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A Complete Stability Analysis of Planar Linear
Systems Under Saturation

Tingshu Hu, Student Member, IEEE,and Zongli Lin, Senior Member, IEEE

Abstract—A complete stability analysis is performed on a planar
system of the form _ = ( ) where is a Hurwitz matrix and

is the saturation function. Necessary and sufficient conditions for
the system to be globally asymptotically stable (GAS) or to have a
closed trajectory are explicitly given in terms of the entries of .
These conditions also indicate that the system always has a closed
trajectory if it is not GAS.

Index Terms—Closed trajectories, neural networks, saturation,
stability.

I. INTRODUCTION

DYNAMICAL systems with saturation nonlinearities arise
frequently in neural networks, analog circuits, and control

systems (see, for example, [2], [4], [5], and [8] and the refer-
ences therein). In this paper, we consider the systems of the fol-
lowing form:

(1)

where is the standard saturation function. With a
slight abuse of notation, we use the same symbol to denote both
the vector saturation function and the scalar saturation function,
i.e., if , then and

if
if
if

(2)

Systems of the form (1) and their discrete counterparts mainly
arise in neural networks and in digital filters.

As with any dynamical system, stability of these systems is
of primary concern and has been heavily studied in the literature
for a long period of time (see, for example, [1], [6], [7], [8], and
[10] and the references therein). As seen in the literature, the
stability analysis of such systems are highly nontrivial. Even for
the planar case, only sufficient conditions for global asymptotic
stability are available [1], [8], [10]. In this paper, we present
a complete analysis of the planar system of the form (1). In
particular, necessary and sufficient conditions for the system to
be globally asymptotically stable (GAS) or to have a limit circle
are explicitly given in terms of the entries of the matrix. We
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will also describe a surprising, but appealing, phenomenon that
even with an unstable matrix it is still possible for the system
to have a bounded global attractor.

We would like to point out that the necessary and sufficient
conditions for planar linear systems operating on the unit square
to be GAS were recently identified in [8] and [9]. The class
of linear systems operating on the unit square can be put in a
form similar to (1) with being a state-dependent function that
takes zero value instead of as the saturation function does,
whenever the state is to leave the unit square. By forcing the state
within the unit square, the dynamical behavior is completely
different. For example, the closed trajectory would not exist [9].

We will begin searching for the necessary and sufficient con-
dition for the system to be GAS by drawing a general picture
of the vector field in Section III. Some constants are captured
to characterize the vector field. In Section IV, we show that it
is these constants, rather than the stability of thematrix, that
determine the global boundedness of the trajectories. An inter-
esting example is presented to show that even ifis unstable,
the system can still have a bounded global attractor.

The condition for the existence of a bounded global attractor
as given in Section IV, along with the stability of the matrix,
guarantees the system to be GAS. This is shown in Section V.
Now that all the trajectories are bounded, the only problem to
be solved in Section V is the nonexistence of a closed trajec-
tory. This problem turns out to be quite complicated due to the
partition of the vector field by the saturation. In the central unit
square , and a trajectory in this region follows that
of a linear system. Off the central square, the sequence of the
intersections of a trajectory with a straight line is governed by
a first-order linear time invariant discrete-time system. The real
complexity arises when a trajectory traverses between the cen-
tral square and other regions. We will approach this problem
through evolving models with

In the primary model and . In the secondary
model and . In the third-level model

and . The trajectories of the secondary model are
very appealing. Inside a certain ellipse all the trajectories are
closed and outside this ellipse all the trajectories converge to
this ellipse. We will establish our main results by comparing
the trajectories of the general model with those of a secondary
model, which in turn are characterized by comparing with the
primary model.
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II. M AIN RESULTS

Consider the following system

(3)

where is the saturation function, i.e., if ,
then and is as defined by (2). For this system,
we observe that its dynamics are left unchanged under the state
transformation if is of the form where is
a permutation matrix and .

We assume through out this paper that . This im-
plies that is nonsingular and the system has a unique equilib-
rium point at the origin. Following the idea of [1], let .
The system (3) is then transformed into the following form:

We see that the dynamics of the system (3) and hence its stability
properties are equivalent to those of the system

(4)

We will focus on (4) in this paper.
Given an initial state , denote the trajectory of the system

(4) that passes through at as . Mainly, we
consider the positive trajectory . However, oc-
casionally we use for the purpose of compar-
ison.

