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Absolute Stability Analysis of Discrete-Time Systems
With Composite Quadratic Lyapunov Functions

Tingshu Hu and Zongli Lin

Abstract—A generalized sector bounded by piecewise linear
functions was introduced in a previous paper for the purpose of
reducing conservatism in absolute stability analysis of systems
with nonlinearity and/or uncertainty. This paper will further en-
hance absolute stability analysis by using the composite quadratic
Lyapunov function whose level set is the convex hull of a family of
ellipsoids. The absolute stability analysis will be approached by
characterizing absolutely contractively invariant (ACI) level sets
of the composite quadratic Lyapunov functions. This objective
will be achieved through three steps. The first step transforms
the problem of absolute stability analysis into one of stability
analysis for an array of saturated linear systems. The second step
establishes stability conditions for linear difference inclusions and
then for saturated linear systems. The third step assembles all the
conditions of stability for an array of saturated linear systems
into a condition of absolute stability. Based on the conditions for
absolute stability, optimization problems are formulated for the
estimation of the stability region. Numerical examples demon-
strate that stability analysis results based on composite quadratic
Lyapunov functions improve significantly on what can be achieved
with quadratic Lyapunov functions.

Index Terms—Absolute stability, composite quadratic function,
invariant set, piecewise linear sector, saturation.

I. INTRODUCTION

Adiscrete-time system with multiple nonlinear components
is described as

(1)

where and stand for and , respectively,
, , and are constant matrices,

and represents the nonlinearities, pos-
sibly time-varying and uncertain. In the classical absolute sta-
bility theory, a nonlinear/uncertain/time-varying component is
described with a conic sector. This description allows the non-
linear system practically accessible with tools originally devel-
oped for linear systems such as frequency analysis, robustness
analysis and more recently, the linear matrix ineqaulity (LMI)
optimization technique (see, e.g., [1], [4], [7], [22], [24], [26],
[27], [32], and [34]). The conic sector takes into account both
the nonlinearity and the possible time-varying uncertainty of the
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component but could be too conservative for a particular com-
ponent for which more specific properties can be obtained such
as an actuator with saturation or dead zone. For this reason, sub-
classes of the conic sector which impose additional restrictions
on the derivative of have been considered and less conser-
vative conditions for absolute stability have been derived (see,
e.g., [8], [9], [22], [27], and [29].)

Also motivated by the objective of reducing the conservatism
of stability analysis, we introduced a generalized sector in [13]
for more flexible and more specific description of a nonlinear
component. In contrast to using two straight lines to bound a
conic sector, we use two odd symmetric piecewise linear func-
tions that are convex or concave over to bound an (uncer-
tain) nonlinear function. To be specific, we will call the “gener-
alized sector” the piecewise linear sector. Some common non-
linearities, such as saturation (or saturation-like) and dead zone
functions can be exactly or arbitrarily closely described with
a piecewise linear sector. When global absolute stability is out
of the question or is unable to be confirmed, a region of abso-
lute stability has to be estimated. In such a situation, a more de-
tailed description of the nonlinearity by a piecewise linear sector
would promise a larger estimate of the stability region than that
by a conic sector.

In [13], the region of absolute stability is estimated with abso-
lutely contractively invariant (ACI) ellipsoids and their convex
hull for continuous-time systems with one nonlinear compo-
nent. The objectives of maximizing ACI ellipsoids were formu-
lated into LMI optimization problems. It was also established
that if we have a group of ACI ellispoids, then their convex hull
is also ACI. Because of this, larger estimates of the stability re-
gion can be produced. The main results in [13] were developed
using quadratic Lyapunov functions, which have been exten-
sively used for absolute stability and robustness analysis due to
numerical issues.

While a piecewise linear sector promises a larger estimate
of the stability region than that by the conic sector, the conser-
vatism of absolute stability analysis can be further reduced by
exploring nonquadratic Lyapunov functions. Apart from using
the Lur’e type Lyapunov functions, an earlier attempt was made
in [28] by combining several quadratic functions. Recent years
have witnessed an extensive search for nonquadratic Lyapunov
functions, among which are piecewise quadratic Lyapunov
functions [23], [25], [33], polyhedral Lyapunov functions
[2], [5], and homogeneous polynomial Lyapunov functions
(HPLFs) [6], [21].

