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Abstract

We present a formula for the extremes of the null controllable region of a general LTI discrete-time system with bounded inputs. For
an nth order system with only real poles (not necessarily distinct), the formula is simpli5ed to an elementary matrix function, which in
turn shows that the set of the extremes coincides with a set of trajectories of the time-reversed system under bang–bang controls with
n− 2 or less switches. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two fundamental issues associated to the control of a sys-
tem are its controllability and stabilizability. Since all the
practical control inputs are bounded, the constrained con-
trollability was formulated earlier than the nonconstrained
one. While the solution to the latter problem has been well
known for several decades, there are still continuing e:orts
towards obtaining simple and easily implementable solution
to the former problem (see, e.g., Bernstein & Michel, 1995;
Hu & Lin, 2001 and the references therein).
The null controllable region, denoted as C, also called the

controllable set or the reachable set R (of the time-reversed
system), is de5ned to be the set of states that can be steered
to the origin in a 5nite number of steps by using constrained
controls. Clearly, the domain of attraction S of the ori-
gin under any control law must lie within C. A practical
control problem is to design a controller such that S is
close to C. But as a 5rst step, we must know how big is
C. E:orts to characterize this C have been made since the
1950s and numerous results have been developed on this
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topic (see, e.g., D’Alessandra & De Santis, 1992; Fisher &
Gayek, 1987; Cwikel & Gutman, 1986; Gutman & Cwikel,
1987; Kalman, 1957; Keerthi & Gilbert, 1987; Lasserre,
1991; LeMay, 1964; Schmitendorf & Barmish, 1980; Son-
tag, 1984; Til & Schmitendorf, 1986). The situation where
C is the whole state space was made clear, e.g., in HIajek
(1991), Lee and Markus (1967), LeMay (1964), Schmiten-
dorf and Barmish (1980) and Sontag (1984). For the case
where C is not the whole state space, there only exist var-
ious numerical methods for approximate characterization
of C except for second-order systems with complex eigen-
values. With C(K) the set of states that can be steered to
the origin at step K , C is typically approximated by C(K)
with K suJciently large; for a 5xed K , C(K) is character-
ized in terms of its boundary hyperplanes or vertices which
are usually computed via linear programming. As K is in-
creased, the computational burden is more intensive and it
is more diJcult to implement the control based on on-line
computation. An exception is in Lasserre (1991), where a
closed-form expression for C(K) was provided with an al-
gorithm of polynomial complexity. Another nice result was
obtained in Fisher and Gayek (1987) where an explicit for-
mula to compute the extremes (or vertices) of C was pro-
vided for second-order systems with complex eigenvalues.
An interesting interpretation of this set of extremes is that
they form a special trajectory of the system under a periodic
bang–bang control.
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Recently, we obtained explicit analytical descrip-
tions of the boundary of the null controllable region for
continuous-time systems in Hu, Lin and Qiu (2002).
As usual, one might anticipate that the results in the
continuous-time setting have their counterparts in the
discrete-time setting. Indeed, we will show in this note that
through some interesting links, some of the null controlla-
bility results in Hu et al. (2002) have natural discrete-time
counterparts, though the development is more technically
involved.

2. Problem statement and notation

Consider the discrete-time system

x(k + 1) = Ax(k) + Bu(k); (1)

where x(k)∈Rn is the state and u(k)∈Rm is the control. A
control signal u is said to be admissible if ‖u(k)‖∞6 1 for
all integer k¿ 0. In this note, we are interested in the control
of system (1) by using admissible controls. Our concern is
the set of states that can be steered to the origin by admissible
controls.

De�nition 1.

a. A state x0 is said to be null controllable at a given step
K if there exists an admissible control u such that the
time response x of the system satis5es x(0) = x0 and
x(K) = 0. A state x0 is said to be null controllable if it is
null controllable at some K ¡∞.

b. The set of all states null controllable at K is called the
null controllable region of the system at K and is denoted
by C(K). The set of all null controllable states is called
the null controllable region of the system and is denoted
by C.

In this note, we say that a matrix A is semi-stable if it has
no eigenvalues outside of the unit circle and A is anti-stable
if all of its eigenvalues are outside of the unit circle.

