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Properties of the Composite Quadratic Lyapunov Functions

Tingshu Hu and Zongli Lin

Abstract—A composite quadratic Lyapunov function introduced re-
cently was shown to be very useful in the study of set invariance properties
for linear systems with input and state constraints and for systems with a
class of convex/concave nonlinearities. In this note, more properties about
this function are revealed. In particular, we study the continuity of the
optimal parameter involved in this function. This continuity is crucial in
the construction of a continuous feedback law which makes the convex
hull of a group of ellipsoids invariant.

Index Terms—Convex hull, dual set, level set, Lyapunov function.

I. INTRODUCTION

Lyapunov functions play an important role in the study of nonlinear
systems and the construction of Lyapunov functions is one of the most
fundamental problems in systems theory. The most popular types of
Lyapunov functions are the quadratic functions, piecewise-linear func-
tions and piecewise-affine functions (see, e.g., [1], [2], and [15]).

For a general nonlinear system, there is no systematic method for
constructing a Lyapunov function. If we restrict our attention to a
certain category of nonlinear systems, we may have a better chance
to identify a class of Lyapunov function candidates. For example,
[13] constructed strict Lyapunov functions for periodic time-varying
systems, [11], [12], [16] constructed Lyapunov functions for some
cascaded nonlinear systems, and [10] proposed a class of piecewise
quadratic functions for switched systems. More recently, we proposed
a composite quadratic Lyapunov function for constrained control
systems in [8]. We note that, both the piecewise quadratic function
in [10] and the composite quadratic function in [8] are pertinent to
quadratic functions and are generated by a set of positive definite
matrices. As a result, the analysis problems in these papers were
transformable into linear matrix inequalities (LMIs).

The composite quadratic Lyapunov function turned out to be very
effective in dealing with constrained control systems as well as a class
of more general nonlinear systems. For a constrained control system, a
simple quadratic Lyapunov function could be a good candidate for local
stability analysis and its level sets, the invariant ellipsoids could be used
as estimates of the domain of attraction (see, e.g., [5], [7], and [18]). It
is clear that the union of a group of invariant ellipsoids is also invariant.
In [8], the composite quadratic Lyapunov function was introduced for
further enlargement of the estimation of the domain of attraction. It was
shown that, for a system under a given saturated linear feedback, the
convex hull of a group of invariant ellipsoids is also invariant. More-
over, if we have a group of ellipsoids, each invariant under an indi-
vidual saturated linear feedback, then a nonlinear feedback law can be
constructed to make their convex hull invariant. In [6], the composite
quadratic Lyapunov functions were used to study the invariance of the
convex hull of ellipsoids for a class of nonlinear systems satisfying
a generalized sector condition. The generalized sector is bounded by
two symmetric functions which are concave or convex in the right-half
plane.
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This note is intended to complement the results in [8]. We will reveal
additional properties about the composite quadratic function and its
level sets.

Notation

— For two integers k1, k2, k1 < k2, we denote I[k1; k2] =
k1; k1 + 1; . . . ; k2.

— A symmetric positive–definite (semidefinite) matrix P is de-
noted as P > 0(P � 0). For a P 2 Rn�n, P > 0, and a
� 2 (0;1), denote E(P; �) := fx 2 Rn : x0Px � �g. For
simplicity, we use E(P ) to denote E(P; 1).

— For a vector c 2 Rn, defineL(c) := fx 2 Rn : jc0xj � 1g.
— �N :=  2 RN : N

j=1
j = 1; j � 0 :

— For a set S and a scalar �, �S = f�x : x 2 Sg.