In [16], the composite quadratic Lyapunov function was in-
troduced for enlarging the stability region of saturated linear
systems. This type of functions were further explored in [10],
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[20] where the conditions of stability for linear differential in-
clusions and those for saturated linear systems were signifi-
cantly improved. The essential difference between [16] and [20]
is that, in [16], the invariance of the convex hull of a family of
ellipsoids is concluded from the invariance of each individual el-
lipsoid, while in [20], the invariance of each individual ellipsoid
is no longer required. All the results in [10] and [20] were devel-
oped for continuous-time systems. Their discrete-time counter-
parts will be established in this paper as basic tools for absolute
stability analysis.

In this paper, we will consider a discrete-time system with
multiple nonlinear components, each of which is bounded by
a piecewise linear sector. We will use the composite quadratic
Lyapunov functions to perform absolute stability analysis for
such a system. The first step toward this goal (contained in Sec-
tion III) is to transform the absolute stability analysis problem
into the stability analysis of an array of saturated linear systems.
This is achieved by describing a piecewise linear function with
an array of saturation functions. The second step (in Section IV)
is to derive stability conditions for a saturated linear system by
using composite quadratic functions. This is achieved by first
developing a stability condition for linear difference inclusions
(LDIs) and then obtaining a regional LDI description for the
saturated linear system. The last step (in Section V) is to put to-
gether the conditions of stability for all the saturated linear sys-
tems into the condition of absolute stability for the system with
a piecewise linear sector condition. In Section V, we also for-
mulate optimization problems for enlarging the estimate of the
stability region and use two examples to demonstrate the advan-
tage of using composite quadratic functions over using quadratic
functions. In particular, the estimate of the stability region for
each case is significantly enlarged by using composite quadratic
functions.

The problems in this paper are formulated under the discrete-
time setting. However, all the results can be readily extended to
continuous-time systems.

Notation:

— For two integers , , , we denote
.

— We use to denote the standard satura-
tion function, i.e., for ,

.
— For vectors , , we use

to denote the convex hull of these vectors,
i.e.,

— For functions , , we
use to denote the set of functions

such that

— For a matrix , denote

— Let be a positive–definite matrix.
For a positive number , denote

For simplicity, we use to denote .

II. GENERALIZED SECTOR AND ABSOLUTE STABILITY

A. Concave and Convex Functions

The generalized sector, as introduced in [13], is defined in
terms of two concave/convex functions. Given a scalar function

. Assume that

1) is continuous, piecewise differentiable and
;

2) is odd symmetric, i.e., .
A function satisfying the previous assumption is said to be
concave if it is concave for and is said to be convex if it is
convex for . These definitions are made for simplicity. It
should be understood by odd symmetry that a concave function
is convex for and a convex function is concave for .

B. The Generalized Sector and Absolute Stability: Definitions

Consider the system

(2)

where , , are given matrices,
and is a decoupled vector function,
i.e.,

and . Our objective is to estimate the
stability region of (2) with invariant level sets of a certain Lya-
punov function.

Let be a positive–definite Lyapunov function
candidate. Given a positive number , a level set of is

The level set is said to be contractively invariant for (2)
if

(3)

for all and . Clearly, if is con-
tractively invariant, then it is inside the stability region. If
is a quadratic function , then .

In the aforementioned definition of contractive invariance, the
nonlinear function is assumed to be known. For practical
reasons, we would like to study the invariance of a level set for
a class of nonlinear functions, for example, a class of ,
every component of which is bounded by a pair of convex/con-
cave nonlinear functions, i.e.,

(4)
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where and are known scalar functions. We use
to denote the generalized sector for the th compo-

nent of . The multivariable sector for is the convex
hull of decoupled functions

where or . We denote this multivariable sector as
. In general case, we may also consider a

sector as the convex hull of decoupled functions ,
. We say that satisfies a generalized sector

condition if

and denote it as .
Definition 1: Alevelset issaidtobeabsolutelycontrac-

tively invariant (ACI) over the sector if it
is contractively invariant for (2) under every possible satis-
fying the generalized sector condition.

Clearly, if is ACI, then every trajectory starting from
it will converge to the origin under any satisfying the
generalized sector condition. Hence, is a region of abso-
lute stability. We may use more general functions to define the
boundary of a sector to capture more details about the nonlinear
components. As was explained in [13], the reason that we have
chosen concave/convex functions is for the simplicity and com-
pleteness of the results they lead to. If we use other more general
functions as the boundaries, the condition for ACI may be hard
to describe or numerically nontractable. We may also choose
asymmetric functions or even symmetric functions. We have
settled on odd symmetric functions since we will be focusing on
level sets which are symmetric about the origin. Let us next state
a simple result.

