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On Maximizing the Convergence Rate for Linear Systems
With Input Saturation

Tingshu Hu, Zongli Lin, and Yacov Shamash

Abstract—In this note, we consider a few important issues related to the
maximization of the convergence rate inside a given ellipsoid for linear sys-
tems with input saturation. For continuous-time systems, the control that
maximizes the convergence rate is simply a bang–bang control. Through
studying the system under the maximal convergence control, we reveal sev-
eral fundamental results on set invariance. An important consequence of
maximizing the convergence rate is that the maximal invariant ellipsoid is
produced. We provide a simple method for finding the maximal invariant
ellipsoid, and we also study the dependence of the maximal convergence
rate on the Lyapunov function.

Index Terms—Convergence rate, invariant set, saturation, stability.

I. INTRODUCTION

Fast response is always a desired property for control systems. The
time optimal control problem was formulated for this purpose (see, e.g.,
[10] and [11]). Although it is well known that the time optimal control
is a bang–bang control, this control strategy is rarely implemented in
real systems. The main reason is that it is generally impossible to char-
acterize the switching surface. A notion directly related to fast response
is the convergence rate of the state trajectories. For a linear system, the
convergence rate is determined by the real part of the pole which is
closest to the imaginary axis. For linear systems subject to actuator
saturation, efforts have been made to increase the convergence rate in
various heuristic ways. For example, theQ matrix in linear quadratic
regulator (LQR) design can be increased piecewisely [12] as the state
trajectory converges to the origin.

For better understanding of the convergence rate and its related prob-
lems, we need a precise definition of the convergence rate for a general
nonlinear system. Consider a nonlinear system

_x = f(x):

Assume that the system is asymptotically stable at the origin. Given
a Lyapunov functionV (x), let LV (�) be a level setLV (�) = fx 2
R
n : V (x) � �g. Suppose that_V (x) < 0 for all x 2 LV (�) n f0g.

Then, the overall convergence rate ofV (x) onLV (�) can be defined
as

� :=
1

2
inf �

_V (x)

V (x)
: x 2 LV (�) n f0g : (1)

In recent years, control systems with actuator saturation have been
extensively studied (see the special issue on this topic [1] and the ref-
erences therein). In this note, we will investigate issues related to the
maximization of the convergence rate for a linear system subject to
actuator saturation. We will be interested in quadratic Lyapunov func-
tions, whose level sets are ellipsoids. A very important consequence of
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maximizing the convergence rate is that the maximal invariant ellip-
soid of a given shape is produced. As pointed out in [2], set invariance
is a very important notion and a powerful tool in studying the stability
and other performances of systems (see also [3], [5], and the references
therein). Recent years have witnessed a surge of interest in this topic.
In [3], [4], [6], [8], and [9], invariant ellipsoids are used to estimate
the domain of attraction and to study disturbance rejection capability
of the closed-loop system. Various criteria have been derived for deter-
mining if an ellipsoid is invariant under a given saturated linear feed-
back law and efforts have been made to design controllers that result in
large invariant ellipsoids (see, e.g., [4], [6], [8], [9], and [12]). To ex-
plore the full potential of saturating actuators, i.e., to design a controller
that will produce the largest invariant ellipsoid, we need to answer the
fundamental question: what is the largest ellipsoid that can be made in-
variant with the bounded control delivered by a saturating actuator? We
will address this issue in this note through studying the system under
the maximal convergence control. It turns out that the maximal conver-
gence rate is limited by the shape of the ellipsoid, or, theP matrix in
the Lyapunov function. We will develop a method to raise the limit by
suitably choosing theP matrix.

This note is organized as follows. Section II shows that the max-
imal convergence control is a bang–bang type control with a simple
switching scheme and that it produces the maximal invariant ellipsoid
of a given shape. A method for determining the largest invariant ellip-
soid is also given in this section. Section III reveals some properties and
limitations about the overall convergence rate and provides methods to
deal with these limitations. A brief concluding remark is made in Sec-
tion IV.

Throughout this note, we will use standard notation. For a vectoru 2
R
m, we usejuj1 to denote the1-norm. We usesat(�) to denote the

standard saturation function, i.e.,fsat(s)gi = sign(si)minf1; jsijg.
We usesign(�) to denote the sign function which takes value+1 or�1.