Proposition 1(HIajek, 1991; Lee & Markus, 1967; Sontag,
1984). Assume that (A; B) is controllable.

a. If A is semi-stable; then C = Rn.
b. If A is anti-stable; then C is a bounded convex open set
containing the origin.

c. If

A=

[
A1 0

0 A2

]

with A1 ∈Rn1×n1 being anti-stable and A2 ∈Rn2×n2 being
semi-stable; and B is partitioned as

[
B1
B2

]
accordingly;

then C = C1 × Rn2 , where C1 is the null controllable
region of the anti-stable system x1(k + 1) = A1x1(k) +
B1u(k).

Because of this proposition, we can concentrate on the
study of null controllable regions of anti-stable systems.
For such systems, C can be approximated by C(K) for
suJciently large K . Since A is nonsingular in this case, by
De5nition 1, we have

C =
⋃

K∈[0;∞)

C(K) (2)

and

C(K) =

{
−
K−1∑
i=0

A−i−1Bu(i): ‖u‖∞6 1

}
: (3)

If B = [b1 · · · bm] and the null controllable region of the
system x(k + 1) = Ax(k) + biui(k), i= 1; : : : ; m, is Ci, then
it follows from (2) and (3) that

C=
m∑
i=1

Ci

= {x1 + x2 + · · ·+ xm: xi ∈Ci ; i = 1; 2; : : : ; m}:
Hence we can begin our study of the null controllable regions
with systems having only one input.
In summary, we will assume in the study of null control-

lable regions that (A; B) is controllable, A is anti-stable, and
m= 1.
In many situations, it may be more convenient to study

the controllability of a system through the reachability of its
time reversed system. The time-reversed system of (1) is

z(k + 1) = A−1z(k)− A−1Bv(k): (4)

De�nition 2. For system (4)

a. A state zf is said to be reachable in a given step K if there
exists an admissible control v such that the time response
z of system (4) satis5es z(0)=0 and z(K)=zf. A state zf
is said to be reachable if it is reachable in some K ¡∞.

b. The set of all states reachable in K steps is called the
reachable region at K and is denoted by R(K). The set
of all reachable states is called the reachable region and
is denoted by R.

It is a known result that C(K) and C of (1) are the same
as R(K) and R of (4) (see, e.g., Macki & Strauss, 1982).
To avoid confusion, we will reserve the notation x, u, C(K),
and C for the original system (1), and reserve z, v, R(K),
and R for the time-reversed system (4).
To proceed we need more notation. For a convex setX ⊂

Rn, a point x0 ∈ OX is said to be an extremal point (or simply,
an extreme) of X if there exists a vector c∈Rn such that

cTx0¿cTx; ∀x∈ OX \ {x0}:
We use Ext(X) to denote the set of all the extremal points
of X. If X has 5nite number of extremes, then X is a poly-
hedron and an extreme is also called a vertex.
With K1, K2 integers, for convenience, we use [K1; K2] to

denote the set of integers {K1; K1 + 1; : : : ; K2}.
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3. Extremes of the null controllable region

We have assumed in Section 2 that A is anti-stable, (A; B)
is controllable, and m = 1. Since B is now a column vec-
tor, we rename it as b for convenience. From (2) and (3),
C(K); R(K); OC and OR can be written as

C(K) =R(K)

=

{
−
K−1∑
‘=0

A−(K−‘)bv(‘):

|v(‘)|6 1; ∀‘∈ [0; K − 1]

}

and

OC = OR=

{
−

∞∑
‘=0

A−(K−‘)bv(‘): |v(‘)|6 1; ∀‘¿ 0

}
:

It is well known that C(K);R(K); OC and OR are all con-
vex and that C(K) and R(K) are polyhedrons (see, e.g.,
D’Alessandra & De Santis, 1992). In some special cases, OR
(or OC) could also be a polyhedron of 5nite many extremal
points. But in general, OR has in5nitely many extremal points.
In any case, OR is the convex hull of Ext(R), the set of all
the extremal points of R. In view of this, it suJces to char-
acterize Ext(R).

De�nition 3. An admissible control v is said to be an ex-
tremal control on [0; K] if the response z(k) of system (4);
with z(0) = 0; is in Ext(R(k)) for all k ∈ [0; K].