II. COMPOSITE QUADRATIC FUNCTION AND SOME PRELIMINARIES

A. Composite Quadratic Function

With a positive–definite matrix P 2 Rn�n, a quadratic function
can be defined as V (x) = x0Px. For a positive number �, a level set
of V (x), denoted LV (�), is

LV (�) := fx 2 Rn : V (x) � �g = E(P; �):

In [8], we introduced a function which is determined by a group of
positive–definite matrices P1; P2; . . . ; PN 2 Rn�n. Let Qj = P�1

j ,
j 2 I[1; N ]. For a vector  2 RN , define

Q() :=

N

j=1

jQj P () := Q
�1():

Since Q(), P () > 0 for all  2 �N , these two matrix functions are
analytic in  2 �N . The composite quadratic function is defined as

Vc(x) := min
2�

x
0
P ()x: (1)

Clearly, Vc(x) is a positive definite function. For � > 0, the level set
of Vc(x) is

LV (�) := fx 2 Rn : Vc(x) � �g :

Two useful properties of this composite quadratic function were pre-
sented in [8]. First, its level set is the convex hull of the level sets of
x0Pjx, the ellipsoids E(Pj ; �), j 2 I[1; N ]; Second, it is continuously
differentiable with the partial derivative

@Vc

@x
= 2P (�)x (2)

where � is an optimal  solving (1).
In [8], we applied the composite quadratic Lyapunov function in the

study of the invariance of ellipsoids and their convex hull for the fol-
lowing constrained control system:

_x = Ax +Bu

where x(t) 2 X0 � Rn, u(t) 2 Rm, and jui(t)j � 1. One of the
main results is that if each ellipsoid from a group E(Pj), j 2 I[1; N ],
is invariant under the same saturated linear feedback law u = sat(Fx)
by certain condition, then the convex hull of these ellipsoids is also
invariant. Another main result is that if each ellipsoid from a group
E(Pj), j 2 I[1; N ], is invariant under a corresponding saturated linear
feedback lawu = sat(Fjx) by certain condition, thenwe can construct
a nonlinear feedback law u = F (�(x))x to make the convex hull
of the ellipsoids invariant. It was established that the continuity of the
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new feedback law u = F (�(x))x depends on the continuity of the
function �(x). We are interested in the continuity of feedback laws
not only because it facilitates implementation but also it is beneficial
to the robustness of the system against sensor and actuator noise [17].
For this reason, the main task of this note is to derive conditions under
which �(x) is continuous in x. We will also reveal some interesting
properties about the function Vc(x) and its level set.

B. Some Facts About Convex Sets

For easy reference, we collect in this section some results from
convex analysis (e.g., see [4]).

The convex combination of x1; x2; . . . ; xk 2 Rn is an element of
the form k

j=1 jxj ,  2 �k . A set S is convex if and only if it con-
tains every convex combination of its elements.

The convex hull of a setS, denoted cofSg, is the set of all the convex
combinations of the elements in S. If S = [kj=1Cj and each Cj is
convex, then

cofSg =

k

j=1

jxj :  2 �k; xj 2 Cj ; j 2 I[1; k] :

Let S be a compact convex set.

— We say that x0 2 S is an extreme point of S if it cannot be
represented as the convex combination of other points in S,
i.e.,

x0 =

k

i=1

ixi;  2 �k; if and only if

x1 = x2 = � � � = xk = x0:

— A hyperplane c0x = 1 is a supporting hyperplane of S if
c0x � 1, 8 x 2 S.

— A hyperplane c0x = 1 is a supporting hyperplane of S at
x0 2 @S if c0x � 1, 8 x 2 S and c0x0 = 1. If c0x = 1 is
a supporting hyperplane at x0, then the vector c is normal to
S at x0, i.e., c0(x� x0) � 0 for all x 2 S.

— The intersection of a supporting hyperplane with the set S is
called an exposed face of S. Every x0 2 @S is in an exposed
face. Let x0 be an element of an exposed face E. If x0 is
represented as the convex combination of the elements of S,
then these elements must all belong to E.

Fact 1: Let S be a compact convex set. A point x0 is an extreme
point of S if and only if it is an extreme point of any exposed face
containing it.

This fact implies that, if x0 2 S is not an extreme point, then it is not
an extreme point of any exposed face. The following are some relations
between an ellipsoid and a hyperplane.

Fact 2 [7]: For a vector c 2 Rn and a matrix P > 0, E(P ) � L(c)
if and only if c0P�1c � 1.

1) The equality c0P�1c = 1 holds if and only if the ellipsoid E(P )
and the hyperplane c0x = 1 has a unique intersection at x0 =
P�1c. In this case, 1 = c0x0 > c0x 8 x 2 E(P ) n fx0g.

