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Output Regulation of Linear Systems With Bounded
Continuous Feedback

Tingshu Hu, Senior Member, IEEE, and Zongli Lin, Senior Member, IEEE

Abstract—This paper studies the classical problem of output
regulation for linear systems subject to control constraint. The
asymptotically regulatable region, the set of all initial conditions
of the plant and the exosystem for which output regulation is
possible, is characterized in terms of the null controllable region of
the antistable subsystem of the plant. Continuous output regula-
tion laws, of both state feedback type and error feedback type, are
constructed from a given stabilizing state feedback law. It is shown
that a stabilizing feedback law that achieves a larger domain of
attraction leads to a feedback law that achieves output regulation
on a larger subset of the asymptotically regulatable region. A
feedback law that achieves global stabilization on the asymptoti-
cally null controllable region leads to a feedback law that achieves
output regulation on the entire asymptotically regulatable region.

Index Terms—Bounded control, nonlinear control, output regu-
lation, regulatable region.

I. INTRODUCTION

S INCE THE formulation and solution of the problem of
output regulation for linear systems [4], there has been

continual efforts in extending this classical control problem to
various classes of nonlinear systems (see, for example, [1]–[3],
[13]–[16], [18], [21], and [26]). This paper revisits the output
regulation problem for linear systems with bounded controls.

There has been considerable research on the problem of sta-
bilization and output regulation of linear systems subject to con-
trol constraints. The problem of stabilization involves the issues
of the characterization of null controllable region (or, asymptot-
ically null controllable region), the set of all initial conditions
that can be driven to the origin by constrained controls in some
finite time (or, asymptotically), and the construction of feedback
laws that achieve stabilization on the entire or a large portion of
the asymptotically null controllable region. Recent years have
witnessed extensive research that addresses these issues. In par-
ticular, for an open-loop system that is stabilizable and has all its
poles in the closed left-half plane, it was established in [22] and
[23] that the asymptotically null controllable region is the en-
tire state space if the constrained control set contains the origin
in its interior. For this reason, a linear system that is stabiliz-
able in the usual linear sense and has all its poles in the closed
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left-half plane is said to be asymptotically null controllable with
bounded controls (ANCBC). For ANCBC systems subject to
actuator saturation, various feedback laws that achieve global
or semi-global stabilization on the null controllable region have
been constructed (see, for example, [19], [20], and [24]–[26]).
Here by semiglobal stabilization on the null controllable region
we mean the construction of a feedback law that achieves a do-
main of attraction large enough to include any a priori given
(arbitrarily large) bounded set in the null controllable region.

For exponentially unstable open-loop systems subject to ac-
tuator saturation, it was shown in [27] that the problem of sta-
bilization can be reduced to one of stabilizing its antistable sub-
system, whose null controllable region is a bounded convex
open set. A complete characterization of the null controllable
region for a general linear system was developed in [10], and
simple feedback laws were constructed that achieve semiglobal
stabilization on the null controllable region for linear systems
with only two exponentially unstable poles in [11]. In [12], feed-
back laws were constructed to achieve semiglobal stabilization
on the null controllable region for general linear systems subject
to actuator saturation.

In comparison with the problem of stabilization, the problem
of output regulation for linear systems subject to control con-
straint, however, has received relatively less attention. The few
works that have motivated our current research are [1], [2], [21],
[26]. In [21] and [26], the problem of output regulation was
studied for ANCBC systems subject to actuator saturation. In
[21], necessary and sufficient conditions on the plant/exosystem
and their initial conditions were derived under which output
regulation can be achieved, and feedback laws that achieve
semiglobal output regulation were constructed. In [1] and [2],
the authors made an attempt to address the problem of output
regulation for exponentially unstable linear systems subject
to actuator saturation. The attempt was to enlarge the set of
initial conditions of the plant and the exosystem under which
output regulation can be achieved. In particular, for plants with
only one positive pole and exosystems that contain only one
frequency component, feedback laws were constructed that
achieve output regulation on what we will characterize in this
paper as the regulatable region.