II. M AXIMAL CONVERGENCERATE CONTROL AND MAXIMAL

INVARIANT ELLIPSOID

Consider a linear system subject to actuator saturation

_x =Ax +Bu x 2 Rn
u 2 Rm juj1 � 1: (2)

Assume that the system is stabilizable and thatB has a full-column
rank. Denote theith column ofB asbi. In this note, we study the con-
vergence rate of a quadratic Lyapunov function. Given a positive def-
inite matrixP > 0, let V (x) = xTPx. For a positive number�, the
level set associated withV (x) is the ellipsoid

E(P; �) = fx 2 Rn : xTPx � �g:

Along the trajectory of (2)

_V (x; u) = 2xTP (Ax +Bu)

=x
T(ATP + PA)x+ 2

m

i=1

x
T
Pbiui:

Under the constraint thatjuj1 � 1, the control that maximizes the
convergence rate, or minimizes_V (x; u), is simply

ui = �sign b
T

i Px ; i = 1; 2; . . . ; m: (3)

Under this bang–bang control, we have

_V (x) = x
T(ATP + PA)x � 2

m

i=1

x
T
Pbi sign b

T

i Px :

Now, consider the closed-loop system

_x = Ax �

m

i=1

bisign b
T

i Px : (4)
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The discontinuity of the bang–bang control may cause technical prob-
lems like nonexistence of solution. Since this problem can be handled
by using a high gain saturated feedback to replace the bang–bang con-
trol (see [7] for more detail), in what follows, we use the bang–bang
control law to investigate the possibility that an ellipsoid can be made
invariant with a bounded controljuj1 � 1. In the sequal, we simply
say “a bounded control.”

Recall that an ellipsoidE(P; �) is invariant for a system_x = f(x) if
all the trajectories starting from it will stay inside of it. It is contractively
invariant if

_V (x) = 2xTPf(x) < 0 8x 2 E(P; �) n f0g:

Since the bang–bang control (3) minimizes_V (x; u) at eachx, we have
the following obvious fact.

Fact 1: An ellipsoid E(P; �) can be made contractively invariant
for (2) with a bounded control if and only if it is contractively invariant
for (4), i.e., the following condition is satisfied:

_V (x) = x
T(AT

P + PA)x � 2

m

i=1

x
T
P bisign b

T

i Px < 0

8x 2 E(P; �) n f0g: (5)

It is clear from Fact 1 that the maximal convergence rate control
produces the maximal invariant ellipsoid. For an arbitrary matrixP >

0, there may exists no� such thatE(P; �) can be made invariant. In
what follows, we give a condition onP such thatE(P; �) can be made
invariant for some� and provide a method for finding the largest�.

Proposition 1: For a given matrixP > 0, the following three state-
ments are equivalent.

a) There exists a� > 0 such that (5) is satisfied.
b) There exists anF 2 Rm�n such that

(A+BF )TP + P (A+BF ) < 0: (6)

c) There exists ak > 0 such that

(A� kBB
T
P )

T

P + P (A� kBB
T
P ) < 0: (7)

Proof: b)! a). If (6) is satisfied, then there exists a� > 0 such
that

E(P; �) � fx 2 Rn : jFxj1 � 1g :

If x0 2 E(P; �), then under the controlu = Fx, x(t) will stay in
E(P; �) and we also havejuj1 � 1 for all t � 0. This means that
E(P; �) can be made contractively invariant with a bounded control.
Hence, by Fact 1, we have (5).

c)! b). It is obvious.
a)! c). Let us assume thatPB = 0

R
, whereR is anm � m

nonsingular matrix. If not so, we can use a state transformation,�x =
Tx, with T nonsingular such that

P ! �P =(T�1)
T

PT
�1

B ! �B =TB

and

PB ! �P �B =(T�1)
T

PB

=
0

R
:

Recall that we have assumed thatB has a full-column rank. Also, let
us accordingly partitionx as x

x
andATP + PA andP as

A
T
P + PA =

Q1 Q12

QT

12 Q2

P =
P1 P12

PT

12 P2
:

For allx = x

0
2 @E(P; �), we havexTPB = 0. So, if a) is true,

then (5) holds for some� > 0, which implies thatxT1Q1x1 < 0, for

all x1 such thatxT1 P1x1 = �. It follows thatQ1 < 0. Hence, there
exists ak > 0 such that

(A�kBBT
P )

