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On Maximizing the Convergence Rate for Linear Systems maximizing the convergence rate is that the maximal invariant ellip-

With Input Saturation soid of a given shape is produced. As pointed out in [2], set invariance
is a very important notion and a powerful tool in studying the stability
Tingshu Hu, Zongli Lin, and Yacov Shamash and other performances of systems (see also [3], [5], and the references

therein). Recent years have witnessed a surge of interest in this topic.
Abstract—in this note, we consider a few important issues related to the In [3], [4], [6], [8], and [9], invariant ellipsoids are used to estimate
maximization of the con\}ergence rate inside agiven ellipsoid for linear sys- the domain of attraction and tp StUdY d|§turbance reject!on capability
tems with input saturation. For continuous-time systems, the control that Of the closed-loop system. Various criteria have been derived for deter-
maximizes the convergence rate is simply a bang-bang control. Through mining if an ellipsoid is invariant under a given saturated linear feed-
studying the system under the maximal convergence control, we reveal sev- hack law and efforts have been made to design controllers that result in
eral fundamental results on set invariance. An important consequence of |40 invariant ellipsoids (see, e.g., [4], [6], [8], [9], and [12]). To ex-
maximizing the convergence rate is that the maximal invariant ellipsoid is . . . .
produced. We provide a simple method for finding the maximal invariant  Plore the full potential of saturating actuators, i.e., to design a controller
ellipsoid, and we also study the dependence of the maximal convergencethat will produce the largest invariant ellipsoid, we need to answer the
rate on the Lyapunov function. fundamental question: what is the largest ellipsoid that can be made in-
Index Terms—Convergence rate, invariant set, saturation, stability. variant with the bounded control delivered by a saturating actuator? We
will address this issue in this note through studying the system under
the maximal convergence control. It turns out that the maximal conver-
I. INTRODUCTION gence rate is limited by the shape of the ellipsoid, or,Fheatrix in

Fast response is always a desired property for control systems. ﬁm‘%Lyapunov f.unction. We yvill develop a method to raise the limit by

time optimal control problem was formulated for this purpose (see, e.gitably choosing thé> matrix. _

[10] and [11]). Although it is well known that the time optimal control  T1iS note is organized as follows. Section Il shows that the max-
is a bang—bang control, this control strategy is rarely implementedifi@l convergence control is a bang-bang type control with a simple
real systems. The main reason is that it is generally impossible to ch@ftching scheme and that it produces the maximal invariant ellipsoid
acterize the switching surface. A notion directly related to fast resporfe2 given shape. A method for determining the largest invariant ellip-
is the convergence rate of the state trajectories. For a linear system Spid iS also given in this section. Section i reveals some properties and
convergence rate is determined by the real part of the pole whichlifgitations about the overall convergence rate and provides methods to

closest to the imaginary axis. For linear systems subject to actua§@! With these limitations. A brief concluding remark is made in Sec-
saturation, efforts have been made to increase the convergence ratOfh!V- ) ) )
various heuristic ways. For example, tematrix in linear quadratic _ 1 hroughout this note, we will use standard notation. For a vector
regulator (LQR) design can be increased piecewisely [12] as the sthte » We US€{u|~ to denote thec-norm. We useat(-) to denote the
trajectory converges to the origin. standard saturation functlon,. I.Qs,at(s.)}i = .sign(si) min{1,|s;|}.

For better understanding of the convergence rate and its related prdf§-Us&ign(-) to denote the sign function which takes vale or —1.

lems, we need a precise definition of the convergence rate for a general
nonlinear system. Consider a nonlinear system Il. MAXIMAL CONVERGENCERATE CONTROL AND MAXIMAL

. INVARIANT ELLIPSOID
z = f(x).

Consider a linear system subject to actuator saturation
Assume that the system is asymptotically stable at the origin. Given e ) n
a Lyapunov functio?/ (), let Ly (p) be a level sefly (p) = {x € i=Ar+Bu r€R" ue€R" |ulo <L )
R" : V(z) < p}. Suppose thak’(z) < 0 forallz € Lv-(p) \ {0}. Assume that the system is stabilizable and tBahas a full-column
Then, the overall convergence ratelofz) on Ly (p) can be defined rank. Denote théth column of B asb;. In this note, we study the con-

as vergence rate of a quadratic Lyapunov function. Given a positive def-
. inite matrix P > 0, letV(2) = 2" Px. For a positive number, the
o %inf {_1(7") e € Lu(p)\ {0}}‘ (1) level setassociated witti () is the ellipsoid
(@) E(Pp)={reR": 2" Px < p}.