The objective of this paper is to systematically study the
problem of output regulation for general linear systems with
bounded controls. Unlike in the case for a linear system without
control constraint, where output regulation can be achieved
for all initial states, here in the presence of control constraint,
the set of initial states for which output regulation is possible
may not be the whole state–space. For instance, suppose that
we have an exponentially unstable plant, then it is known that
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the set of initial states of the plant that can be kept bounded
with constrained controls is not the whole state–space. The
set of initial states of the plant where output regulation is
possible is even more restricted. For this reason, we will start
our investigation by characterizing the set of initial states of
the plant and the exosystem where output regulation is possible
and we will call this set the regulatable region. It turns out that
the regulatable region can be characterized in terms of the null
controllable region of the antistable subsystem of the plant.

We then proceed to construct output regulation laws from a
given stabilizing state feedback law. We show that a stabilizing
feedback law that achieves a larger domain of attraction leads
to a feedback law that achieves output regulation on a larger
subset of the regulatable region and, a stabilizing feedback law
on the entire null controllable region leads to a feedback law that
achieves output regulation on the entire regulatable region.

This paper generalizes and enhances our earlier results in [7].
First, in [7], we restricted our attention to systems whose actua-
tors are subject to symmetric saturation. In practical systems, the
actuators may subject to asymmetric saturation and there may
exist coupling among different actuators. For this reason, we
consider general convex control constraint in this paper. Second,
the controllers constructed in [7] have a switching nature and are
discontinuous at the switching surfaces. In this paper, we will
construct continuous feedback laws for output regulation.

The remainder of this paper is organized as follows. In Sec-
tion II, we state the problem of output regulation for linear sys-
tems with bounded controls. Section III characterizes the reg-
ulatable region. Sections IV and V respectively construct state
feedback and error feedback laws that achieve output regulation
on the regulatable region. Section VI includes a numerical ex-
ample along with some discussion on robustness issues. Finally,
Section VII draws a brief conclusion to our current work.

Throughout this paper, we will use standard notation.
For a vector , we use and to denote the
vector -norm and the two-norm. For a measurable function

, we define . We
use to denote the standard saturation function, i.e., the
th component of is .

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first recall from [4] and [16] the classical
formulation and results on the problem of output regulation for
linear systems. This brief review will motivate our formulation
as well as the solution to the problem of output regulation for
linear systems with bounded controls.

Consider a linear system

(1)

The first equation of this system describes a plant, with state
and input , subject to the effect of a disturbance

represented by . The third equation defines the error
between the actual plant output and a reference signal
that the plant output is required to track. The second equation
describes an autonomous system, often called the exosystem,

with state . The exosystem models the class of distur-
bances and references taken into consideration.

The control action to the plant, , can be provided either by
state feedback or by error feedback. The objective is to achieve
internal stability and output regulation. Internal stability means
that if we disconnect the exosystem and set equal to zero then
the closed-loop system is asymptotically stable. Output regula-
tion means that, for any initial conditions of the plant and the
exosystem, the state of the plant is bounded and as

.
The solution to the output regulation problem was first ob-

tained by Francis in [4]. It is now well known that under some
mild necessary assumptions, the output regulation problem is
solvable if and only if there exist matrices and that solve
the linear matrix equations

(2)

For more details about the assumptions and the solution, see [4]
and [16].

In this paper, we study the problem of output regulation for
the linear system (1) subject to control constraint. The control
constraint is described by a compact convex set that
contains the origin in its interior. A control is said to be
admissible if is measurable and for all .
Denote

Given , and , it is easy to see
that by the convexity of .

Following [4], [16] and [21], we make the following neces-
sary assumptions on the plant and the exosystem.

A1) The matrix (2) has solution ;
A2) The matrix has all its eigenvalues on the imaginary

axis and is neutrally stable.
A3) The pair is stabilizable.
A4) The initial state of the exosystem is in the following

set:

(3)

for some and is compact. For later use,
we denote .