2) If c0P�1c < 1, then the ellipsoid E(P ) lies strictly between the
hyperplanes c0x = 1 and c0x = �1 without touching them.

III. PROPERTIES OF THE LEVEL SET AND ITS DUAL SET

It is easy to see that Vc(kx) = k2Vc(x). Hence, LV (�) =
�1=2LV (1). For this reason, we will be focused on LV (1) in this
section.

Property 1: Any exposed face of LV (1) is a polygon with N or
less extreme points (vertices) which belongs to @E(Pj), j 2 I[1; N ].

Proof: Recall that LV (1) is the convex hull of E(Pj); j 2
I[1; N ]. First, we note that if

x0 2 LV (1) n [Nj=1E(Pj)

then x0 can only be represented as the convex combination of at least
two points in [Nj=1E(Pj) and, hence, it is not an extreme point of
LV (1). This implies that, if x0 is an extreme point ofLV (1), we must
have x0 2 @E(Pj) for some j. (However, the converse is not neces-
sarily true.)

Let c0x = 1 be a supporting hyperplane, then c0x � 1 for all x 2
LV (1). Since LV (1) is symmetric, we must also have c0x � �1 for
all x 2 LV (1). HenceLV (1) � L(c) and E(Pj) � L(c). Denote the
intersection of c0x = 1withLV (1) asE, thenE is an exposed face of
LV (1). By Fact 1, any extreme point ofE must be an extreme point of
LV (1), which belongs to @E(Pj) for some j. By Fact 2, c0x = 1 has
at most one intersection with each of @E(Pj), it follows that E has at
most N extreme points which belong to @E(Pj), j 2 I[1; N ]. Hence
E is a polygon with at most N vertices.

Since Vc(x) is positive definite, convex and Vc(kx) = k2Vc(x), we
can use it to define a norm

kxkc := V
1=2
c (x):

The dual set of LV (1) is defined as

L
�

V (1) := fs 2 Rn : s0x � 1 8 x 2 LV (1)g: (3)

Geometrically, L�

V (1) consists of the set of s 2 R
n such that

LV (1) lies between the two hyperplanes s0x = 1 and s0x = �1,
i.e., LV (1) � L(s). Since LV (1) is the convex hull of E(Pj),
j 2 I[1; N ], L�

V (1) consists of all the s such that E(Pj) � L(s) for
all j 2 I[1; N ]. It follows from Fact 2 that s 2 L�

V (1) if and only if

s
0

P
�1

j s � 1 8 j 2 I[1; N ]:

Hence

L
�

V (1) = s 2 Rn : s0P�1

j s � 1; j 2 I[1; N ]

= \Nj=1 E P
�1

j :

In summary, we have the following.
Property 2: The dual set of LV (1) is \Nj=1E P�1

j .
The dual norm of k � kc is defined as

ksk�c := maxfs0x : kxkc � 1g = maxfs0x : x 2 LV (1)g: (4)

It is clear from (3) and (4) that

L
�

V (1) = fs 2 Rn : ksk�c � 1g:

By duality

kxkc = max s
0

x : s 2 L
�

V (1)

= max s
0

x : s0P�1

j s � 1; j 2 I[1; N ] :

This implies that we have another way to compute Vc(x), i.e.,

V
1=2
c (x) = max s

0

x : s0P�1

j s � 1; j 2 I[1; N ] : (5)

As compared to the original definition of Vc(x) in (1), the computa-
tion of Vc(x) via (5) can be interpreted geometrically: V 1=2

c (x) is the
maximal value of � such that the hyperplane x0s = � (in the s-space)
touches the intersection of a group of ellipsoids, \Nj=1E P�1

j .
With the dual norm, a conjugate Lyapunov function can be derived.

It turns out that conjugate Lyapunov functions can be used to enhance
stability and performance analysis of linear differential inclusions and
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nonlinear systems. Further results about the dual relationships between
the composite quadratic Lyapunov function and its conjugate, along
with the applications, have been developed in [3] and [9].

IV. PROPERTIES OF THE OPTIMIZATION PROBLEM

The optimization problem in (1) can be written as

Vc(x) = minx0P ()x = min x0
N

j=1

jQj

�1

x

s:t:

N

j=1

j =1 j � 0; j 2 I[1; N ]: (6)

In this section, we investigate the continuity of the optimal  as a func-
tion of x.