In recent years, control systems with actuator saturation have beeplong the trajectory of (2)
extensively studied (see the special issue on this topic [1] and the ref- V(x W) = QxTP(AI + Bu)
erences therein). In this note, we will investigate issues related to the ’ .
maximization of the convergence rate for a linear system subject to =" (A"P 4+ PA)Yz +2 ZIT Pbiu;.
actuator saturation. We will be interested in quadratic Lyapunov func- ‘ =

tions, whose level sets are ellipsoids. A very important consequencg ffder the constraint that|-. < 1, the control that maximizes the
convergence rate, or minimiz&¥ x, u), is simply
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The discontinuity of the bang—bang control may cause technical pratit; such that:T Py, = p. It follows that@, < 0. Hence, there
lems like nonexistence of solution. Since this problem can be handkedsts at > 0 such that

by using a high gain saturated feedback to replace the bang—bang con- oo T Q1 Q12

trol (see [7] for more detail), in what follows, we use the bang—ban( A—kBB" P) P+P(A- kBB P)= QY, Q.- kRRT <0.
control law to investigate the possibility that an ellipsoid can be mad

invariant with a bounded contrgk|., < 1. In the sequal, we simply T%II\IS shows that E) IS tr“ﬁ' &> 0 such that th ditions in P U
say “a bounded control.” ow assume that we havelfa> 0 such that the conditions in Propo-

Recall that an ellipsoid ( P, ) is invariant for a systen = f(x) if sition 1 are satisfied. Given a > 0, we would like to determine if

allthe trajectories starting from it will stay inside of it. Itis contractivelf(P’ P) |s.contrac.tlvelyllnvarlant for thg closed-loop. syngm (4). Let
invariant if us start with the single input case. In this case, (5) simplifies to

. . . _ T T Ao o T . T
V(z) = 22" Pf(x) <0 Vo e (P p)\ {0} V(z)=2 (A P+ PA)x — 2z PBsign(B Pxz) <0

Since the bang—bang control (3) minimiZégr, «) at eachr, we have v € E(Pp) \ {0} (8)
the following obvious fact. We claim that (8) is equivalent to
Fact 1: An ellipsoid £( P, p) can be made contractively invariant

T T AN T . T N
for (2) with a bounded control if and only if it is contractively invariant v (AP + PA)x — 22" PBsign(B Pr) <0

for (4), i.e., the following condition is satisfied: V€ dE(P, p). )
. ‘ ™ To see this, we considét: for & € (0,1] andx € 9E(P, p). Sup-
Vie)=a " (ATP + PA)x -2 Z:L'TPbisign (b;rP:v) <0 pose that 0.1] ol P
=1
Vo e &(Pp)\ {0} (5) 2" (AP 4 PA)z — 22" PBsign(B" Pz) < 0.

It is clear from Fact 1 that the maximal convergence rate contrBince—2z" PBsign(B" Px) < 0, we have
produces the maximal invariant ellipsoid. For an arbitrary maix 2: PR
0, there may exists np such that®(P, p) can be made invariant. In e (A'"P+PA)z - = -
what follows, we give a condition off such that’ (P, p) can be made Thearefore '
invariant for somep and provide a method for finding the largest

Proposition 1: For a given matrix” > 0, the following three state-

sign(B" Pz) < 0, Yk € (0,1].

(kx)" (AP + PA)(kx) — 2(kz)"* PBsign(B" Pkx)

. 5. T
ments are equivalent. 2 <J,T(ATP 4 PA)r— 2z~ PB sign(BTP;z:)>
a) There exists @ > 0 such that (5) is satisfied. k
b) There exists ai € R"*" such that <0
(A+ BF)'P+ P(A+ BF) < 0. (6) forallk € (0.1]. This shows that (8) is equivalent to (9). Based on this

equivalence relation, we have the following necessary and sufficient

¢) There exists & > 0 such that condition for the contractive invariance of a given ellipsoid.