We note that the compactness of can be guaranteed by
the observability of . Indeed, if is not observable,
then the exosystem can be reduced to make it so. As will be
seen shortly, the exosystem affects the output regulation prop-
erty through the signal . It is also clear that if ,
then , for all .

Under the control constraint, some initial conditions of the
plant and exosystem may make it impossible to keep the state
bounded or to drive the tracking error to 0 asymptotically. For
instance, if the matrix has some eigenvalues in the right-half
plane, there always exist some initial states which will make
the state trajectory go unbounded no matter what admissible
control is applied. In view of this, the first task of this paper is
to characterize the set of initial conditions for which there exist



HU AND LIN: OUTPUT REGULATION OF LINEAR SYSTEMS WITH BOUNDED CONTINUOUS FEEDBACK 1943

admissible controls to keep the state bounded and to drive the
tracking error to 0 asymptotically.

III. REGULATABLE REGION

To begin with, we define a new state and rewrite
the system equations as

(4)

This particular state transformation has been traditionally used
in the output regulation literature to transform the output regu-
lation problem into a stabilization problem. The remaining part
of this paper will be focused on system (4). All the results can
be easily restated in terms of the original state of the plant by
replacing with . Here we note that, when , the
internal stability in terms of is the same as that in terms of .
As to output regulation, it is clear that goes to zero asymp-
totically if does. To combine the objectives of achieving in-
ternal stability and achieving output regulation, we will define
the notion of regulatable region in terms of driving to zero
instead of driving to zero. As will be explained in detail
in Remark 1, this will result in essentially the same description
of the regulatable region and will avoid some tedious technical
discussions.

Definition 1:

1) Given a , a pair is regulatable
in time if there exists an admissible control , such
that the response of (4) satisfies , for all .

2) A pair is regulatable if there exist a finite
and an admissible control such that , for all

.
3) The set of all regulatable in time is denoted as

and the set of all regulatable is referred
to as the regulatable region and is denoted as .

4) The set of all for which there exists an admis-
sible control such that the response of (4) satisfies

is referred to as the asymptotically reg-
ulatable region and is denoted as .

It is clear that, if , we must have
for all , since the only way to keep for all
is to use a control to cancel the term for all .
This justifies Assumption A4). Because of Assumption A4), the
requirement in Definition 1 that , for all can be
replaced with and it is clear that
if .

We will describe , and in terms of the null
controllable region of the plant , , which
is defined as follows.

Definition 2: The null controllable region in time , denoted
as , is the set of that can be driven to the origin in
time by admissible controls. The null controllable region, de-
noted as , is the set of that can be driven to the origin
in a finite time by admissible controls. The asymptotically null
controllable region, denoted as , is the set of all that can
be driven to the origin asymptotically by admissible controls.

Clearly, and

(5)

Here, we note that the minus sign “ ” before the integral can
be removed only if is symmetric. It is also clear that the null
controllable region and the asymptotically null controllable re-
gion are identical if the pair is controllable. Some simple
methods to describe and were recently developed in [10]
for the case where is a unit box.

To simplify the characterization of and , let us assume,

without loss of generality, that , , ,

and

(6)

where is semistable (i.e., all its eigenvalues are in
the closed left-half plane) and is antistable (i.e.,
all its eigenvalues are in the open right-half plane). The system
including the antistable subplant and the exosystem

(7)

is of crucial importance. Denote its regulatable regions as
, and , and the null controllable regions for the

system as and . Then, the asymptot-
ically null controllable region for the system is
given by (see, e.g., [6]), where is a bounded
convex open set. Denote the closure of as , then

Also, if is a closed subset of , then there is a finite
such that .

Theorem 1: Let be the unique solution to the
matrix equation

(8)

and let . Then, the following hold.