Definition 2.1: The system (4) is said to be stable at its equi-
librium if, for any , there exists a such that

for all and . It is said to be GAS
if is a stable equilibrium and for
all . Also, it is said to be locally asymptotically stable
if it is stable and for , a neigh-
borhood of .

Obviously, is a locally asymptotically stable equilib-
rium if and only if is Hurwitz. In this case, at least one of its
diagonal elements must be negative. Without loss of generality,
we assume throughout the remaining part of this paper that

(5)

Otherwise, we can use as the state transformation
matrix to make or use to make .

Our main result in this paper, presented in the following the-
orem, gives a complete description of the stability properties of
the system (4) with given in (5). As explained above, any Hur-
witz can be transformed into the form of (5).

Theorom 2.1:The system (4) is GAS if and only if is Hur-
witz and one of the following conditions is satisfied:

a) ;
b) and .
On the other hand, if none of a) and b) is satisfied, the system

will have diverging trajectories and there will be a closed trajec-
tory.

In proving this main result, we will also obtain conditions
under which all the trajectories of the system (4) are bounded.

Remark 2.1:We recall a recent sufficient condition for
global asymptotic stability of the system (4) from [1]. The
results of [1], tailored to the special form of in (5), is
summarized as follows. the system (4) is GAS ifis Hurwitz
and one of the following conditions is satisfied.

a) .
b) and .

The fact that and is Hurwitz imply that
.

In view of Remark 2.1, we only need to consider the case
where and . In this case, the four parameters

are all nonnegative.

III. T HE VECTORFIELD

In this section, we present a general picture of the following
vector field:

(6)

where and . Denote
the slope of the trajectory atas

The vector field of (6) is partitioned into nine regions, ac-
cording to the saturation function, by two vertical lines
and two horizontal lines (see Fig. 1). In the central unit
square, .

In the region

Since , in this region and the trajectories go
rightward. Also note that is independent of , so for all the
points on a vertical line in this region is
the same. Because of this, if and for all

, then with

(7)

We call (7) the vertical shifting property in the region. Specif-
ically, let be a point on the line ,
then

(8)

(9)
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Fig. 1. The partion of the vector field.

Suppose remains in the region before it intersects with
the line at with , then by solving
(8) with we get

and from (9) with we have

In the above derivation, we have assumed that . As
Proposition 3.1 will show, automatically ensures the
global asymptotic stability of the system (4) if is Hurwitz.

As expected, the increment of from to is
independent of . We denote this constant as

(10)

In the region

is a constant. So the slope of the trajectories is a constant. We
denote this constant slope as

(11)

In the region

In contrast to the region , is independent of . If
and for all , then with we have

(12)

We call (12) the horizontal shifting property in the region. As
Proposition 3.1 will show, if , the system (4) will not
be GAS. Now for the case that , and points
downward in this region. In this case, if a trajectory starts at a

point on the line and crosses the
line at a point , then
is a constant. We denote this constant as. It can be verified,
as with the the constant , that

if

if
(13)

In the region

We denote the constant slope in this region as

(14)

The remaining four regions are symmetric to and .
We denote them as .

For a general second-order nonlinear system that has a unique
equilibrium point at the origin, its GAS can be proven if we
can show that all its trajectories are bounded and there exists no
closed trajectory. Here we have some criteria to determine the
existence of closed trajectories for the system (4).

Lemma 3.1:

a) Let be a closed bounded region that does not contain the
origin. If no trajectory leaves or no trajectory enters ,
then there will be a closed trajectory within.

b) Let be a simply connected region. If
is not identically zero and does not

change sign in , there will be no closed trajectory
in . (Note that for and as defined by (6),

exists inside each region of the
partition of the state space Fig. 1.)

Lemma 3.1 a) is a simple application of the
Poincaré–Bendixon Theorem to the system (4) and its time
reversed system . In addition, b) follows from the
Bendixon Theorem. It can also be easily obtained from Green’s
Theorem. This theorem will be frequently applied in this paper.

If the system (4) has a closed trajectory, say,, then must
enclose the origin (by the index theory) since the origin is the
unique equilibrium point. And must be symmetric to the
origin. Since the vector field is symmetric to the origin, is
also a closed trajectory. If is not symmetric, then
and the two different trajectories will have intersections. This
is impossible since no trajectories can intersect.