Proposition 1: For a given x0 2 Rn, let � 2 �N be an optimal 
such that

x
0

0P (�)x0 = min
2�

x
0

0P ()x0 = Vc(x0):

Denote xj = QjP (�)x0. Then

x0 =

N

j=1


�

j xj (7)

i.e., x0 is a convex combination of xj , j 2 I[1; N ]. Let h = P (�)x0
and � = Vc(x0). If �j > 0, then xj 2 @E(Pj ; �). Moreover, xj and
x0 are in the same supporting hyperplane h0x = �.

Proof: To characterize the property of the optimal solutions, let
us introduce auxiliary parameters rj , j 2 I[1; N ] such that j � r2j =
0, and �, �j , j 2 I[1; N ]. Define the Lagrangian as

L(; r; �; �) := x
0

0

N

j=1

jQj

�1

x0

+�

N

j=1

j � 1 +

N

j=1

�j j � r
2

j :

The following is the set of conditions for a stationary point, which must
be satisfied by an optimal solution (�; r�; ��; ��)

x
0

0

N

j=1


�

jQj

�1

Qj

N

j=1


�

jQj

�1

x0

� �
�
� �

�

j = 0; j 2 I[1; N ] (w:r:t j) (8)
N

j=1


�

j = 1 (w:r:t �) (9)


�

j = (r�j )
2
; j 2 I[1; N ] (w:r:t �j) (10)

�
�

j r
�

j = 0; j 2 I[1; N ] (w:r:t rj): (11)

Without loss of generality, assume that �j > 0 for j 2 I[1; N0],
and �j = 0 for j 2 I[N0 + 1; N ]. Then, r�j 6= 0 for j 2 I[1; N0],
and r�j = 0 for j 2 I[N0 + 1; N ]. From (11), we have ��j = 0 for
j 2 I[1; N0]. It follows from (8) that

x
0

0

N

j=1


�

jQj

�1

Qj

N

j=1


�

jQj

�1

x0 =�
�

8 j 2 I[1; N0]:

Multiplying both sides with �j and summing up the equalities for all
j 2 I[1; N0], we obtain

x
0

0

N

j=1


�

jQj

�1

(�1Q1 + � � �+ 
�

N QN )

�

N

j=1


�

jQj

�1

x0 = �
� (�1 + � � �+ 

�

N ) = �
�
:

Noticing that �j = 0 for j 2 I[N0 + 1; N ]. Hence, we have

Vc(x0) = x
0

0

N

j=1


�

jQj

�1

x0 = �
�
: (12)

Let � = Vc(x0) = �� and let xj = QjP (�)x0 =

Qj
N

j=1
�jQj

�1

x0, then it follows from (8) that for all

j 2 I[1; N0]

x
0

jPjxj = x
0

0

N

j=1


�

jQj

�1

Qj

N

j=1


�

jQj

�1

x0

= �) xj 2 @E(Pj ; �)

and
N

j=1


�

j xj =

N

j=1


�

j xj

=

N

j=1


�

jQj

N

j=1


�

jQj

�1

x0 = x0:

This proves (7), which means that x0 is the convex combination of
xj 2 @E(Pj ; �), j 2 I[1; N0]. Moreover

Pjxj =

N

j=1


�

jQj

�1

x0 = P (�)x0:

If we let h = P (�)x0 = Pjxj , then from (2), we know that h is
normal to the set LV (�) at x0 and the hyperplane h0x = �(= h0x0)
is a supporting hyperplane at x0. Moreover, for j = 1; 2; . . . ; N0

h
0
xj = x

0

jPjxj = �:

This shows that x0 and xj , j 2 I[1; N0], are on the same supporting
hyperplane h0x = �.

From Proposition 1, we see that an x0 2 @LV (�) can be represented
as a convex combination of xj 2 @E(Pj ; �), j 2 I[1; N ] in terms of an
optimal �. (If �j = 0, then the corresponding xj can be any point in
@E(Pj)). As we have said, it is desirable that � is continuous in x. It
turns out that this continuity depends on the uniqueness of the optimal
�.