1)
2) .
3) .
4) If , then will grow unbounded

whatever admissible control is applied.
Proof:

1) Given and an admissible control
, the solution of (7) at is

(9)



1944 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 11, NOVEMBER 2004

Since , we have

noting that and commute, and and com-
mute. Hence

(10)

Therefore

(11)

To prove 1), it suffices to show that
.

If , then by (5), there exists an
admissible control such that

Let for and for
, then is admissible by Assumption A4, and it

follows from (11) that and for all
. Therefore, . On the other hand, if

, then there exists an admissible
such that . Also by (11), we have

which implies that .
2) Since is antistable and is stable, we have that

. It follows from (10) that

(12)

First, we show that
. Since is open, there exists an such that

. Also, there exists
a such that

. Since , there is a
such that . It follows
from 1) that .

Next, we show that
. If , then
for some . It follows

from the definition of that there is an admissible
control such that

(13)

Denote . For each
, there is an admissible control such that

It follows from (12) and (13) that

The last step follows from the fact that
and for all , and that the input

for ,
for is admissible. This implies that

Since is nonsingular, the set contains the origin
in its interior. It follows that .

3) We first show that . It is easy to see that
. To show , suppose we are

given . Then there exits a finite time and
an admissible control such that since is
an open set containing the origin. For , let

with . Since , we have
and, hence, and

Since , we have a control and a finite
such that . So, we have ,

and hence . Therefore, .
Now, we show that . Suppose

, then there exists an
admissible control such that . This
implies that .

We next show that . Suppose
, then there exist a

and an admissible control such that . Since

is inside the asymptotically null controllable

region for the system under the constraint
(by [6]), there exists a for

such that . Hence .
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This establishes that and hence
.

4) Suppose that , then there exists an
such that . Since

there exists a such that

Since the smallest singular value of increases expo-
nentially with , it follows from (9) that will grow
unbounded whatever admissible control is applied.

Remark 1: Here, we justify the requirement of driving ,
instead of , to zero in Definition 1. From the previous the-
orem, we see that is regulatable if and only if

. By item 4) of the theorem, this is essentially the nec-
essary condition to keep bounded. Hence, even if the re-
quirement is replaced with ,
we still require to achieve output regula-
tion. The gap only arises from the boundary of . It is unclear
whether it is possible to achieve with
bounded for . Since this problem involves
too much technical detail and is of little practical importance
(we will not take the risk to allow , otherwise
a small perturbation may cause the state to grow unbounded),
we will not address this subtle technical point here.

Remark 2: We now interpret the characterization of the reg-
ulatable region in terms of the original state . Without loss of
generality, we also assume that and are partitioned as in
(6). Suppose that , and are partitioned accordingly as

Then . Hence if and only if
. Combining (2) and (8), it is easy to

verify that

Therefore, if we redefine the regulatable region in terms of , it
would be the set of such that , where

satisfies

(14)

IV. STATE FEEDBACK CONTROLLER

In view of what has been discussed in the previous section,
the set of initial conditions for which output regulation can be
achieved with any feedback law must be a subset of . In this

section, we would like to search for a state feedback law such
that this subset is as large as possible, or, as close as possible to

.
Consider the connection of the system

(15)

with a dynamic feedback

(16)

where and is the initial value of , which

will be a fixed vector. Denote the time response of to the
initial state as and define

Then, is the set of initial conditions where output regulation
is achieved by (16). It is clear that . Our objective is
to design a control law of the form (16) such that is as large
as possible, or as close to as possible.

We assume that a continuous stabilizing state feedback law
, where , has been designed and the

equilibrium of the closed-loop system

(17)

has a domain of attraction . In addition, we also assume
that there exists a positive number such that the system

(18)

has a bounded invariant set which contains the origin
in its interior, and

as long as and . The invariance of
in the presence of disturbance is imposed to allow the dy-

namics of , which will be made clear shortly. This is crucial
for the continuity of the control in (16), as compared with the
switching feedback law in [7]. In [11], we designed a feedback
law of the form for systems with two antistable
poles to achieve semiglobal stabilization for systems subject to
input saturation. This means that can be made to include any
bounded subset of . Since this feedback law is locally linear,
there always exists a bounded invariant set , in particular, an
invariant ellipsoid, over which the desired disturbance rejection
property is ensured. For more general systems, an LMI optimiza-
tion method was proposed in [9] for designing feedback laws to
achieve the desired disturbance rejection property. In [9], the do-
main of attraction was estimated with an invariant ellipsoid and
the objective was to maximize the invariant ellipsoid.