(A—kBB"P)' P+ P(A - kBB™P) < 0. @) Theorem 1: Assume thatr = 1. Suppose thai( P, p) can be made
) o ] contractively invariant for somg, > 0. Let A1, A2,..., A7 > 0 be
Proof: b) — a). If (6) is satisfied, then there existpa> 0 such o1 numbers such that
that o [P —ATP—PaA P 0 o)
€ -1 T AT =
E(P.p) C{x €R": [Fa|o < 1}. p 'PBB'P AjP—A"P—-PA
and
If 20 € E(P,p), then under the contral = Fu, x(t) will stay in BTp(ATp 4+ PA— /\jp)—lpB > 0. (11)

E(P,p) and we also hav@i|., < 1 forall #+ > 0. This means that - ) ) ) ) )

(P, p) can be made contractively invariant with a bounded control "€N€ (P, p) is contractively invariant for (4) iff

Hence, by Fact 1, we have (5). \jp—B'P(A"P+PA-\,P)"'PB<0 Vj=1.2,....7.
c) — b). Itis obvious. . o )
a) — c). Let us assume thdtB = [?2] whereR is anm x m | there exists no\; > 0 satisfying (10) and (11), thefi( P, p) is

nonsingular matrix. If not so, we can use a state transformation, contractively invariant.

T, with T nonsingular such that Here, we note that all th®;’s satisfying (10) are the eigenvalues of
B LT the matrix
P—P=(T")rr P=34"Ps 4 PhAP3 -1
B—B=TB [ —p~'P2BB" P> P 2A"P: 4+ PAP |
and Hence, the condition of Theorem 1 can be easily checked.
PB — PB=(T"" )TPB In the proof of Theorem 1, we will use the following algebraic fact.
0 Suppose thak'; and X, are square matrices and are nonsingular, then

rl

det B; ij] = det(X))det(Xs — X3X; 'X2)
Recall that we have assumed tliathas a full-column rank. Also, let

us accordingly partition as[*!] andA" P + PA andP as

0 _Qu P P . Proof of Theorem 1:Denoteg(z) = 2t (AP + PA)z —

oL, 0, } P= [Psz P, ] . 22+ PB. By the equivalence of (8) and (9), the contractive invariance

, ‘ of E(P, p) is equivalent to
Foralla = [%!] € 0E(P, p), we haver" PB = 0. So, if a) is true, . .
then (5) holds for somg > 0, which implies that:T Q21 < 0, for max {g(d’) : B"Pe > 0,0 Pa= P} <0. (13)

= det(Xy) det(X; — Xo X7 'X3).  (12)

ATP+PA= [
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Since&( P, p) can be made contractively invariant for some 0, we
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Therefore, the maximum value" can be obtained by checking the

must havey(z) < 0 for all BT Pz = 0. In this case, the contractive condition of Theorem 1 using bisection method.

invariance of (P, p) is equivalent to that all the extremag(fz) in the
surfacer™ Pz = p, BT P2 > 0, if any, are less than zero.
By the Lagrange multiplier method, an extremuny0t) in the sur-
facex” Pz = p, BT Px > 0, must satisfy
(A"P+PA-AP)e=PB, «"Per=p, «'PB>0 (14)
for some real numbex. And at the extremum, we hayér) = A\p —
#YPB.If A <0, theng(x) < 0 sincez' PB > 0. So, we only need

to considerr > 0.
Now, suppose that > 0. From(ATP + PA — AP)x = PB, we

conclude thatlet(A* P + PA — AP) # 0. To show this, we assume,

without loss of generality, that

Q1 Q2 P P 0

o el r=la o) re-[l]

as in the proof of Proposition 1, it follows th&;, < 0. SinceX > 0,
Q1 < 0andP; > 0,Q1 — AP isnonsingular. Let = [f;]@ €R,
and suppose that # 0 satisfies

(A"P+ PA—A\P)z=PB

ATP-i—PA:{

then

21 =—(Q1 = AP) " (Qi2 — AP12) a2
and

(-(@b = arby@ - ar)™

X (Qiz — APi2) 4+ g2 — Apz)élr’z =r.
Multiplying both sides withdet(Q: — AP;) and applying (12), we
obtain
det(A"P 4+ PA — AP)zy = det(Q) — APy)r.