Proposition 2:

1) If for each x 2 @LV (1), there exists a unique representation

x =

N

j=1

jxj ; xj 2 @E(Pj);  2 �N

then �(x) is unique for every x 2 Rn.
2) If �(x) is unique for every x 2 Rn, then it is continuous in x.

Proof:

1) If � is not unique for a certain x0, then by Proposition 1, there
exist different representations ofx0 in terms of the different �’s.

2) To prove the continuity, we show that if �(x) is not continuous
at certain x0, then there exist representations of x0 in terms of
different �’s.
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Consider x0 2 @LV (1). Suppose on the contrary that �(x) is
not continuous at x0. Then there exists a sequence fxkg such that
limk!1 xk = x0, and �(xk) does not converge to �(x0). Since
�(xk) 2 �N and �N is a compact set, there exists a subsequence of
fxkg, fx1kg, and a constant vector �1 2 �N such that

lim
k!1


�(x1k) = 

�1 6= 
�(x0):

For simplicity, let �1k = �(x1k). Then, by Proposition 1, there exist
x1kj 2 @E(Pj), j 2 I[1; N ], k 2 I[1;1] such that

x
1k =

N

j=1


�1k
j x

1k
j : (13)

Since the sequence (�1k; x1k; x1k1 ; . . . ; x1kN ) is in a compact set,
there exists a subsequence of it, (�2k; x2k; x2k1 ; . . . ; x2kN ) , such that

lim
k!1

x
2k
j = x

2

j ; j 2 I[1; N ]:

Since (�2k; x2k; x2k1 ; . . . ; x2kN ) is a subsequence of
(�1k; x1k; x1k1 ; . . . ; x1kN ) , from (13), we have

x
2k =

N

j=1


�2k
j x

2k
j :

We also have

lim
k!1


�2k = lim

k!1

�1k = 

�1

and

lim
k!1

x
2k = lim

k!1
x
1k = x0:

Therefore

x0 =

N

j=1


�1

j x
2

j : (14)

By Proposition 1, x0 can also be represented as

x0 =

N

j=1


�

j (x0)xj (15)

for some xj 2 @E(Pj), j 2 I[1; N ]. Since �1 6= �(x0), (14)
and (15) mean that x0 has two different representations. This is a con-
tradiction. Hence �(x) must be continuous at any x0 2 @LV (1).
The continuity of �(x) in the whole space follows from the fact that
�(�x) = �(x) for every � 2 R.

We now consider the condition in Proposition 2, the uniqueness of
the representation of a point x 2 @LV (1). Any point x 2 @LV (1)
belongs to an exposed face of LV (1), which is the intersection of
@LV (1)with a certain supporting hyperplane. By Property 1, we know
that an exposed face is a polygon whose vertices belong to @E(Pj)),
j 2 I[1; N ].

We also know that, to express x0 2 @LV (1) as the convex combi-
nation of the elements of LV (1), these elements must be in the same
exposed face with x0. Hence, we only need to consider the uniqueness
of representing x0 as the convex combination of those xj 2 @E(Pj)
which are in the same exposed face with x0.

Recall that a supporting hyperplane has at most one intersection with
an ellipsoid E(Pj). Without loss of generality, suppose that an exposed
face E has intersections with the first N0 ellipsoids, and the intersec-
tions are xj 2 @E(Pj), j 2 I[1; N0]. From Property 1, we know that
the vertices of E belong to fxj : j 2 I[1; N0]g. Consider a point
x0 2 E. Then, x0 can only be represented as a convex combination of
xj , j 2 I[1; N0]. The condition for the uniqueness of such a represen-
tation is stated as follows.

Proposition 3: LetE be an exposed face ofLV (1)which has inter-
sections with N0 ellipsoids, xj 2 @E(Pj), j 2 I[1; N0]. Then every

x0 2 E can be uniquely represented as a convex combination of xj ,
j 2 I[1; N0]; if and only if the vectors xj , j 2 I[1; N0], are linearly
independent.

Proof: Suppose that there exists an x0 2 E whose representation
is not unique, i.e., there exist different �, � 2 �N , such that

x0 =

N

j=1

�jxj =

N

j=1

�jxj

then

N

j=1

(�j � �j)xj = 0

which implies that xj , j 2 I[1; N0] are linearly dependent.
We next show that linear dependence of xj ’s implies nonuniqueness.