We also make the assumption that there exists a matrix
such that

(19)
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This will be the case if and have no common eigenvalues.
With the decomposition in (6), if we partition accordingly as

, then satisfies .

Denote

(20)

From Theorem 1 and , we see that

a) the set increases as increases, and if , then
;

b) in the absence of , .
We will construct an output regulation law (16) from the sta-

bilizing feedback law in such a way that .
It is then clear that larger will lead to larger . Moreover, if

is chosen such that , then and .
In view of these arguments, our objective of producing a large

can be achieved by designing such that is as large as
possible and to construct an output regulation law (16) from
such that . Efforts have been made to enlarge in
[9] and [11]. Here, we focus on the construction of an output
regulation law (16) from a given such that .

First, let us consider a simple feedback law
and see what it can achieve for .

Lemma 1: For system (15), let . Consider
the closed-loop system

(21)

For this system, is an invariant set and for all
, .
Proof: Because of (19), we can replace in (21) with

, i.e.,

Define the new state , we have

which has a domain of attraction . This also implies that is
an invariant set for the -system.

If , then . It follows that
for all , which means that

is invariant, and .

Lemma 1 says that, for any , the feedback
will cause to approach zero

and to approach , which is bounded. In [7], a finite
sequence of control laws were constructed to cause to ap-
proach with a constant and increasing in-
tegers . This process would make arbitrarily small.
The controller of [7] has a switching nature and the control is
discontinuous. In this paper, we would like to construct a feed-
back law whose control is continuous in time. To this end, we
introduce a continuously decreasing variable and we at-
tempt to make approach .

Our controller takes the following form:

if

if

if or

if and

(22)

where the value of the parameter is to be specified shortly.
We see that the state is introduced to avoid singularity. From
the state equations, it can be seen that for all .
The control is continuous in time since , and
are continuous.

Define

(23)

Since and are bounded, .
Theorem 2: Consider the connection of the system (15) with

the controller (22). Let be chosen from . Then, for all
,

i.e., .
Proof: For the closed-loop system

Applying (19), we obtain

which can be rewritten as

Let , we have

Now, suppose that . Since
, we have . If , then

, and we have

By assumption, the origin of this system has a domain of attrac-
tion . Since and is a neighborhood of the origin,
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will enter at some . By this time, we still have
. For

and as long as . Now, the dynamic of the system
is

(24)

Since , we have

for all and . By assumption, is an invariant
set for the system (24) and hence we have for all

.
As increases, will decrease until . Let the

time when first reaches be , then for , we have
, , , and

Since and , by assump-
tion on the stabilizing controller, we have

Note that for

It follows that .
Finally, it is straightforward to verify that

for all ( , , respectively, noting that
and ). Therefore,

for all , i.e., .

V. ERROR FEEDBACK

Consider again the open-loop system (4). Here in this section,
we assume that only the error is available for feedback.
Also, without loss of generality, assume that the pair

is observable. If it is detectable, but not observable, then the un-
observable modes must be the asymptotically stable eigenvalues
of , which do not affect the output regulation [see (4)] and,
hence, can be left out.

Our controller consists of an observer and a state feedback
law which is based on a stabilizing feedback law .
Because of the observer error, we need an additional assump-
tion on so that some class of disturbances can be tolerated.
Consider the system

(25)

where , and and stand for the disturbance
arising from, for example, the observer error. Assume that
is continuous and the following conditions are satisfied.

