point such thaiz, = max{hz : exists a vectohy € R such that

z € E(P(v))} and leth, = h/(hz,), thenmax{h.z : = € 1=hozog > hox V€ Ly/(1) (22)
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which implies thatLy, (1) C L(ho). Letv* be an optimal
such that

zT P(v*)zo = minzl P(y)zo = 1.
vyel

Since&(P(v*)) C Ly, (1), it follows thatE(P(v*)) C L(ho)

and

hoxo > hox Vz € E(P(YY)).

By Fact 1, the hyperplanigz = 1 is tangential to the ellipsoid

E(P(~*)) atxzg. Therefore, such a vectay, is uniquely deter-

mined byz,. To simplify the notation, denot&, = P(y*).
Combining the aforementioned results, we have
E(Po) C Lv, (1) € L(ho). (23)
By Fact 1, we also have
xo=Pythl hoPythl =1 (24)
and
hoxo > hxo, Y hT € E(P7H\ {h]}. (25)

Now, we show that

v,
ox

r=x()

= 2h,(1; = 2P0$0.

From (23), it follows that for all: € 0Ly, (1), V.(x)
hox < landzTPyz > 1, i.e.,

11

hox <1 =VY%(z) =1 < (7 Pyx)'/?
V2 €dLy, (1).

since V./?(kx) BV 2 (2), ho (k)
((kz)T Py(kx))'/? = k(2T Pyx)'/?, we have

khox and

ho(ke) <V (ka) < ((ke)" Po(ha))'/
Vk >0,z € 9Ly, (1).

Since every point irR™ can be written agx for somek > 0
andz € 9Ly (1), we have

hor < VM2(z) < (a7 Pox)'/? Yz e R™.  (26)
Recalling tha(zf Pyx)'/? = 1 and from (24), we have

(2™ Pyx)'/?

o = P():E() = hgw

Hence
(w0 + Az) Po(wo + Az))? = 14 hoAz +o(|Az)). (27)
Recalling from (22) thabozo = 1, we have
ho(zo + Ax) = 1+ hoAx. 28)
Combining (26)—(28) and that"/?(z,) = 1, we obtain

V1220 + Az) =1 + hoAz + o(|Az|)
=V'/*(z0) + hoAz + o(| Az|)
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which implies thatV;"/*(z) is differentiable atz = =z, and
the partial derivative is given by It follows that V.(z) is
differentiable atr = xy with the partial derivative given by

oV,

oo| =2V (w0)h§ = 2k = 2Powo = 2P(v")xo.

r=xq
In the rest of the proof, we show thav,./oz is continuous
in z. Since

v,
ox

oV,

=k
ox

rz=kxg

r=x

it suffices to prove the continuity on the surfag@éy, (1). Let
xo € 0Ly (1) with hg and P, defined as before. Then, we
haveh! = Pyxzo andhoP; *hf = hoxo = 1. Considern €

dLy.(1). Let
w-3(%_)"

Then,h(zo) = ho and by the foregoing proof, we hakév)v =
1, Ly.(1) € L(h(v)) and, hence(Py) C L(h(v)). By Fact 1

Ve
ox

h(v) Py hT (v) <1 <= hT(v) € E(P;Y)

Vv €dLy. (1). (29)

It follows that there exists a positive numbég such that
[h(v)]s < do for all v € 9Ly (1). Now, suppose on the
contrary thath(v) is not continuous av = z, on the sur-
face Ly, (1). Then, there exists a positive numbersuch
that for any arbitrarily small numbe¥ > 0, there exists a
v € B(wg, )N Ly, (1) satisfyinghT (v) ¢ B(ho, ). Note that
e is fixed andé can be arbitrarily small. What we will show
next is that the assumption of the existence of suwlill cause
contradiction.
From above, we have

hoPy thl =1 h(v)Pyth(v)T <1
howo =1, h(v)v = 1.
By Fact 1, we know that
hoxo > hzo Y h™ € E(Py )\ hl.
Then, it is clear that

sup hro =: k* < 1.

RT €€(Py ")\B(ho )

(30)

Hence, for alh™ € £(Py ) \ B(ho,¢), hag < k* < 1. On the
other hand, for alb € B(xo,) NILy, (1), we haveh(v)v =1
and

Ih(v)z0 — h(v)v] < [h(v)]28 < dob.
Hence
h(v)xzg > h(v)v — dod = 1 — dyb.
Let § be chosen such thdpé < 1 — k*. Then
h(v)zg > 1 —dod > k*

Vv € B(zo,8) NILy.(1). (31)
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By assumption, there existaiae B(zg, ) NOLy, (1) suchthat Let@(\) € R™*™ be a matrix function. Suppose th@t\) is
hT (v) € E(Py )\ B(ho,¢) (note that™ (v) € (P ') isfrom  nonsingular, then
(29)). It follows from (30) thati(v)zo < k*, which contradicts d0-1(\)
(31). Thereforeh(v) must be continuous af. -
Finally, we note that the partial derivative is continuous at dA

dQ(X)

e, @9

x = 0 with 0V, /0z|,_, = 0.