Recall that xj ’s are in the same hyperplane, i.e., there exists a vector
h 2 Rn such that

h
0

xj = 1; j 2 I[1; N0]: (16)

Suppose that xj ’s are linearly dependent, then there exists �j , j 2
I[1; N0] such that

N

j=1

�jxj = 0: (17)

Multiplying both sides with h0 from left and using (16), we obtain
N

j=1

�j = 0:

Thismeans that the sum of the positive�j ’s equals to the absolute value
of the sum of the negative �j ’s. Without loss of generality, assume that
�j > 0 for j 2 I[1; N1] and �j � 0 for j 2 I[N1 + 1; N0], then we
have

N

j=1

�j = �

N

j=N +1

�j :

From (17) and the previous equation, we obtain

1
N

j=1

�j

N

j=1

�jxj =
1

N

j=N +1

�j

N

j=N +1

�jxj :

This shows that the point

x0 =
1

N

j=1

�j

N

j=1

�jxj 2 E

has nonunique representations.
We now interpret the condition in Proposition 3. There are two cases

where xj ’s, the intersections of E with the ellipsoids, are linearly
dependent.

Case 1) N0, the number of intersections, is greater than n, the di-
mension of the state space.

Case 2) N0 � n but xj ’s are still dependent.
Actually, given a group of randomly chosen ellipsoids, the probability
that the above situations will occur is 0. We first explain the first case.
For simplicity, assume that there exists a hyperplanewhich has a unique
intersection with each ellipsoid in a group of n + 1. From Fact 2, a
hyperplane c0x = 1 has a unique intersection with an ellipsoid E(Pj)
if and only if c0P�1j c = 1. Hence, we have the following.

Proposition 4: Let E(Pj ); E(Pj ); . . . ; E(Pj ) be a selection
of n + 1 ellipsoids from the original N ellipsoids. There exists
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a hyperplane which has a unique intersection with each of these
ellipsoids if and only if there exists a vector c 2 Rn such that

c
0

P
�1

j c = c
0

P
�1

j c = � � � = c
0

P
�1

j c = 1: (18)

There are n + 1 equations in (18) and there are only n unknown
variables. Generally, such equation systems have no solution. That is,
given randomly chosenn+1 ellipsoids inRn, the probability that all of
their boundaries intersect at one point is 0. This can be easily visualized
for n = 2. If the first two ellipsoid boundaries have four intersections,
the probability that the third ellipsoid boundary will include one of
these four points is zero. In short, Case 1) occurs with a zero probability.

Similarly, Case 2) can be characterized as the existence of
j1; j2; . . . ; jN 2 I[1; N ], and a vector c 2 Rn such that

c
0

P
�1

j c = c
0

P
�1

j c = � � � = c
0

P
�1

j c = 1; N0 � n (19)

and P�1

j c; P�1

j c; . . . ; and P�1

j c are linearly dependent, i.e., there ex-
ists �i 2 R, i 2 I[1; N0], such that

N

i=1

�iP
�1

j c = 0

N

i=1

�
2

i = 1: (20)

We note here that P�1

j c, i 2 I[1; N0] are the intersections of the sup-
porting hyperplane c0x = 1 with the ellipsoids. In the general case,
the system of equations in (19) and (20) have no solution since there
are N0 + n + 1 scalar equations and only N0 + n unknowns. Hence,
Case 2) also occurs with a zero probability.

Combining Propositions 2–4 and the foregoing discussion, we obtain
the following.

Theorem 1: If none of the following is true, then �(x) is contin-
uous and

1) there exists c 2 Rn and j1; j2; . . . ; jn+1 2 I[1; N ] satisfying
(18);

2) there exists c 2 Rn, j1; j2; . . . ; jN 2 I[1; N ] and �i, i 2
I[1; N0] satisfying (19) and (20).

With a finite number of ellipsoids, there are finite number of com-
binations of equations in (18) and (19) [coupled with (20)]. Since both
of them are satisfied with a zero probability, the function �(x) is gen-
erally continuous.