C1) For the case where , there exist a set
and positive numbers and such that the solution
of (25) satisfies

where .
C2) For the case where , there exists a

and a set containing the origin in its interior, such
that is invariant for all . Moreover, for
every , as long as and

.
When the condition C1) is true, the system is said to satisfy
an asymptotic bound from with gain and restriction
[27]. In this paper, the condition is imposed to ensure that is
bounded and as , we have . Condition C2) is
imposed for the continuity of the feedback law, as in Section IV.
For , we would like to make it as large as possible. For ,
since its size will affect the overall convergence rate, it should
not be too large.

Remark 3: In [8], a saturated linear feedback
satisfying condition C1) is constructed

for second-order antistable systems and the set can be
made arbitrarily close to the null controllable region . Since
the feedback law is linear in a local region, there always exist

and satisfying condition C2).
For more general systems, we can use the method in [9] to

design a saturated linear feedback law along with a set (as
large as possible) to satisfy condition C1). Although this method
was developed for disturbances of the form , it can be easily
adapted for dealing with disturbances of the form , which can
be transformed into the form of in a bounded region of the
state space. Also, since the feedback law is linear in a local re-
gion, there always exist and satisfying condition C2).

For the feedback laws constructed in [9] and [8], the gain
in condition C1) can be estimated. However, we will not discuss
how to estimate this gain since it will not be used in this paper.

We use the following observer to reconstruct the states and
,

(26)

Letting , , we can write the composite
system as

(27)

Now, we have to use instead of to construct a
feedback controller. Since is observable, we can choose

appropriately such that the estimation error

decays arbitrarily fast. Moreover, the following fact is easy to
establish.
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Lemma 2: Denote

Given any (arbitrarily small) positive numbers and , there
exists an such that

where can be any matrix norm.
Because of this lemma, it is expected that the controller based

on the observer can achieve almost the same performance as the
state feedback controller.

Let be in the interior of , i.e., the distance from
any point in to the boundary of is greater than a fixed
positive number. Given a number , denote

It is clear that the set increases as increases. From The-
orem 1, we see that if , then the projection of to the

–subspace equals to . To enlarge the set of initial con-
ditions where output regulation is achieved, it suffices to con-
struct a state feedback law to enlarge , choose a
set very close to and design an observer such that for all

, . The objective in this
section is to construct such an observer along with a feedback
law, given , and in the interior of .

Consider (27). For simplicity, we also assume that there exists
a matrix that satisfies

(28)

Letting , we obtain . Suppose that
, then . Since is

in the interior of , there exists a such that, with any
admissible control , we have

(29)

What we are going to do is to choose an such that the estima-
tion error is sufficiently small after , and to design a feedback
law to make with .

Lemma 3: There exists an such that, under
the control

the solution of (27) satisfies

Proof: Let . Since
, there exists a such that

(30)

Let , by Lemma 2, there exists an
such that for all

(31)

We now consider the system after . For , the closed-
loop system is

By condition C1), this system satisfies an asymptotic bound
from with a finite gain and restriction . It follows from
(30), (31), and that

Lemma 3 means that we can keep bounded if
. Just as the state feedback case, we want

to move to the origin by making
with . Since the feedback has to be based on

, we will cause by driving
.

Our control law based on the state of the observer is as fol-
lows:

if

if

if or

if and

(32)

where the value of the parameter is to be specified.
Define

(33)

Theorem 3: Let be chosen from . By Lemma 2, there
exists an such that for all and

and

Consider the connection of the system (27) and the controller
(32) with thus chosen. Then, for all

Proof: Under the control law (32), we have
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Replacing with , we have

Recalling that , we obtain

If we define , then similar to the proof of
Theorem 2

(34)

For , and .
If , then and will stay at the value 1 and the
control will continue to be . By Lemma 3, we
will have . Since and

and contains the origin in its interior, there
will be a finite time such that

. After , and will start to decrease and for
all . Since , it can be verified that

for all . Hence

By the choice of , we have

By condition C2), will be an invariant set for and as
, , , , , hence, the term

will tend to zero. It follows that will converge to zero and so
will , and .