T

P+P (A� kBB
T
P )=

Q1 Q12

QT

12 Q2 � kRRT
<0:

This shows that c) is true.
Now assume that we have aP > 0 such that the conditions in Propo-

sition 1 are satisfied. Given a� > 0, we would like to determine if
E(P; �) is contractively invariant for the closed-loop system (4). Let
us start with the single input case. In this case, (5) simplifies to

_V (x) = x
T(AT

P + PA)x� 2xTPBsign(BT
Px) < 0

8x 2 E(P; �) n f0g: (8)

We claim that (8) is equivalent to

x
T(AT

P + PA)x � 2xTPBsign(BT
Px) < 0

8x 2 @E(P; �): (9)

To see this, we considerkx for k 2 (0; 1] andx 2 @E(P; �). Sup-
pose that

x
T(AT

P + PA)x� 2xTPBsign(BT
Px) < 0:

Since�2xTPBsign(BTPx) � 0, we have

x
T(AT

P + PA)x�
2xTPB

k
sign(BT

Px) < 0; 8 k 2 (0; 1]:

Therefore

(kx)T(AT
P + PA)(kx)� 2(kx)TPBsign(BT

Pkx)

= k
2

x
T(AT

P + PA)x �
2xTPB

k
sign(BT

Px)

< 0

for all k 2 (0; 1]. This shows that (8) is equivalent to (9). Based on this
equivalence relation, we have the following necessary and sufficient
condition for the contractive invariance of a given ellipsoid.

Theorem 1: Assume thatm = 1. Suppose thatE(P; �) can be made
contractively invariant for some�0 > 0. Let �1; �2; . . . ; �J > 0 be
real numbers such that

det
�jP �ATP � PA P

��1PBBTP �jP �ATP � PA
=0 (10)

and

B
T
P (AT

P + PA � �jP )�1PB > 0: (11)

Then,E(P; �) is contractively invariant for (4) iff

�j��B
T
P (AT

P+PA� �jP )�1PB < 0 8 j=1; 2; . . . ;J :

If there exists no�j > 0 satisfying (10) and (11), thenE(P; �) is
contractively invariant.

Here, we note that all the�j ’s satisfying (10) are the eigenvalues of
the matrix

P� ATP + P AP� �I

���1P BBTP P� ATP + P AP�
:

Hence, the condition of Theorem 1 can be easily checked.
In the proof of Theorem 1, we will use the following algebraic fact.

Suppose thatX1 andX4 are square matrices and are nonsingular, then

det
X1 X2

X3 X4

= det(X1)det(X4 �X3X
�1

1 X2)

= det(X4)det(X1 �X2X
�1

1 X3): (12)

Proof of Theorem 1:Denoteg(x) = xT(ATP + PA)x �
2xTPB. By the equivalence of (8) and (9), the contractive invariance
of E(P; �) is equivalent to

max g(x) : BT
Px � 0; xTPx = � < 0: (13)
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SinceE(P; �) can be made contractively invariant for some� > 0, we
must haveg(x) < 0 for all BTPx = 0. In this case, the contractive
invariance ofE(P; �) is equivalent to that all the extrema ofg(x) in the
surfacexTPx = �, BTPx > 0, if any, are less than zero.

By the Lagrange multiplier method, an extremum ofg(x) in the sur-
facexTPx = �, BTPx > 0, must satisfy

(AT
P + PA � �P )x = PB; x

T
Px = �; x

T
PB > 0 (14)

for some real number�. And at the extremum, we haveg(x) = �� �
xTPB. If � � 0, theng(x) < 0 sincexTPB > 0. So, we only need
to consider� > 0.

Now, suppose that� > 0. From(ATP + PA � �P )x = PB, we
conclude thatdet(ATP + PA� �P ) 6= 0. To show this, we assume,
without loss of generality, that

A
T
P + PA=

Q1 Q12

QT
12 q2

; P =
P1 P12

PT
12 p2

; PB=
0

r

as in the proof of Proposition 1, it follows thatQ1 < 0. Since� > 0,
Q1 < 0 andP1 > 0,Q1��P1 is nonsingular. Letx = x

x
, x2 2 R,

and suppose thatx 6= 0 satisfies

(AT
P + PA� �P )x = PB

then

x1 = �(Q1 � �P1)
�1(Q12 � �P12)x2

and

�(QT
12 � �P

T
12)(Q1 � �P1)

�1

� (Q12 � �P12) + q2 � �p2 x2 = r:

Multiplying both sides withdet(Q1 � �P1) and applying (12), we
obtain

det(AT
P + PA � �P )x2 = det(Q1 � �P1)r:

Sincer 6= 0 anddet(Q1 � �P1) 6= 0, we must havedet(ATP +
PA � �P ) 6= 0.