Lemma 1: Assume that the Lyapunov function is
convex. Given a level set and a sector

. is ACI over the sector if and only if it is
contractively invariant for

(5)

for every .
Proof: The “only if” part is obvious. Now, we assume that

is contractively invariant for (5) for every .
Consider any . We need to show that

is contractively invariant for

(6)

Let be such that . Since is
contractively invariant for (5), we have

Since is a convex function and
, we have

which implies the contractive invariance of for (6).

A similar result exists for continuous-time systems, where
the differentiability of is required instead of the convexity in
Lemma 1.

We will restrict our attention to the level sets of convex Lya-
punov functions. By Lemma 1, the absolute contractive invari-
ance of a level set is equivalent to its contractive invariance
under every vertex function . Since a nonlinear function can
be well approximated with a piecewise linear function, we will
focus our attention on the case where the components of
are piecewise linear convex/concave functions. This will make
the stability analysis problems numerically approachable. In this
case, we call the generalized sector a piecewise linear sector.

C. A Class of Piecewise Linear Functions

Consider the class of piecewise linear functions

if
if

...
if

(7)

where . The values of for
can be determined by odd symmetry. It is easy to see that if

is concave, then and
. In the case that and ,

is a saturation like function with a saturation bound . If
is convex, then and

. We note that can be
determined from by the continuity of the function

and vise versa. Fig. 1 plots a piecewise linear concave function
with four bends.

III. DESCRIBING THE SYSTEM UNDER SECTOR CONDITION

WITH SATURATED LINEAR SYSTEMS

Lemma 1 transforms the problem of verifying the absolute
contractive invariance of a level set into one of verifying
the contractive invariance of the level set under individual
vertex functions. This simplifies the problem to some degree
but there is still no solution even if each component of the
vertex functions is piecewise linear. The only situation that
we are able to address is where each component of the
vertex functions is a piecewise linear function with only one
bend over . In this case, every vertex function can
be decomposed into a linear term and a standard saturation
function and the corresponding vertex system is a saturated
linear system, for which a set of analysis tools have been
recently developed (see, e.g., [16] and [18]–[20]). In this
section, we use an array of saturation functions to describe
a piecewise linear sector. By doing this, we transform the
absolute stability problem into the stability analysis of an
array of systems with saturation nonlinearities.

Let us first examine a scalar concave/convex piecewise
linear function. The following lemma establishes a connection
between a piecewise linear function and an array of saturation
functions.
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Fig. 1. Illustration for the proof of Lemma 2.

Lemma 2: Consider a piecewise linear concave/convex func-
tion

if
if

...
if .

(8)

For , define

(9)

Then

(10)

(11)

Moreover, if is concave, then for

(12)
If is convex, then for

(13)
Proof: We only give the proof for the case where is

concave. The case where is convex is similar. The proof is
illustrated in Fig. 1, where the piecewise linear function in solid
line is . Also plotted in the figure are and the straight
line , both in dashed–dotted lines.

Let . Then is the intersection
of the straight line with the other straight line obtained

by extending the th section of to the left (see Fig. 1).
It is clear that and

if
if .

It follows that

if
...

if
...

if .

Hence

(14)

Since is concave, we have (see Fig. 1)

It follows that

(15)

which implies (10). From (14), we have

From (15), we have

Thus, (12) is verified.
Here, we note that relations equivalent to (10) and (11) were

contained in the proof of [13, Th. 2]. Applying Lemma 2, we can
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Fig. 2. Four cases of Lemma 3: �� = � , �� = � .

use a new set of vertex functions to replace the original piece-
wise linear vertex functions. The new set of vertex functions
have components of the form as defined in (9). Let us first
consider the scalar case where belongs
to the sector with and being piecewise linear con-
cave/convex functions

if
if

...
if

(16)

and

if
if

...
if .

(17)

Define

(18)

(19)

Then, by (12) and (13) of Lemma 2

(20)

Note that the sector on the right-hand side has vertex functions
as the sum of linear functions and saturation functions.

We intend to use the sector on the right hand side of (20) to
replace the one on the left-hand side so that we can use stability
analysis tools available for systems with saturation nonlineari-
ties. However, the difference between the two sectors may in-
troduce conservatism. The following lemma lists several cases
where the two sectors are the same.

Lemma 3: Assume that for . For the
following cases:

(21)

1) is convex and is concave.
2) or is linear.
3) Both and are convex, has only one bend and

, for all .
4) Both and are concave, has only one bend and

, for all .
The four cases in Lemma 3 are plotted in Fig. 2.