The error feedback law is constructed on a stabilizing feed-
back law satisfying conditions C1) and C2). So far,
we have assumed that the system model is accurate. To ac-
count for the model uncertainties, we can impose further re-
quirements on the sets and , specifically, that they are both
strictly invariant. For , being strictly invariant implies that

points strictly inward of the boundary
of for all and . For , being strictly
invariant implies that points strictly in-
ward of the boundary of for all and .
These strict invariance properties will guarantee that the sets are
invariant in the presence of small parameter perturbations and
will also guarantee a certain convergence rate.

The design methods in [8] and [9] can also be used to con-
struct such strictly invariant sets and . Actually, in [8], the
set is already an invariant set and it can be shown that for

sufficiently small, the set is strictly invariant.
This paper will not pursue the exact characterization of the

amount of uncertainty that the system can tolerate but will use
simulation results to demonstrate this aspect.

VI. NUMERICAL EXAMPLE AND SOME ROBUSTNESS ISSUES

A. Model

In this section, we apply the results developed in Sections IV
and V to the control of an aircraft model. Consider the longi-
tudinal dynamics of the TRANS3 aircraft under certain flight
condition [17]

(35)

with

and , where the state consists of the ve-
locity (feet/s, relative to the nominal flight condition), the
angle of attack (degree), the pitch rate (degree/s) and the
Euler angle rotation of aircraft about the inertial -axis (de-
gree), the control (degree) is the elevator input, whose value
is scaled to between (corresponding to ). Hence, the
control constraint set is . The design objective is to
reject the disturbance , where has two frequency compo-
nent of 0.1 rad/s and 0.3 rad/s. Clearly, this problem can be cast
into an output regulation problem for (1) with

and . A solution to the linear matrix (2) is

Assume that the disturbances are bounded by
. Thus, .

The matrix has two stable eigenvalues
and two antistable ones, . With state transfor-
mation, we obtain the matrices for the antistable subsystem
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For the state feedback case, we don’t need to worry about the ex-
ponentially stable -subsystem since its state is bounded under
any bounded input and will converge to the origin as
the combined input goes to zero. Therefore, we only need to
consider the problem of output regulation for the antistable sub-
system

A state feedback controller for this subsystem will also work for
the original system.

The solution to is

B. State Feedback Law

We first construct a stabilizing feedback law for the
antistable system

(36)

For , let be the solution to the algebraic Riccati
equation

and let . It was shown in [8] that as and
, the domain of attraction of the origin of the system

will approach the null controllable region of the system (36).
To ensure some capability of disturbance rejection, should be
greater than zero. Here, by choosing and , we
obtain

The boundary of the domain of attraction, , for the system

is plotted in Fig. 1 as the larger solid curve. The outer dashed
closed curve is , the boundary of the null controllable region.

Now, we choose . Using the analysis
method in [9], we detected an invariant set for the system

We see that satisfies the assumptions in Section IV.
In Fig. 1, the innermost closed-curve is the boundary of . To
achieve a fast convergence rate, we have chosen a small so
that as defined in (23) would be relatively large. The resulting

is 0.0085. In the controller (22), we choose .

Fig. 1. Domain of attraction and an invariant set.

Fig. 2. Tracking error: state feedback.

In simulation, we choose an initial value
which is very close to the boundary of , or very
close to the boundary of . The tracking error is shown in
Fig. 2 and the control is shown in Fig. 3. A trajectory of

is plotted in Fig. 4 along with and
, where the initial state is marked with “ .”

C. Error Feedback Law

We next design an error feedback law. For simplicity, the ini-
tial state of the observer is set to 0. Using the design method in
Section V, we choose and the observer gain is designed
such that the eigenvalues of are , ,

, . The control law is obtained from the
state feedback law by replacing and with and , respec-
tively. The initial conditions of the plant and the exosystem are
the same as those of the state feedback case. The tracking error
is shown in Fig. 5 and the control is shown in Fig. 6.