Thus, for all� > 0 andx satisfying (14), we havex = (ATP +
PA � �P )�1PB, and fromxTPx = �, we obtain

B
T
P (AT

P + PA � �P )�1P (AT
P + PA�P )�1PB = �: (15)

Denote� = �P � ATP � PA, then the (15) can be written as

B
T
P��1P��1PB = �:

By invoking (12), we obtain

det
� �BTP��1

���1PB P�1
= 0

m

det
� 0

0 P�1
�

BTP 0

0 I

��1 0

0 ��1
0 I

PB 0
= 0

m

det
� 0

0 �
�

0 I

PB 0

��1 0

0 P

BTP 0

0 I
= 0

m

det
�P �ATP � PA P

��1PBBTP �P �ATP � PA
= 0:

This last equation is (10).
Also, at the extremum, we havexTPB > 0. This is equivalent to (11)

B
T
P (AT

P + PA � �P )�1PB > 0:

Finally, at the extremum

g(x) =x
T(AT

P + PA)x � 2xTPB

=�� �B
T
P (AT

P + PA� �P )�1PB:

Hence, the result of the theorem follows.
Recall that (8) is equivalent to (9). This implies that there is a�� >

0 such thatE(P; �) is contractively invariant if and only if� < ��.

Therefore, the maximum value�� can be obtained by checking the
condition of Theorem 1 using bisection method.

For systems with multiple inputs, we may divide the surface
@E(P; �) into subsets. For example, considerm = 2, the surface of
E(P; �) can be divided into the following subsets:

S1 = x 2 Rn : bT1 Px = 0; bT2 Px � 0; xTPx = � ; �S1

S2 = x 2 Rn : bT1 Px � 0; bT2 Px = 0; xTPx = � ; �S2

S3 = x 2 Rn : bT1 Px > 0; bT2 Px > 0; xTPx = � ; �S3

S4 = x 2 Rn : bT1 Px > 0; bT2 Px < 0; xTPx = � ; �S4:

With this partition,E(P; �) is contractively invariant iff

max
x2S

_V (x) < 0 max
x2S

_V (x) < 0 (16)

and all the local extrema of_V (x) in S3 andS4 are negative.
In S1, _V (x) = xT(ATP + PA)x� 2xTPb2. LetN 2 Rn�(n�1)

be a matrix of rankn�1 such thatbT1 PN = 0, i.e.,fNy : y 2 Rn�1g
is the kernel ofbT1 P . The constraintbT1 Px = 0 can be replaced by
x = Ny, y 2 Rn�1. Thus

max
x2S

_V (x) = max y
T
N

T(AT
P + PA)Ny

�2yTNT
Pb2 : bT2 PNy � 0; yTNT

PNy = � :

This is similar to the optimization problem (13) in the proof of Theorem
1 except with a reduced order. The second optimization problem in (16)
can be handled in the same way.

In S3, _V (x) = xT(ATP + PA)x� 2xTP (b1 + b2). All the local
extrema of _V (x) in S3 (and inS4) can be obtained like those ofg(x)
in the proof of Theorem 1. For systems with more than two inputs,
we need to divide the surface intom � 2m�1 closed sets likeS1 and
S2 and2m sets likeS3 andS4 (with all strict inequalities except for
xTPx = �). This indicates that the computational burden increases
exponentially asm increases.

III. OVERALL CONVERGENCERATE

We now consider (4) under the maximal convergence control

_x = Ax �
m

i=1

bisign(b
T
i Px): (17)

Assume thatE(P; �) is contractively invariant for (17). We would like
to know the overall convergence rate inE(P; �). We will see later that
as� decreases (note that a trajectory goes into smallerE(P; �) as time
goes by), the overall convergence rate increases but is limited by the
shape ofE(P; �). This limit can be raised by choosingP properly.