Sincer # 0 anddet(Q; — APy) # 0, we must havelet(A™ P +
PA - AP) # 0.

Thus, for allA > 0 and= satisfying (14), we have = (ATP +
PA - AP)~'PB, and fromz" Pz = p, we obtain

B'"P(A"P+ PA—-AP)"'P(A"P+ PAXNP)"'PB =p. (15)
Denoted = AP — AT P — PA, then the (15) can be written as
BTP3~'P3™'PB = p.
By invoking (12), we obtain
] =0

det p —-BTpa—!
“ |- 'PB p1
- 3

p 01 [B'PO][®" 0 0 IT\_,

“\lo pt o I||l o e'||PBol|)”
II e

ot ® 0] [0 IT[pt 0][B'P O —0
“llo @ PBO|| 0 P o 1|)°

. 0
AP —A'P - PA P —0
p 'PBBTP AP —-ATP-_PA|
This last equation is (10).

det

Also, atthe extremum, we havé PB > 0. Thisis equivalentto (11)

B'P(A'P+PA—-)P)'PB>0.
Finally, at the extremum
g(x)=2"(A"P+ PA)r — 2" PB
=\p—B"P(A"P+ PA—AP)"'PB.
Hence, the result of the theorem follows. O

Recall that (8) is equivalent to (9). This implies that there ji§ a-
0 such that®( P, p) is contractively invariant if and only if < p*.

For systems with multiple inputs, we may divide the surface
9E(P, p) into subsets. For example, consider= 2, the surface of
E(P, p) can be divided into the following subsets:

S = {;t ER": 0 Pe=0, by Pr >0, 2" Pa= p}, -5
Sy = {;n ER": b Pe >0, biPr =0, 2+ Pu = p}, —S»
S5 = {x ER": b Pe>0, 0P >0, 2" Pu = p}, _S,
Sy = {;n ER":b P >0, b Pr <0, " Pr = p}, —Sa.

With this partition,£( P, p) is contractively invariant iff

max Viz) <0 max Vir)<0 (16)
and all the local extrema df () in S andS, are negative.

NSy, Vi(x) =2 (AP + PA)x — 22" Pb,. Let N ¢ R"* ("D
be a matrix of rank. — 1 such thabtT PN = 0,i.e..{Ny:y € R" ™'}
is the kernel o] P. The constrainby P2 = 0 can be replaced by
x = Ny,y € R"!. Thus

max V(x) = max {yTNT(ATP + PA)Ny
TES]

—2¢"NTPby : by PNy > 0,y " NTPNy = p}.

This is similar to the optimization problem (13) in the proof of Theorem
1 except with a reduced order. The second optimization problem in (16)
can be handled in the same way.

InSs, V()= 2" (ATP 4+ PA)x — 22" P(by + bs). All the local
extrema ofV’ () in S3 (and inS,) can be obtained like those gfx)
in the proof of Theorem 1. For systems with more than two inputs,
we need to divide the surface inte x 2™ * closed sets likeS; and
So and2™ sets likeSs and.S, (with all strict inequalities except for
2" Pz = p). This indicates that the computational burden increases
exponentially asn increases.

I1l. OVERALL CONVERGENCERATE

We now consider (4) under the maximal convergence control

i=Ar — Zbisign(b?Pm).
=1

Assume that (P, p) is contractively invariant for (17). We would like
to know the overall convergence ratefiqP, p). We will see later that
asp decreases (note that a trajectory goes into small&t p) as time
goes by), the overall convergence rate increases but is limited by the
shape of (P, p). This limit can be raised by choosirdg properly.

The overall convergence rate, denotedwys defined by (1) in Sec-
tion I. Here, we would like to examine its dependence oso we write

; {—‘fo; cx € (P, p)\{O}}.