Proof: Let and be in the form of (16) and (17). Then,
. For Case 1), it follows from (12) and (13) of Lemma

2 that for all

(22)

Hence, we have

(23)

and (21) is obtained.
For Case 2), if is linear, then and

(24)
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and we also obtain (23) and (21). If is linear, the argument is
similar.

For Case 3), we have and

(25)

For Case 4), we have and

(26)

Both (25) and (26) imply (23) and, hence, (21).
Now, we consider the case where . Assume that the -th

component belongs to the sector . Then, the
piecewise linear sector for is

where the th component of or . Using Lemma 2 for
each , we can find functions of the form

(27)

such that

(28)

Hence, we have

(29)

where the sector on the right hand side has
vertices. If we assign a number to each vertex

corresponding to , then each of the vertices has
the form

(30)

where

Replacing of system (2) with a vertex function of the
form (30), and letting , and

, we obtain

(31)

It then follows from Lemma 1 that if a convex level set is con-
tractively invariant for each of the systems in (31), then it is
absolutely contractively invariant for (2) under the sector con-
dition for each .

IV. ANALYSIS OF SATURATED LINEAR SYSTEMS WITH

COMPOSITE QUADRATIC FUNCTIONS

In Sections II and III, we converted the problem of verifying
the ACI of a convex set into one of checking its contractive in-
variance for an array of saturated linear systems (31). In this
section, we study the contractive invariance of the convex hull
of a family of ellipsoids, which can be described as the level set
of the composite quadratic Lyapunov function as introduced in
[16]. In [16], such a level set was used to estimate the stability
region for saturated continuous-time systems. In [20], the con-
dition for such a level set to be contractively invariant was sub-
stantially relaxed through a stability condition for linear differ-
ential inclusions recently developed in [10]. In this section, we
will derive a stability condition for linear difference inclusions
by using the composite quadratic function and then establish the
contractive invariance of its level set for saturated discrete-time
systems. First, we give a brief review of the composite quadratic
function and its properties.

A. The Composite Quadratic Lyapunov Function

Given a family of positive–definite matrices ,
, . Let

The composite quadratic function is defined as

(32)

For simplicity, we say that is composed from , .
When , reduces to a quadratic function . It
is evident that is homogeneous of degree 2, i.e.,

. Also established in [10], [16] is that is convex and
continuously differentiable.

Through convex analysis, it was also shown in [17] that

(33)

For , the level set of is

It is clear from the definition that

(34)

Hence, for all and .
Actually, from [16], we further have
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where the right hand side denote the convex hull of the ellipsoids
, i.e.,

For a compact convex set , a point on the boundary of is
called an extreme point if it cannot be represented as the convex
combination of any other points in . As a result, an extreme
point of must be on the boundary of for some

. In other words, if is an extreme point of ,
we must have for some .

B. Stability Condition for Linear Difference Inclusions

Consider the following linear difference inclusion:

(35)

where , , are given. Let be composed
from , . The following is a discrete-
time counterpart of the stability condition for linear differential
inclusions in [10] and [20]. Similar to [10] and [20], a dual result
can also be established by using a function conjugate to . For
simplicity, we only present the following result.

Theorem 1: If there exist , ,
, , such that

(36)
then for all . If , then (36) is a
necessary condition.

Proof: By homogeneity of the LDI and ,
for all is equivalent to for all

. By the convexity of and linearity of , this is
equivalent to for all and each .
Again by the convexity of and linearity of , this is equiva-
lent to for every extreme point of . If is an
extreme point of , then we have
for some . Therefore, for all
if and only if for all , .

Under (36) and by the definition of , for
we have

which confirms the sufficiency of the condition.
Before proving the necessity of the condition for the case

, we need to show the following result.
Claim 1: Given , , .

We have

(37)

if and only if there exists such that
.

The “if” part is obvious. We show “only if.” We can break
(37) into two inequalities

if (38)

if (39)

By -procedure (e.g., see [4]), this implies the existence of
such that

(40)

If either or , then we are done. Now, suppose
. Let

. If we multiply the two inequalities in (40) with
and , respectively, and add them up, then we obtain

with .
This proves Claim 1.

We now proceed to show the necessity of the condition for
the case . It suffices to verify that for all

, leads to (36) for every and . By
(33), for all implies that

(41)

Observing that
, we have

(42)

It can be verified routinely that (42) is equivalent to

(43)

By Claim 1, this implies the existence of ,
, such that

(44)

By Schur complement, this is equivalent to

(45)

and then to (36).
From the proof of Theorem 1, we see that condition (36) basi-

cally implies that is a common Lyapunov function for all the
vertex systems , . To determine if there
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exists such a for a given , we need to solve ma-
trix inequalities in (36) with variables , and ,

, . What we have done is to minimize
the number such that there exist ’s and ’s satisfying

(46)

or, equivalently

(47)
It fact, it can be shown similarly to the proof of Theorem 1

that if (47) is satisfied, then for all .
If the optimal , then the stability of the LDI is confirmed
with composed from the solution ’s.