We next digress to address two special cases, and
.

Proposition 3.1: Assume is Hurwitz.

a) If , then the system (6) is GAS.
b) If (which implies that ), then the

system has diverging trajectories and also has a closed
trajectory.

Proof:

a) We see that a) is an extension of b) in Remark 2.1 and can
be proven by a method similar to [1]. First we claim that
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the vertical strip is an invariant set
and a global attractor. Since is Hurwitz ( )
and , we must have .

On the line , and on , .
So no trajectory in points out of it and hence it is an
invariant set. In the region,
, so all the trajectories in this region will enter . In

, , so all the trajectories will enter the
central square or the region. In ,

, so all the trajectories will enter
the region . Similar arguments apply to the regions

. This shows that all the trajectories outside
of the strip will enter it. Hence, it is a global attractor.

Next we show that all the trajectories inare bounded.
Let be a point on the line .
Then . In the region , depends
only on and it can be easily verified that is a
decreasing function of and for .
So if we draw a straight line with slope at , then no
trajectory in will cross upward. Symmetrically, no
trajectory will cross downward. This shows that the
parallelogram enclosed by and , denoted
as , is also an invariant set and for all

as long as . Since for every there
exists such a parallelogram that encloses, it follows
that all the trajectories are bounded.

In , ( in
or in the central square) so by Lemma 3.1b),
there exists no closed trajectory in. Since is a global
attractor, all the trajectories will enter it and then converge
to the origin. Thus, the system is GAS.

b) From we have , otherwise
. We also have , , and

in the region . So every trajectory starting from
within this region will diverge along a straight line with
slope and is unbounded. Let be the polygon with
vertices 1, 2, , 8 (see Fig. 2, where at point 2

and the line from 3 to 4 has slope). From 2
to 3 and . From 3 to 4, ,
so the trajectories direct outward from . It is also easy
to see that on other parts of the boundary of, all the
trajectories remain on it or direct outward from it. Since

is Hurwitz, there exists a Lyapunov level set in the
central square such that all the trajectories insidewill
stay inside and converge to the origin. Let ,
then no trajectory will enter , so by Lemma 3.1, there is
a closed trajectory in .

Now that the two special cases are cleared, we now turn to the
remaining case where and . For this case,
all the trajectories go clockwise, see Fig. 1 for some typical tra-
jectories. Here we summarize the properties of the trajectories
as follows.

In the region , and the trajectories go rightward. If
, and if , . On the line
, the trajectories turn from upward to downward.

In the region , and the trajectories go downward.
On the line , the trajectories turn from rightward
to leftward.

Fig. 2. Illustration for the proof of Proposition 3.1.

In the region , the trajectories are straight lines that go
downward-rightward; In the region, the trajectories go down-
ward-leftward.

In the central square, on the line
and on the line , .

Finally, in this case, and are all well defined.

IV. CONDITIONS FOR THEGLOBAL BOUNDEDNESS

OF THE TRAJECTORIES

In this section, we consider the system

(15)

Assume that and (this implies
.) We do not assume that is Hurwitz in this section since

the critical case where has a pair of pure imaginary eigen-
values will be useful to our study. It turns out that the system
can have a bounded global attractor, even ifis unstable. The
global boundedness depends on and , rather than the
stability of .

Proposition 4.1: Assume and . The
system (15) has a bounded global attractor if and only if one of
the following conditions is satisfied.

a) .
b) and .
If and , then outside certain

region, all the trajectories are closed. If ( or
and ), there will be unbounded

trajectories and if, in addition, is Hurwitz, there exists a
closed trajectory.

Proof: Under the assumption that and
, we have , .

Let

be a point on the line . See the point labeled 1 in Fig. 3.
Let the trajectory starting from be . We will show
later that will go through regions , and
consecutively (not fall into the central square before leaving
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Fig. 3. Illustration for the Proof of Proposition 4.1.

). Let the intersections of with the lines
be

and

which correspond to the points 2, 3, 4, 5 in Fig. 3. Then

and , i.e.,

(16)

The requirement that the trajectory does not enter the central
square is equivalent to , , . This can be guar-
anteed by . If we also
have , then we can
continue with the above process symmetrically to get an inter-
section with the line , (point 9 in Fig. 3) where

and so on. Equation (16) defines a first-order linear time in-
variant discrete-time system.