— min
The main results of this section are contained in the following theorem.
Theorem 2:
2T Py = p} .
b) a(p) increases ag decreases.
c) Let

a)
3o = min {—mT(ATP + PA)x: 2T Py = 1, 2TPB = 0}
then

17

alp) =

Vi)
pak

alp) = %min {— (18)

(19)

lim a(p) = 2.
plgg)a(p) 5
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Proof: Since}""™ | & Pbisign (b Px) > 0, we have

a) Considerw € 9&(P, p) andk € (0, 1],

. TooaT 2« 1 . T
. min{ —z (A" P+ PA)x + — x” Pb; sign(b; Px) :
V(ke) { ; ) 7 > gn(b; Px)

_ : i=1
Vikz) | 2 Pr=1, |¢2"PBl. < 5} > By —¢ 22)
B2t (ATP + PA)x — 2k 27 2T Pb; sign(b Pkx)
=" 1221 P forall p > 0.
2" (AP 4 PAyr + 27 " Pb; sign(b] Pa) 20 Let
N 2" Px ' (20) B :min{—xT(ATP +PA)z:2"Pr=1, |z' PB|. > 6} .

Since

m

> 2" Pb;sign(b Px) > 0

=1

—(

If 31 > B0 — e, thenforallp > 0

. T, T 2 — 1 . T
min{ —z (A" P+PA)z+— x Pb; sign(b; Px
{ ‘ =y (v Pa)

V(kx))/(V(kx)) increases ab decreases. It follows that the =

minimal value of—(V (z))/(V(z)) is obtained on the boundary 2" Pr=1, |2" PBl. > 5} 2020 —e=.
of £(P, p), which implies (18).
b) This follows from the proof of a).

Combining this with (22), we have

¢) From a), we see that 2a(p) = min {—wT(ATP + PA)x + 2
v
Za(p) m :
. { — T (ATP+ PAYr +2 > 2" Pb; sign (b} Px) X Zarl Py, sign(b,;1 Pz): 2Pz = 1} > fo —e. (23)
= min — i=1
p
. for all p > 0. This shows tha2a(p) > 5o — =, Vp > 0.
ix P = P} If 31 < Bo — e, thenforp < ((26)/(=p1 + Bo — £))?, we have
— min {—;rT(ATP + PA)x min {—;rT(ATP—I—PA).r—I— lp ZmTPb,‘ Sign(h?Pm) :
=1

2 T . T T
+— a” Pb; sign(b; Pz): 2 Pr =1
i ( }

m

2
2" Pr=1, |2"PB|. > 5} > B + 28 > B — =.
VP

=1

Combining this with (22), we also obtain (23) add(p) > [y — = for

. . iy — )2 ;
<min { —'(ATP + PA)x p < (28/(=31 + Bo — £))*. This completes the_ proof. g o
Theorem 2 says that the convergence rate increases as the ellipsoid
L om becomes smaller and it approaches an upper bgyyigl asp goes to
_i_i Z;ﬁpbi sign(b; Pr):2  Pr =1, 2" PB=0 0. Hence, the convergence rate is boundedspj2 for all p. For a
Pz givenp, a(p) can be obtained by computing the maximumiafr)

= min {—;L'T(ATP +PA)r:2"Pe=1, 2" PB = ()}

:ﬁo,

overd&(P, p). For the single input case, Theorem 1 provides a method

for determining if this maximum is negative. The exact value:gf)

can be computed with a procedure similar to the proof of Theorem 1.
Since the overall convergence rate is limiteddy 2, we would like

Itthen follows thaa(p) < f forall p > 0.To prove (19), it suffices 5, not to be too small. The following proposition will lead to an LMI

to show

that given any > 0, there exists @ > 0 such thaka(p) > approach to choosing for maximizing3o.

o — e Proposition 2:
Denote
Bo = sup A
Xo = {;z: ER":2TPx=1, 2TPB = ()} #
and st (A4 BF)' P+ P(A+ BF) < —\P. (24)
X(8) = {r €ER": 2 Pr=1, 2TPB|. < 5}. Proof: Notice that, for any", we have

It is clear thatlims_o dist(X(6), Xo) = 0, wheredist(-,-) is the

" ((A +BF)"P+P(A+ BF)) v=a"(A"P+PA)

Hausdorff distancé.By the uniform continuity of:™ (AT P + PA)x va'PB = 0.

on the surfacdx € R" : " Pz = 1}, we have that, given any,
there exists @ > 0 such that

min{—mT(ATP—I—PA),r <2 Pr= 1, |.77TPB|oo Sb} >00 —e.

It follows that
8o = min {—mT ((A + BF)TP

1) +P(A+BF)z:2"Pr =1, 2"PB = o}

ILet X, and X, be two bounded subsets Bf*. Their Hausdorff distance is > min {—wT ((A + BF)TP

defined as

where

Here, the vector norm used is arbitrary.