B. Proof of Proposition 1

The first and the second partial derivativesodf\, ) with
respect to\ are

O (A (1-0)22) 7 (Qa= Q)M+ (1-)Qa)
and

92 T .

e = 227 (AQ+ (1= A)Q2)7(Q2 — Q1)(AQ:

+(1 = A)Q2) "M (Q2 — Q1)(AQ1 + (1 — N)Q2) " 'a.

Since(AQ1 + (1 — A)Q2)™* > 0forall A € [0,1] andQ2 —
Q1 is nonsingular, we havg*a/0A? > 0 forall A € [0,1]
andz € R"™. This shows that(-,z) : [0,1] — R, is strictly
convex and establishes the uniquenesd*dfs) € [0, 1] such
thata(A\*(z), ) = minygpo,1) a(A, z). Considerzy € R™. If
A*(xo) € (0,1), then forz in a neighborhood ok, a(), z)
has a unique minimum at*(z) € (0, 1) satisfying

Jda

oJa T
o\ (

=2

X (2)Q1 + (1= A (2))Q2) ™"
A=A*(z)
X (Q2 = Q)N (2)Q1 + (1 = A" (2))Q2) ™"
Since (0%a/9X?) # 0, by implicit function theorem\*(z)

€T =

is continuously differentiable at,. For thosex, such that

A*(z9) = 0 (or 1), we have two possibilities.

1) da/ON|r=0,2=2, = 0. Then asc varies in a neighbor-
hood of zy, da/OA = 0 occurs in a neighborhood of

A = 0. In this neighborhood of, if da/0X = 0 for
someX < 0, then we must have*(z) = 0 and, if

da/OX = 0 for somel > 0, then\*(z) > 0 and must be
in a neighborhood oA = 0. These show the continuity

of A\*(x) for this case.
2) 0a/OA|r=0,2=x, > 0. Thenwe havéa /0|y~ > 0for

all z in a neighborhood of,y. By the convexity, we have

A*(xz) = 0 for all z in this neighborhood of;(, which
also confirms the continuity of*(z).

C. Proof of Proposition 2

In the proof, we will use the following algebraic fact. Sup-

pose thatX,, X, and {X

1
are square matrices. K is
Y5 X q !

nonsingular, then

det [Xl X2

X3 XJ = det(X1) det(Xy — X3X;'X2)  (32)

and if X is nonsingular, then

X1
det [X:a

Xo

X ] = det(Xy) det(X; — XoX7'X3).  (33)
4

In what follows, we usé to denote the x n unit matrix and 0 to
denote a zero matrix of appropriate dimension. For simplicity,
we useQ(\) to denoted@; + (1 — A)Qs.

If a(A*(z),z) = V.(z) andX*(z) € (0,1), then we must
have(da/ON)|x=x+(z) = 0. From (34), we have

2T QTN () (Q1 — Q2)Q (A
which can be written as
det (1 - 2" Q7' (\(2))(Q1 — Q2)Q™ (X" (w))z) = 1.

By applying (32) and (33), we obtain a sequence of equivalent
relations

“(z))z =0

1 2TQ 1\
QT N\ (@)r (Qu-
0

([5 0. [% 1

dX«EQ_l;S:(i)) Ql(g*(x))] B éD
=det(Q1 — Q2)"

0

det QQ(AS(@) Q(Ai)(a:))} - [w 0

i v

(ﬂ)] = det(Q1 — Q2)7*

S
~
—_

0 Q)
e @) Q- e
“[ 2T Q(A*(x))}

—det [Q(Ag(x» Q(AS(@)} |

Multlplymg the matrices on both sides from left with

0

0
UT] and from right wrrh{0 Ul

0 } we obtain

N N

Q2+A* Q — Q) Q1 — Qo
J Qs + /\*(17)(@1 — Qz)

)Q —Q2) Q1 —Q

0 Q2 + X (2)(Q1 —

det

_ Qz + A (w R
= det [ Q2)} .

(35)
Here, we notice tha; — Q- has been added to the upper-right
block of the right-hand side matrix. This does not change the
value of the determinant.

The two determinants in (35) are different only at the first
column. By using the property of determinant on column addi-
tion and the partition 0@1 ansz, we have the equation shown
at the top of the next page. The last equality is (3).
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