Remark 1: We note that (47) contains bilinear matrix
inequalities (BMIs). A straightforward method to solve an
optimization problem with BMI constraints is to break it up
into a few problems with LMI constraints and solve them
iteratively. However, this method does not work well on our
particular problem. Some methods to address BMI constraints
were developed in [3], [11], and [12], etc. In our computation,
we adopt the path-following method in [12] and it turned out
to be very effective. We first solve the problem of minimizing

by assuming that all the ’s are equal to . This turns out
to be a generalized eigenvalue problem. We then assign this
optimal to all ’s and randomly pick initial values for
so that . The path-following algorithm is started
with these ’s and ’s.

It is evident that as is increased, the optimal will decrease
and the stability condition is less conservative. As expected, the
computation effort will be more intense.

The following simple example shows that, when applied to
stability analysis of LDIs, the composite quadratic functions
with can improve substantially on what can be achieved
with quadratic functions.

Example 1: Consider the following LDI:

where

The maximal such that there exists a common quadratic Lya-
punov function for and is . By using The-
orem 1 with , the maximal that guarantees the existence
of a common Lyapunov function is .

C. Invariant Level Set for Saturated Linear Systems

Consider the saturated system

(48)

where , and . We will use
LDIs to describe this system within a local region of state–space.
This description is made possible with a tool from [18] and [19].

Consider the set of diagonal matrices whose diagonal
elements are either 1 or 0. There are such matrices and we
label them as , . Denote . Given
two vectors

is the set of vectors obtained by choosing some elements from
and the rest from .
Lemma 4: [19] Let be given. Then, for all

Let be the th row of . Given .
if and only if for all .

Let , be positive–definite matrices and
let be defined as in (32). The following theorem gives a suffi-
cient condition for the contractive invariance of (1) for (48).

Theorem 2: If there exist an and ,
, , , such that (49) and

(50), as shown at the bottom of the page, hold, where is the
th row of . Then, is contractively invariant, i.e.,

(51)

Proof: By Lemma 4, (50) implies that
for all . Since is the convex hull of ,

, it follows that . Also, by Lemma 4,
we have

If we let , then for all

By the Schur complement, (49) implies

Hence, by Theorem 1, we have

(49)

(50)
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In Theorem 2, the condition for to be contractively
invariant involves for all . For
the special case , we can use different for different

. By doing this, the condition for stability can be re-
laxed significantly.

Theorem 3: Assume that . If there exist
and , , , , and

such that

(52)

(53)

(54)

Then, is contractively invariant.
To prove Theorem 3, we need a result which only holds for

systems with one saturation component.
Lemma 5: Suppose and
for all . Then

(55)

Proof: To prove (55), it suffices to show that for any

(56)

where

If , then by the concavity of for and
, we have

and

Hence, we obtain (56).

If , then by the convexity of for and

and

We also have (56).
Proof of Theorem 3: By Schur complement, conditions

(52) and (53) are equivalent to

(57)

(58)

It follows that for each ,

(59)

and

(60)

By (54), we have . Hence, by Lemma 4 we
have for all

. It follows from (59), (60), and the convexity of
that for each , we have

(61)

To prove the theorem, it suffices to show that for any
and

(62)

Here, we only prove the case where . The proof for
follows from same arguments. Hence, we need to show

that for any

(63)
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Now, we consider an arbitrary . For simplicity,
assume that (the proof for is similar). If

for some , then by (61)

Now, we assume that for any . Since
is the convex hull of , , all the

extreme points of belong to the union of ,
. Hence, there exist an integer , some vectors

, , such that

(Here, we have assumed for simplicity that is only related to
the first ellipsoids. Otherwise, the ellipsoids can be reordered
to meet this assumption.) From (61), we have

(64)

and by (59)

(65)

We first consider the case where for all .
By Lemma 5, we have

(66)

Then, (63) follows from (64)–(66) and the convexity of .
Next, we consider the case where for some

. Since does not hold for all , we
can get an intersection of the set with the
half space . This intersection is also a polygon and can
be denoted as . Since , we have

and by Lemma 5, we have

(67)

We note that some ’s belong to , others
are not. For those , we must have

and . It follows from (65)
and the convexity of that for these , we also have

and

In summary, we have

(68)

Combining (67), (68), and the convexity of , we obtain (63).