. . YP(A+BF))z:2"Pr= 1}

dist(X1, Xz) := max {d(x’l,x;),d(xﬁz,xl)} -
and, hence

T, )= sup  inf |21 — o). o > sup min {—IT ((A +BF)'P+P(A+ BF)) v

r1EXY z2€X2

2T Py = 1}. (25)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 7, JULY 2003 1253

We claim that with two feedback matriceB andH . We may actually discard both
andH but instead use the bang—bang coniro= —sign(b] Px),i =
1,2,...,m, or the saturated high-gain contrel= —sat(kB" Pz).

The final outcome is that under these control laws, the closed-loop
system will have a contractively invariant s&tP, p) and a guaran-

teed limit of the convergence rate /2 > 3/2.

Bo = sup min {—:ITT ((A + BF)TP + P(A+ BF)) T
7
2T Py = 1}. (26)

In view of (25), it suffices to show that for any > 0, there exists an

F = —kB" P, with k& > 0, such that IV. CONCLUSION

We have studied several issues related to the maximization of the
convergence rate for continuous-time linear systems with input sat-
uration. These issues include the maximal convergence control, the
maximal ellipsoid that can be made invariant with a bounded con-
This can be proven by exploiting the same idea used in the prooft{)‘?" the control laws that can prpduce the maximal invariant ellipsoid
Theorem 2 c). and the dependence of the maximal convergence rate on the Lyapunov

Denote function. The counterpart of these issues for discrete-time system are
studied in [7], where some of the results are quite different from those
in this note. For example, the maximal convergence control is contin-

min {—wT ((A +BF)'P+P(A+ BF)) v:x'Pr= 1}

Z /30 — £, (27)

B(F) = min {—wT ((A +BF)'P+P(A+ BF)) w:
2T Py = 1}.
[1]

(2]
(3]

From (26), we havely = supy G(F). It can be shown that
B(F) = max {A . (A+BF)"P+ P(A+ BF) < —/\P} .

This brings us to (24). O

The matrix inequality constraint in Proposition 2 indicates that the [4]
ellipsoid€ ( P, p) has a convergence rat¢2 under the linear state feed-
backu = Fz (for anyp > 0). From Proposition 2 and Theorem 2, we
see that the convergence rate is limited by the maximal value whichl®]
can be achieved with a linear state feedback and can actually approach
this maximal value ag goes to 0. For a fixed, 3, is a finite value.
Assume that4, B) is controllable, then the eigenvalues(ef + BF’)
can be arbitrarily assigned. If we also takeas a variable, ther 3, /2
can be made equal to the largest real part of the eigenvaluks-@& F'
(see the definition, as given in Section |, of the overall convergence rate

(6]

for a linear system). This means thtcan be made arbitrarily large.  [8]
But generally, aglo becomes very large, the matriX will be badly
conditioned, i.e., the ellipsoid (P, p) will become very thin in cer- [9]

tain direction, and hence very “small,” with respect to a fixed shape
reference set. On the other hand, as mentioned in [8] and [9], if our
only objective is to enlarge the domain of attraction with respect to 410]
reference set, some eigenvaluesdof- BF will be very close to the
imaginary axis, resulting in very smatf,. These two conflicting ob-
jectives can be balanced, for example, by prespecifying a lower bound ]
on /3, and then maximizing the invariant ellipsoid with respect to some
shape reference set. This mixed problem can be described as follows:

[11]

sup @
P>0,p,F,\H

s.t. a)atr C E(P,p)

b)(A+ BF)' P+ P(A+ BF) <0

C)E(P,p) C{z €R" : |Fr| <1}

d)(A+BH)'P+P(A+ BH) < 3P (28)
whereiXr is a shape reference set (see [7]-[9]). The constraint a) means
thatE(P, p) containsa.Xr. By maximizinga, (P, p) will be max-
imized with respect totr. The constraints b) and c) guarantee that
E(P, p) can be made contractively invariant and the constraint d) guar-
antees a lower bound on the convergence rate. This optimization
problem can be transformed into one with LMI constraints as those in
[71-[9]. By solving (28), we obtain the optimal ellipsoftl P, p) along

uous in the state and is determined in a quite different way.
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