The overall convergence rate, denoted by�, is defined by (1) in Sec-
tion I. Here, we would like to examine its dependence on�, so we write

�(�) :=
1

2
min �

_V (x)

V (x)
: x 2 E(P; �) n f0g :

The main results of this section are contained in the following theorem.
Theorem 2:

a)

�(�) =
1

2
min �

_V (x)

�
: xTPx = � : (18)

b) �(�) increases as� decreases.
c) Let

�0 = min �xT(AT
P + PA)x : xTPx = 1; xTPB = 0

then

lim
�!0

�(�) =
�0

2
: (19)
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Proof:

a) Considerx 2 @E(P; �) andk 2 (0; 1],

�
_V (kx)

V (kx)

= � k2xT(ATP + PA)x � 2k m

i=1
xTP bi sign(b

T

i Pkx)

k2xTPx

=
�xT(ATP + PA)x + 2

k

m

i=1
xTPbi sign(b

T

i Px)

xTPx
: (20)

Since
m

i=1

xTPbi sign(b
T

i Px) � 0

�( _V (kx))=(V (kx)) increases ask decreases. It follows that the
minimal value of�( _V (x))=(V (x)) is obtained on the boundary
of E(P; �), which implies (18).

b) This follows from the proof of a).
c) From a), we see that

2�(�)

= min
�xT(ATP + PA)x + 2 m

i=1
xTPbi sign(b

T

i Px)

�

: xTPx = �

= min �xT(ATP + PA)x

+
2p
�

m

i=1

xTPbi sign(b
T

i Px) : x
TPx = 1

�min �xT(ATP + PA)x

+
2p
�

m

i=1

xTPbi sign(b
T

i Px) : x
TPx = 1; xTPB = 0

= min �xT(ATP + PA)x : xTPx = 1; xTPB = 0

=�0:

It then follows that2�(�) � �0 for all � > 0. To prove (19), it suffices
to show that given any" > 0, there exists a� > 0 such that2�(�) �
�0 � ".

Denote

X0 = x 2 Rn : xTPx = 1; xTPB = 0

and

X (�) = x 2 Rn : xTPx = 1; jxTPBj1 � � :

It is clear thatlim�!0 dist(X (�);X0) = 0, wheredist(�; �) is the
Hausdorff distance.1 By the uniform continuity ofxT(ATP + PA)x
on the surfacefx 2 Rn : xTPx = 1g, we have that, given any",
there exists a� > 0 such that

min �xT(ATP+PA)x : xTPx=1; jxTPBj1�� ��0 � ":

(21)

1LetX andX be two bounded subsets ofR . Their Hausdorff distance is
defined as

dist(X1;X2) := max ~d(X1;X2); ~d(X2;X1)
where

~d(X1;X2) = sup
x 2X

inf
x 2X

jx1 � x2j:

Here, the vector norm used is arbitrary.

Since m

i=1
xTPbisign(b

T

i Px) � 0, we have

min �xT(ATP + PA)x +
2p
�

m

i=1

xTPbi sign(b
T

i Px) :

xTPx = 1; jxTPBj1 � � � �0 � " (22)

for all � > 0.
Let

�1=min �xT(ATP + PA)x : xTPx=1; jxTPBj1 � � :

If �1 � �0 � ", then for all� > 0

min �xT(ATP+PA)x+
2p
�

m

i=1

xTPbi sign(b
T

i Px)

: xTPx = 1; jxTPBj1 � � � �1 � �0 � ":

Combining this with (22), we have

2�(�) = min �xT(ATP + PA)x +
2p
�

�
m

i=1

xTPbi sign(b
T

i Px) : x
TPx = 1 � �0 � ": (23)

for all � > 0. This shows that2�(�) � �0 � ", 8� > 0.
If �1 < �0 � ", then for� < ((2�)=(��1 + �0 � "))2, we have

min �xT(ATP+PA)x+
2p
�

m

i=1

xTPbi sign(b
T

i Px) :

xTPx = 1; jxTPBj1 � � � �1 +
2�p
�
> �0 � ":

Combining this with (22), we also obtain (23) and2�(�) � �0� " for
� < (2�=(��1 + �0 � "))2. This completes the proof.

Theorem 2 says that the convergence rate increases as the ellipsoid
becomes smaller and it approaches an upper bound�0=2 as� goes to
0. Hence, the convergence rate is bounded by�0=2 for all �. For a
given �, �(�) can be obtained by computing the maximum of_V (x)
over@E(P; �). For the single input case, Theorem 1 provides a method
for determining if this maximum is negative. The exact value of�(�)
can be computed with a procedure similar to the proof of Theorem 1.

Since the overall convergence rate is limited by�0=2, we would like
�0 not to be too small. The following proposition will lead to an LMI
approach to choosingP for maximizing�0.