We finally consider the special case where both and
. In this case, reduces to a quadratic function

and the level set reduces to an ellipsoid . Ac-
cordingly, the conditions in Theorem 3 can be transformed into
LMIs by introducing the new variable . For contin-
uous-time system, it was shown that the corresponding condi-
tion is necessary and sufficient for the contractive invariance of
an ellipsoid [15]. The counterpart result for discrete-time system
is established in Appendix A and summarized as follows.

Theorem 4: Assume . Given . The
ellipsoid is contractively invariant for (48) if and only
if there exists an such that

(69)

(70)

(71)

V. ESTIMATION OF STABILITY REGION WITH ACI LEVEL SETS

A. Conditions for ACI Level Sets

We return to the system with a sector condition

(72)

where , , and , are given piece-
wise linear concave/convex functions. We would like to estimate
the stability region using ACI level sets of which is composed
from matrices .

Section III transforms the problem of verifying the absolute
contractive invariance of a level set into one of verifying its con-
tractive invariance for an array of saturated linear systems

(73)

Conditions for the contractive invariance of a level set of for
each of the above systems are presented in Theorem 2 for the
general case. Putting all these conditions together, we obtain the
condition of ACI for a level set as follows.

Theorem 5: If there exist and ,
, , , ,

such that (74) and (75), as shown at the bottom of the page, hold,
where is the th row of . Then, is absolutely con-
tractively invariant.

In what follows, we consider the case , when
has only one column and is a scalar function. Let the two
boundary functions and be given as in (16) and (17), where

has bends and has bends. So, we have

(74)

(75)
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saturated linear systems in (73). The matrices of each system is
given as follows. For

and for

It is easy to verify that for
and for

. Combining Lemma 1 and Theorem 3, we have
the following result.

Theorem 6: Assume that . If there exist
and , , ,

, , such that (76)–(79),
as shown at the bottom of the page, hold. Then, is ab-
solutely contractively invariant.

We finally consider the special case where and .
For this case, the level sets of reduce to ellipsoids. Using
Theorem 7, the necessary and sufficient condition for the ACI
of an ellipsoid can be obtained.

Theorem 7: Assume that . Given . The
ellipsoid is ACI if and only if there exist ,

such that

(80)

(81)

(82)

(83)

Proof: The sufficiency follows directly from applying
Theorem 6 with . We prove the necessity. The ACI of
the ellipsoid implies that for each , is
contractively invariant for

(84)

When is sufficiently small, for all
. Hence, must be contractively invariant

for

(85)

By linearity, must also be contractively invariant for
(85). This proves (80). For , we have

(86)

where

By Lemma 2, we have . Hence, the
contractive invariance of for (86) follows from its con-
tractive invariance for both (84) and (85). Applying Theorem 7
to (86), there exists satisfying (82) and (83). Similar argu-
ments can be applied to by using the
contractive invariance of for .

B. Optimization of ACI Level Sets

We recall that the set is characterized by the matrices
, . By the definition of and using Schur com-

plement, we have

To obtain better estimation of the stability region, we would
like to determine an ACI level set as large as possible.
Typically, we are given a set of reference points ,

and would like to determine an ACI set so that
it contains , with as large as possible. When
it specifies to the level sets of , we would like to determine
matrices , satisfying the conditions of Theorems
5–7 and further more, it satisfies

with as large as possible. For the case , this objective
can be formulated (by applying Theorem 6) into the optimiza-
tion problem shown in (87) at the bottom of the next page. Sim-
ilar optimization problem can be formulated based on Theorem

(76)

(77)

(78)

(79)
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5 for the case . To simplify computation, we can intro-
duce new parameters , , .
Then, items d) and e) in the optimization problem can be re-
placed with

The resulting optimization problem has BMIs as constraints.
In our computation, we again used the path-following method
in [12] and it also turned out to be very effective. Before
starting the path-following algorithm, we solved (87) under the
assumption that all ’s are equal to . In this case, all the
constraints are LMIs. We then assign this optimal to each

, pick random ’s, ’s ’s and ’s satisfying f)
and g), and then start the path-following algorithm. Based on
our computational experience, all the initial values set up this
way lead to the same final solutions.

We note that if we let in (87), then g) is gone and we
obtain an optimization problem to maximize the ACI ellipsoids
with respect to ’s. In this case, all the constraints are LMIs.
Similar LMI problem can be derived for the case .