The conditions in Theorem 1 can be verified by numerical methods.
Actually, both of these conditions involve solving multivariate poly-
nomial equations, for which efficient algorithms can be found, e.g., in
[14]. Our polynomials in (18)–(20) are all of quadratic forms. By using
this property and the algorithm in [14], we have developed a simple al-
gorithm to compute all the solutions for a system of three quadratic
polynomial equations in three variables. Here, we use an example to
illustrate the main result of this section.

Example 1: We randomly generated four positive–definite matrices

Q1 =

0:4480 �0:0699 0:0865

�0:0699 0:4958 0:4780

0:0865 0:4780 0:5461

Q2 =

0:2347 0:0641 0:1653

0:0641 0:4992 �0:4691

0:1653 �0:4691 0:7223

Q3 =

0:8436 �0:0018 0:2561

�0:0018 0:1751 �0:0132

0:2561 �0:0132 0:3984

Q4 =

0:7272 �0:3058 �0:1936

�0:3058 0:5732 0:4212

�0:1936 0:4212 0:4652

:

Let Pi = Q�1

i , i = 1; 2; 3; 4. We would like to check the continuity
of �(x) by Theorem 1. For item 1), we need to check if

c
0

Q1c = c
0

Q2c = c
0

Q3c = c
0

Q4c = 1 (21)

has a solution. We find all eight solutions for c0Q1c = c0Q2c =
c0Q3c = 1 and none of them satisfies c0Q4c = 1. Since the solu-
tions are symmetric, we list four of them and the corresponding values
of c0Q4c as follows:

c
0

1 = [ 0:5274 0:1250 1:0888 ]; c
0

1Q4c1 = 0:6147

c
0

2 = [ 1:1657 0:1031 �1:1766 ]; c
0

2Q4c2 = 1:9937

c
0

3 = [ 0:8838 �1:1576 0:1845 ]; c
0

3Q4c3 = 1:7347

c
0

4 = [ 0:9327 1:1811 0:0550 ]; c
0

4Q4c4 = 0:7948:

(22)

Hence, we conclude that (21) has no solution.
We next proceed to check item 2). ForN0 = 3, we find the solutions

to c0Qj c = c0Qj c = c0Qj c = 1 for all the possible combinations
j1, j2, j3 and check each solution to see if the least singular value of
the matrix [Qj c Qj c Qj c ] is less than a threshold value, e.g.,
0.0001. For the combination (j1; j2; j3) = (1; 2; 3), the solutions are
�ci, i = 1, 2, 3, 4, and the least singular values of the matrix for ci’s
are 0.3653, 0.4637, 0.4756, 0.4807, respectively. We do the same for
other three combinations of (j1; j2; j3) and find that the least singular
values are all much greater than the threshold value.

For N0 = 2, the existence of solutions satisfying (19) and (20)
implies that Qj �Qj is singular, which is not the case for any
combination of j1 and j2.

In summary, there exists no vector c satisfying either item 1) or 2) of
Theorem 1. Hence we conclude that the function �(x) is continuous
for this set of (Q1;Q2; Q3; Q4).

We designed a test to check the probability that item 1) of Theorem 1
is nearly satisfied. We generated 10 000 sets of (Q1;Q2; Q3; Q4). For
each of the set we solve for c such that c0Q1c = c0Q2c = c0Q3c = 1
and check the value of c0Q4c. For a given " < 1, we count the number
of sets where one of the solutions satisfies jc0Q4c� 1j � ". The result
is: There are 231 sets for " = 0:01, 28 for " = 0:001, 2 for " = 0:0001
and none for " = 0:00001.

V. CONCLUSION

We presented several important properties about the composite
quadratic function and its level set. We showed that the exposed faces
of the level set are polygons and its dual is the intersection of a group
of ellipsoids. We also studied in detail the solution to the optimization
problem in the definition of the composite quadratic function. A
condition was derived for the continuity of an optimal parameter ,
which is crucial to the construction of continuous feedback laws that
make the convex hull of a group of ellipsoids invariant. This condition
for continuity can be verified by solving systems of polynomial
equations.
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Existence of Carathéodory Solutions in Nonlinear Systems
With Discontinuous Switching Feedback Controllers

Seung-Jean Kim and In-Joong Ha

Abstract—In this note, we consider the existence of a Carathéodory
solution in a single-input–single-output nonlinear system with a discon-
tinuous switching feedback controller. The main contribution is to show
that if the nonlinear system can be transformed into a global normal form,
then we can specify the value of the discontinuous switching feedback
controller on the switching hypersurface so that the closed-loop system
has a Carathéodory solution.