Lemma 1. If zf ∈Ext(R(K)); and v is an admissible con-
trol that steers the state from the origin to zf at step K;
then v is an extremal control on [0; K].

This lemma is obvious. Note that if z(k1) 
∈ Ext(R(k1))
for some k1¿ 0, then z(k) will not be in Ext(R(k)) for
any k ¿k1 under any admissible control. Denote the set of
extremal controls on [0; K] as Ec(K). It then follows that

Ext(R(K)) =

{
−
K−1∑
‘=0

A−(K−‘)bv(‘): v∈Ec(K)

}
: (5)

Lemma 2 (Qian & Song, 1980). An admissible control v∗

is an extremal control on [0; K] for system (4) if and only
if there is a vector c∈Rn such that
cTAkb 
=0; ∀k ∈ [0; K − 1]

and

v∗(k) = sgn(cTAkb); ∀k ∈ [0; K − 1]:

This lemma says that an extremal control is a bang–bang
control, i.e., a control only takes value 1 or −1. Because of

this lemma, we can write Ec(K) as

Ec(K) = {v(k) = sgn(cTAkb):

cTAkb 
=0; ∀k ∈ [0; K − 1]}:
Consequently, it follows from (5) that

Ext(R(K)) =

{
−
K−1∑
‘=0

A−(K−‘)b sgn(cTA‘b):

cTA‘b 
=0; ∀‘∈ [0; K − 1]

}
: (6)

Writing cTA‘ as cTAKA−(K−‘) and replacing cTAK with cT

and K − ‘ with ‘, we have

Ext(R(K)) =

{
−

K∑
‘=1

A−‘b sgn(cTA−‘b):

cTA−‘b 
=0; ∀‘∈ [1; K]

}
:

Letting K go to in5nity, we arrive at the following result.

Theorem 1.

Ext(C) = Ext(R)

=

{
−

∞∑
‘=1

A−‘b sgn(cTA−‘b):

cTA−‘b 
=0; ∀‘¿ 1

}
:

We note that in the above theorem, the in5nite summation
always exists since A is anti-stable.
Since sgn(cTA−‘b)=sgn(�cTA−‘b) for any positive num-

ber �, this formula shows that Ext(R) can be determined
from the surface of a unit ball. It should be noted that each
extreme corresponds to a region of vectors c in the sur-
face of the unit ball rather than just one point. This for-
mula provides a straightforward method for computing the
extremal points of the null controllable region and no op-
timization is involved. In the following, we will give a
more attractive formula for computing the extremal points
of the null controllable region for systems with only real
eigenvalues.
In comparison with the continuous-time systems, a little

more technical consideration is needed here. This di:erence
can be illustrated with a simple example. If A = −2, then
cTAkb changes the sign at each k. Hence, if A has some nega-
tive real eigenvalues, an extremal control can have in5nitely
many switches. This complexity can be avoided through a
technical manipulation. Suppose that A has only real eigen-
values including some negative ones. Consider

y(k + 1) = A2y(k) + [Ab b]w(k); (7)
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where y(k) = x(2k) and

w(k) =

[
u(2k)

u(2k + 1)

]
:

Then the null controllable region of (1) is the same as that
of (7), which is the sum of the null controllable regions of
the following two subsystems:

y(k + 1) = A2y(k) + Abw1(k)

and

y(k + 1) = A2y(k) + bw2(k)

both of which have positive real eigenvalues. Therefore,
without loss of generality, we further assume that A has only
positive real eigenvalues. Under this assumption, it is known
that any extremal control can have at most n − 1 switches
(Qian & Song, 1980). Here we will show that the converse
is also true. That is, any bang–bang control with n − 1 or
less switches is an extremal control.

Lemma 3. For system (4); suppose that A has only positive
real eigenvalues. Then;

(a) an extremal control has at most n− 1 switches;
(b) any bang–bang control with n − 1 or less switches is
an extremal control.