C. Numerical Examples

The following two examples illustrate that using ACI level sets
of with to estimate the stability region can improve sig-
nificantly on what can be achieved by using ACI ellipsoids.

Example 2: Consider a second order system with one non-
linear component

where

As in [13], we use the linear function and a piece-
wise linear function to bound , where is ob-
tained by connecting a finite number of points on in-
cluding the origin. Here, we select six points ,

. The resulting piecewise linear function has
the form of (7) with

We choose the reference point as .
We first consider quadratic functions . The maximal
such that is inside an ACI ellipsoid is .
Next, we consider which is composed from two quadratic

functions . The maximal such that is inside an
ACI is . (The maximal such that is
inside the true stability region is 5.693, as detected by simula-
tion). For verification, the two matrices defining the optimal
is given as follows:

The resulting invariant level sets by using different Lyapunov
functions are compared in the left box of Fig. 3, where the
outermost boundary is the optimal for . It can be
seen that is the convex hull of two ellipsoids (thin solid
curve). The ellipsoids plotted in dashed lines are the maximal

a)

b)

c)

d)

e)

f)

g) (87)
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Fig. 3. (Left) ACI level sets. (Right) Next-step maps from @L .

ACI ellipsoids with respect to and , respec-
tively. To verify that the resulting level set is actually
invariant, we plot the image of its boundary under the next-step
map in the right box of Fig. 3 (see the
thin solid lines). As a comparison, we also plot the images of the
boundary under the map (dash-dotted) and
the map (dashed), respectively. Since
is very close to , the dashed curve and the thin solid curve
are very close.

Example 3: Consider a second order system with two non-
linear components

where

and , .
The eigenvalues of are and the eigenvalues of
are . If we let and be the two columns of

and let and be the two rows of , we obtain four vertex
systems

(88)

(89)

(90)

(91)

We take the reference point as . We would like to

determine an ACI set such that it contains with as large as
possible. If we optimize over all the ACI ellipsoids, the maximal

is . If we optimize over ACI level sets of
with , the maximal is . Plotted in the left
box of Fig. 4 are the optimized ACI ellipsoid (dashed line) and

ACI (thick solid line). Also plotted in this box in thin
solid lines are the two ellipsoids and whose
convex hull is . For verification, and are given as
follows:

To demonstrate that this level set is indeed abso-
lutely contractively invariant, we computed the images of
the boundary of under the four next-step maps corre-
sponding to the four vertex systems (88)–(91). These images
are plotted with thin solid curves in the right box of Fig. 4. As
can be clearly seen, all these images are within the level set

.
As a matter of fact, we can also use to determine a re-

gion of instability using numerical simulation. The idea is to
generate the “worst switching” among the four vertex systems
so that at each point , is chosen as the one which maxi-
mizes . By doing this, a diverging trajectory can be potentially
produced. Fig. 5 plots a diverging trajectory produced this way
(dashed–dotted line). The initial state is (marked
with “ ”). A nearly closed trajectory is also produced under the
worst switching strategy (see the curve in thin solid line). The
region outside this nearly closed curve is deemed unstable. Also
plotted in Fig. 5 is the same ACI level set as in Fig. 4. We notice
that there is some gap between the estimated stability region (the
ACI set) and the deemed region of instability. The true region
of instability could include some points inside the nearly closed
curve and the real stability region must be larger than the ACI
set.

We note that with different switching strategies (possibly the
worst case with respect to different Lyapunov functions), dif-
ferent regions of instability can be detected. The true region of
instability for the system with sector condition will be the union
of all these.
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Fig. 4. (Left) ACI level sets. (Right) Next-step maps from @L (1).

Fig. 5. Region of instability and a diverging trajectory.

VI. CONCLUSION

We used composite quadratic Lyapunov function to enhance
absolute stability analysis of systems with a piecewise linear
sector condition. The composite quadratic Lyapunov function
was introduced in our recent work [16] for stability analysis of
saturated linear systems. Its properties have been further studied
in [10], [17], and [20], and great potential has been demon-
strated in the stability analysis of linear differential inclusions
and saturated linear systems. Inspired by recent development
in continuous-time systems, this paper first establishes stability
conditions through composite quadratic Lyapunov functions for
linear difference inclusions and saturated linear discrete-time
systems. These results are used to establish conditions for ab-
solute stability through a connection to saturated linear sys-
tems. With these conditions, the problem of estimating the sta-
bility region is formulated as optimization problems with bi-

linear matrix inequalities which can be effectively solved with
the path-following method in [12]. As illustrated by numer-
ical examples, the stability region estimated by the composite
quadratic Lyapunov function can be significantly larger than
those by quadratic functions. The composite quadratic functions
can also be used to generate the “worst switching” among a
group of vertex systems for the purpose of detecting a poten-
tially diverging trajectory.