A trajectory of is plotted in Fig. 7
along with and , where the initial state is marked
with “ .” The point marked with “ ” is the state of at
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Fig. 3. Control: state feedback.

Fig. 4. Domain of attraction and a trajectory of v under state feedback.

Fig. 5. Tracking error: error feedback.

. For comparison, we also plotted part of the trajectory
under the state feedback control in dotted curve. The estimation
errors and are plotted in Fig. 8 for the first 2.5 s.

Fig. 6. Control: error feedback.

Fig. 7. Trajectory of v under error feedback.

Fig. 8. Estimation error.

D. Robustness Issues

We demonstrate the robustness of the system under error
feedback by simulation. Let and the feedback law be designed
as in Section VI-C, where all the eigenvalues of have real
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Fig. 9. Tracking errors under perturbed S.

Fig. 10. Trajectories of v under perturbed S.

part . We first simulated the system by replacing of
the exosystem with and , respectively. In each of
the cases, the tracking error converged to a very small interval
around 0, as plotted in Fig. 9. The two trajectories of are
plotted in Fig. 10.

We next examine the robustness against measurement errors.
As was shown in [5], for some type of nonlinear systems, ar-
bitrarily small measurement noise may cause instability. For a
system designed with the method in this paper, we recall that
the strict invariance requirement on the sets and will
guarantee certain degree of robustness against parameter uncer-
tainties and external disturbances. It is of interest to know how
much robustness the system possesses. It turns out that the ro-
bustness against measurement errors is extremely weak for the
current design. The output regulation can be guaranteed only
for , with . The reason appears to
be the extremely high observer gain, whose maximal element is

. It seems that the high observer gain also mag-
nifies the measurement error.

Fig. 11. Tracking errors under perturbed C , Case 1.

Fig. 12. Tracking errors under perturbed C , Case 2.

Better robustness against measurement error can be achieved
by reducing the observer gain. For example, if we place the
eigenvalues of at

then the maximal elemment of is and output
regulation can be achieved for , ,
with . Fig. 11 plots the traking errors under different
measurement errors. The initial condition is the same as that in
Fig. 10.

By choosing different and different for the feedback law
, the robustness against measurement error can be

further enhanced, with possible degradation of transient perfor-
mances.For instance,wechoose toplacetheeigenvaluesof at

and we choose

then output regulation can be achieved for ,
, with . Fig. 12 plots the tracking er-

rors under different measurement perturbations. The initial con-
dition is the same as that in Fig. 10. However, the convergence



HU AND LIN: OUTPUT REGULATION OF LINEAR SYSTEMS WITH BOUNDED CONTINUOUS FEEDBACK 1953

of the tracking error is much slower than that in Fig. 11. We
have also carried out simulation with .
The maximal that can be tolerated depends on .

With a low observer gain, the parameter would be large
and the initial states of the plant and exosystem have to be re-
stricted in a region much smaller than the regulatable region.
This shows a typical situation of trading the size of the set of
initial conditions for robustness against parameter uncertainties.

From the simulation results, we see that there may exist
conflict among the convergence performance, the robustness
against model uncertainties and the size of the set of initial
conditions. The feedback law and the observer gain have to be
carefully designed to balance all these conflicting objectives.
This problem will be further pursued in our future research.

VII. CONCLUSION

In this paper, we have systematically studied the problem of
output regulation for linear systems with bounded controls. The
plants considered here are general and can be exponentially un-
stable. We first characterized the regulatable region, the set of ini-
tial conditions of the plant and the exosystem for which output
regulation can be achieved. Based on given stabilizing state feed-
back laws, we then constructed state feedback laws and an error
feedback law, thatachieveoutput regulationonasubsetof the reg-
ulatable region. The size of this subset depends on the domain
of attraction under the given stabilizing state feedback law. The
design method is demonstrated with an example and robustness
issues are discussed through simulations. Further analysis on ro-
bustness will be pursued in our future study.
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