Proof. Since A has only positive real eigenvalues; systems
(1) and (4) can be considered as the discretized systems
resulting from

ẋ(t) = Acx(t) + bcu(t) (8)

and

ż(t) =−Acz(t)− bcv(t) (9)

with sampling period h; where Ac has only positive real
eigenvalues. Thus;

A= eAch; b= A−1
c (eAch − I)bc

and

cTAkb= cTA−1
c (eAch − I)eAchkbc:

By Lemma 2.4.1 of Hu and Lin (2001); the continuous func-
tion in t; cTA−1

c (I − eAch)eActbc; changes sign at most n− 1
times; it follows that sgn(cTAkb) has at most n−1 switches.
To prove (b), let Rc(T ) be the reachable region of the

continuous-time system (9) at time T . Suppose that v∗ is a
discrete-time bang–bang control with n−1 or less switches,
and that the state of system (4) at step K under the con-
trol v∗ is z∗; equivalently, a corresponding continuous-time
bang–bang control will drive the state of system (9) from
the origin to z∗ at time Kh. It follows from Theorem 2.6.1
in Hu and Lin (2001) that z∗ belongs to @Rc(Kh) of the
continuous-time system (9). Recall from the same theorem
that Rc(Kh) is strictly convex, i.e., every boundary point of
Rc(Kh) is an extremal point, it follows that z∗ is an extremal

point ofRc(Kh). Since z∗ ∈R(K) ⊂ Rc(Kh), we must have
z∗ ∈Ext(R(K)). Therefore, v∗ is an extremal control.

It follows from the above lemma that the set of extremal
controls on [0; K] can be described as follows:

Ec(K) =


±v: v(k) =




1; 06 k ¡k1;

(−1)i ; ki6 k ¡ki+1;

(−1)n−1; kn−16 k6K − 1;

06 k16 · · ·6 kn−16K − 1


 :

Notice that we allow ki = ki+1 in the above expression to
include all the bang–bang controls with n−1 or less switches.
For a square matrix X , it can be easily veri5ed that if

I − X is nonsingular, then
k2−1∑
k=k1

X k = (X k1 − X k2 )(I − X )−1:

By applying this equality we have that, if v∈Ec(K), then
K−1∑
‘=0

A−(K−‘)bv(‘)

=A−K
[
k1−1∑
‘=0

A‘ −
k2−1∑
‘=k1

A‘ +
k3−1∑
‘=k2

A‘

− · · ·+ (−1)n−1
K−1∑
‘=kn−1

A‘
]
b

=A−K [I − 2Ak1 + 2Ak2

− · · ·+ (−1)n−12Akn−1 + (−1)nAK ](I − A)−1b:

It follows from (5) that

Ext(R(K)) =

{
−
K−1∑
‘=0

A−(K−‘)bv(‘): v∈Ec(K)

}

=

{
±
[
A−K + 2

n−1∑
i=1

(−1)iA−‘i + (−1)nI

]

(I − A)−1b: K¿ ‘1¿ · · ·¿ ‘n−1¿ 1

}
:

By letting K go to in5nity, we arrive at the following
theorem.

Theorem 2. If A has only real positive eigenvalues; then

Ext(R) =

{
±
[
2
n−1∑
i=1

(−1)iA−‘i + (−1)nI

]
(I − A)−1b:

∞¿ ‘1¿ · · ·¿ ‘n−1¿ 1

}
:
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In particular, for second-order systems, we have

Ext(R) = {±(2A−‘ − I)(I − A)−1b: 16 ‘6∞}
and for third-order systems

Ext(R) = {±(2A−‘1 − 2A−‘2 + I)(I − A)−1b:

16 ‘26 ‘16∞}:
A more interesting interpretation of Ext(R) can be ob-

tained after some manipulation. Let x+e :=(I − A)−1b be the
equilibrium point of system (4) under the constant control
v(k) = 1. Then for third-order systems.

Ext(R) =

{
±
[
A−k2x+e +

k1−1∑
‘=0

A−(k2−‘−1)(−A−1b)(−1)

+
k2−1∑
‘=k1

A−(k2−‘−1)(−A−1b)(+1)

]
:

16 k16 k26∞
}
:

We see that one half of Ext(R) is formed by the trajectories
of (4) starting from x+e , 5rst under the control of v = −1,
and then switching to v=+1 at any step k1. The other half
is symmetric to the 5rst half.
Similarly, for higher-order systems with only positive real

eigenvalues, Ext(R) = Ext(C) can be interpreted as the set
of points formed by the trajectories of (4) starting from x+e
or −x+e under any bang–bang control with n − 2 or less
switches.
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