Proposition 2:

�0 = sup
F

�

s.t. (A+BF )TP + P (A+BF ) � ��P: (24)

Proof: Notice that, for anyF , we have

xT (A+BF )TP + P (A+BF ) x = xT(ATP + PA)x

8xTPB = 0:

It follows that

�0 = min �xT (A+BF )TP

+P (A+BF ))x : xTPx = 1; xTPB = 0

� min �xT (A+BF )TP

+P (A+BF ))x : xTPx = 1

and, hence

�0 � sup
F

min �xT (A+BF )TP + P (A+BF ) x :

xTPx = 1 : (25)
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We claim that

�0 = sup
F

min �xT (A+BF )TP + P (A+BF ) x :

xTPx = 1 : (26)

In view of (25), it suffices to show that for any" > 0, there exists an
F = �kBTP , with k > 0, such that

min �xT (A+BF )TP + P (A+BF ) x : xTPx = 1

� �0 � ": (27)

This can be proven by exploiting the same idea used in the proof of
Theorem 2 c).

Denote

�(F ) = min �xT (A+BF )TP + P (A+BF ) x :

xTPx = 1 :

From (26), we have�0 = supF �(F ). It can be shown that

�(F ) = max � : (A+BF )TP + P (A+BF ) � ��P :

This brings us to (24).
The matrix inequality constraint in Proposition 2 indicates that the

ellipsoidE(P; �) has a convergence rate�=2 under the linear state feed-
backu = Fx (for any� > 0). From Proposition 2 and Theorem 2, we
see that the convergence rate is limited by the maximal value which
can be achieved with a linear state feedback and can actually approach
this maximal value as� goes to 0. For a fixedP , �0 is a finite value.
Assume that (A,B) is controllable, then the eigenvalues of(A+BF )
can be arbitrarily assigned. If we also takeP as a variable, then��0=2
can be made equal to the largest real part of the eigenvalues ofA+BF
(see the definition, as given in Section I, of the overall convergence rate
for a linear system). This means that�0 can be made arbitrarily large.
But generally, as�0 becomes very large, the matrixP will be badly
conditioned, i.e., the ellipsoidE(P; �) will become very thin in cer-
tain direction, and hence very “small,” with respect to a fixed shape
reference set. On the other hand, as mentioned in [8] and [9], if our
only objective is to enlarge the domain of attraction with respect to a
reference set, some eigenvalues ofA + BF will be very close to the
imaginary axis, resulting in very small�0. These two conflicting ob-
jectives can be balanced, for example, by prespecifying a lower bound
on�0 and then maximizing the invariant ellipsoid with respect to some
shape reference set. This mixed problem can be described as follows:

sup
P>0;�;F;H

�

s.t. a)�XR � E(P; �)

b) (A+BF )TP + P (A+BF ) < 0

c) E(P; �) � fx 2 Rn : jFxj1 � 1g

d) (A+BH)TP + P (A+BH) � ��P (28)

whereXR is a shape reference set (see [7]–[9]). The constraint a) means
thatE(P; �) contains�XR. By maximizing�, E(P; �) will be max-
imized with respect toXR. The constraints b) and c) guarantee that
E(P; �) can be made contractively invariant and the constraint d) guar-
antees a lower bound� on the convergence rate. This optimization
problem can be transformed into one with LMI constraints as those in
[7]–[9]. By solving (28), we obtain the optimal ellipsoidE(P; �) along

with two feedback matricesF andH . We may actually discard bothF
andH but instead use the bang–bang controlui = �sign(bTi Px), i =
1; 2; . . . ;m, or the saturated high-gain controlu = �sat(kBTPx).
The final outcome is that under these control laws, the closed-loop
system will have a contractively invariant setE(P; �) and a guaran-
teed limit of the convergence rate�0=2 � �=2.

IV. CONCLUSION

We have studied several issues related to the maximization of the
convergence rate for continuous-time linear systems with input sat-
uration. These issues include the maximal convergence control, the
maximal ellipsoid that can be made invariant with a bounded con-
trol, the control laws that can produce the maximal invariant ellipsoid
and the dependence of the maximal convergence rate on the Lyapunov
function. The counterpart of these issues for discrete-time system are
studied in [7], where some of the results are quite different from those
in this note. For example, the maximal convergence control is contin-
uous in the state and is determined in a quite different way.
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