APPENDIX

FOUR EQUIVALENT STATEMENTS ABOUT INVARIANT

ELLIPSOIDS

Proposition 1: Given an ellipsoid and a row vector
. Assume that

(92)
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The following four statements are equivalent.

a) The ellipsoid is contractively invariant for

(93)

b) There exists a function such that the
ellipsoid is contractively invariant for

(94)

c) The ellipsoid is contractively invariant for

(95)

d) There exists an such that

(96)

and .
We notice that Theorem 4 follows from the equivalence of a)

and d). Let , then by using Schur complement it can be
shown that (69) and (70) are equivalent to (92) and (96). Also,

is equivalent to .
Statement a) in Proposition 1 is about the invariance of an el-

lipsoid under a given feedback law. Statement b) is about the
existence of a bounded feedback law to make the ellipsoid in-
variant. In statement c), the feedback law maxi-
mizes the convergence rate with respect to the function

. Statement d) is about the existence of a feedback law
linear inside the ellipsoid to make it invariant. There is no direct
way to verify a), b), or c). The significance of Proposition 1 lies
in the fact that all of them can be verified through d) which is
numerically tractable.

The equivalence of a) and b) was established in [14] (see also
[19]) and the equivalence of b) and c) was established in [14, p.
258]. It is also clear that d) implies b) and hence a) and c). In
what follows, we will show that c) is equivalent to d).

Define

is contractively invariant for (95)

and

(97)

(98)

(99)

Note that is equivalent to .
Since there exists an satisfying (98) (actually, if we let

), the “ ” in (98) can be replaced with “ ”. Hence, the afore-
mentioned optimization problem can also be written as

(100)

To prove Proposition 1, it suffices to show the following.
Lemma 6: .

Proof: It is evident that (note that b) and c) are
equivalent). If there exists an such that

then and

(101)

To show , it suffices to consider the case where
and to construct an such that and
satisfies (101).

For clarity, we divide the proof into three steps.
Step 1: Transformation of the optimization problem and nor-

malization.
Denote

and define

Since is convex and is strictly convex (any point
between two distinct boundary points is not on the boundary),
(100) implies that and has a unique inter-

section with , where denotes
the smallest eigenvalue of a matrix. Furthermore, for all

, we have , i.e.,
. It follows that

and the previous problem has a unique optimal solution .
Without loss of generality and for simplicity, we assume that

and . Otherwise, we can make it so with a state
transformation . Thus, we have

(102)

(103)

where

Step 2: The eigenvector of .
Let be the unique optimal solution to (102). Then,

. Suppose that the multiplicity of the
zero eigenvalue of is and let span the
eigenspace of the zero eigenvalue. Then
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We claim that . Here, we need to resort to eigenvalue
perturbation theory (see, e.g., [30]) to prove this claim. Let

, where represents the direction of perturbation.
As is increased from 0, increases with
a slope greater than if and only if

We note that, for a fixed

Let be such that for some (such
exists by assumption, e.g., ). Consider .
Then for ,

Hence, we must have

(104)

Since both and are of rank 1, the matrix

has at most one positive eigenvalue. For

(104) to be true, can only have one column, i.e., .
The optimality of the solution means that

cannot be increased by varying in a neighborhood of
along any direction which keeps it within the constraint

, i.e.,

1) cannot be increased for
or if is tangential to the sphere surface

at ;
2) cannot be increased for

if points inward of the sphere from
.

Partition as , where . By the eigen-

value perturbation theory, items 1) and 2) reduce to

if (105)

(106)

For (105), we note that cannot be in-
creased for either or , hence the derivative has to
be zero. For (106), we recall that there is one direction

which makes strictly increase.
Hence, .

Combining (105) and (106), we see that and
must be proportional to . For simplicity, we take .

Recall that is an eigenvector corresponding to the

zero eigenvalue of , we have

from which we obtain

(107)

(108)

Step 3: Construction of .
From (106) and (107), and , we have

(109)

Let , then and
. It follows from (108) that

Recall that we have assumed and . This shows
that there exists an such that and satisfies
(101). It follows that .

From the proof of Lemma 6, we see that at the optimal solu-
tion , the matrix

has a single eigenvalue at 0. This is because has only one
column.
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