Index Terms—Differential inclusions, existence of solutions, variable
structure systems.

I. INTRODUCTION

Discontinuous switching nonlinearities are inherent in many control
systems such as adaptive control systems with discontinuous switching
laws [4], mechanical systems with friction [5], [6], and variable struc-
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ture control systems [7]–[11]. As a result, the classical existence
theorem—which guarantees the existence of Carathéodory (clas-
sical) solutions in differential equations with continuous right-hand
sides—cannot be applied to the differential equations that govern their
dynamic behavior.

Until now, there has been a considerable amount of research work
on the solution concepts for differential equations with discontinuous
right-hand sides; see, e.g., [1]–[3], [19], [21], [22]. Specifically, Fil-
ippov showed that if the discontinuous right-hand sides are replaced
by certain set-valued maps, then the resulting differential inclusions,
namely, the Filippov differential inclusions always have solutions in
a certain sense, which are commonly called Filippov solutions of the
original differential equations [1], [2]. In fact, the stability analysis of
nonlinear systems with discontinuous switching feedback controllers
has been carried out on the basis of the Filippov differential inclu-
sions [4], [7]–[16]. Nonetheless, Filippov solutions do not necessarily
characterize their dynamic behavior in a strict sense, since the corre-
sponding set-valued maps are not single-valued but multivalued on the
switching hypersurfaces.

In this context, many authors have attempted to find explicit
conditions for the existence of Carathéodory solutions in nonlinear
systems with discontinuous switching feedback controllers [4], [5].
For instance, it was shown in [4] that, in a special class of adaptive
control systems with discontinuous switching laws, the existence of
Carathéodory solutions can be guaranteed by appropriately specifying
the value of the discontinuous switching laws on the switching
hypersurfaces.

In this note, we consider the existence of a Carathéodory solution
in a single-input–single-output (SISO) nonlinear system with a dis-
continuous switching feedback controller. The main contribution is to
show that if the nonlinear system can be transformed into a global
normal form [20], then we can specify the value of the discontinuous
switching feedback controller on the switching hypersurface so that the
closed-loop system has a Carathéodory solution.

II. PRELIMINARIES

We introduce some definitions and notations used throughout the
note. The Euclidean norm of a vector x inRn is denoted by kxk. The
set of all subsets of a set X is denoted by 2X . A set-valued map F :
X ! 2Y is a function that associates to any x 2 X a subset F (x)
of Y . The convex hull, conv(W ), of a set W � R

n is the smallest
convex set that containsW . In particular whenW = fx1; x2; . . . ; xpg,
we write conv(fx1; x2; . . . ; xpg) simply as conv(x1; x2; . . . ; xp).
The derivative of a vector-valued function T : Rn ! R

m at x is
denoted by DT (x) 2 R

m�n, while the successive Lie derivatives
of a scalar function h : Rn ! R along a vector-valued function
f : Rn ! R

n are denoted by Li+1f h LfL
i
fh, i = 1; 2; . . .,

where L1fh(x) = Lfh(x) = Dh(x)f(x). The ith component of a
vector-valued function (or a vector) � is denoted by �i.

We consider a SISO nonlinear system of the following form:

� :
_x = f(x) + g(x)u

y = s(x);
x(t) 2 Rn

; u(t); y(t) 2 R (1)

where f and g are smooth functions fromR
n intoRn and s is a smooth

function fromR
n intoR. Here, we assume that the control input u is

given by a discontinuous feedback controller of the form

u = k(x)
u+(x); s(x) > 0

u�(x); s(x) < 0
(2)

where s, u+, and u� are continuous functions fromR
n intoR. As a

matter of fact, variable structure control systems [11] as well as adap-
tive control systems with discontinuous switching laws [4] and me-
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