Case 1 ( ): This inequality is
equivalent to . So in this case, the
discrete-time system (16) is unstable. If

,
then will be an exponentially
increasing sequence and the trajectory starting from
will be unbounded.

Let where

(see point 1 in Fig. 4). Then by the foregoing argument,
will return to the line at a point above (see

2 in Fig. 4). By connecting 1 and 2, we get a closed curve. Let
the region enclosed by this closed curve be. From 1 to 2,
is a constant and since . So directs

Fig. 4. Illustration for the Proof of Proposition 4.1: Case 1.

outward from . If is Hurwitz, there will be a Lyapunov
level set in the central square which is invariant. Let

, then no trajectory will enter and, by Lemma
3.1, there is a closed trajectory inas illustrated in Fig. 4.

Case 2 ( ): This inequality is equivalent to
. Since , in this case the discrete-time

system (16) is stable. Let be chosen such that

(17)

and

(18)

then with , the trajectory does not fall into
the central square before it returns to the line (This is
guaranteed by (17). Moreover, because of (18), we have

(19)

Let (see point 1 in Fig. 5). Then by the foregoing
argument, will return to the line at a point
2 between and . By connecting 1 and 2, we get a closed
curve. Denote the region enclosed by this closed curve as.
Since on the line between 1 and 2directs inward of . Thus,

will stay in as long as . Therefore, is
an invariant set.

Let be any point outside of , then goes clock-
wise and will intersect with the line above 2, say at

. If , i.e., is between 1 and 2, then
will enter afterward and stay there. If , then by (19),
we have until for
some finite . This implies for some .
Therefore, is a global attractor.
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Fig. 5. Illustration for the Proof of Proposition 4.1: Case 2.

Case 3 : In this case, and

Suppose , the sequence will de-
crease steadily before the trajectory touches the central square,
similar to Case 2, there exists a global attractor.

Suppose , the sequence will increase steadily
and the trajectory will go unbounded. Also, similarly to Case 2,
there exists a closed trajectory.

Suppose , then if
, we will

have for all . So is on a
closed trajectory. Let be the region enclosed by the closed
trajectory passing through , then all the trajectories
outside of are closed. .

To demonstrate Proposition 4.1, consider the system with
Clearly, is exponentially unstable, but

. So the system has a global attractor (see Fig. 6).
An interesting case is that and . In this

case, has a pair of pure imaginary eigenvalues. For the linear
system every point in the plane is on a closed trajectory.
This is also true for the saturated system

(20)

Denote the trajectory of (20) as .
Proposition 4.2: All the trajectories of (20) are closed. Each

trajectory is symmetric with respect to the line and the
line .

Proof: For this system, and it can also
be verified that . By Proposition 4.1, is
bounded for every . On the other hand, since has a pair of
pure imaginary eigenvalues, there are closed trajectories in any
neighborhood of the origin. Thus, any is outside of a closed
trajectory. Therefore, will be a closed curve or go to
a closed curve. Since goes clockwise, it will intersect
the line somewhere, say, at . So, for simplicity, we
can assume that for some . To show is a
closed trajectory and is symmetric to the line , it suffices
to show that where .

Fig. 6. A global attractor.

Consider the time-reversed system of (20),

(21)

Denote its trajectory as . Then .
From (21), we have

thus, . Since , it follows that
.

To show that the trajectory is symmetric with respect to
, we write (20) as

We also have . Following the same procedure
as above by considering the state instead, we can show
that all the trajectories are symmetric with respect to the line

.
The system (20) is not GAS but is useful for us to develop the

condition for global asymptotic stability. We will establish the
main result of the paper by comparing the trajectory of a general
system with that of (20).

V. PROOF OFTHEOREM 2.1

In view of Remark 2.1 and Proposition 3.1, we only need to
consider the following system:

(22)

with .
Proposition 5.1: Assume that and is Hurwitz,

the system (22) is GAS if and only if .
This proposition can be established as follows. First note that

and imply . If
and is Hurwitz, then it can be verified that
. Hence, this proposition shows that the stability of



504 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY APPLICATIONS, VOL. 47, NO. 4, APRIL 2000

along with the global boundedness condition in Proposition 4.1
guarantees the system to be GAS.

If , then by Propositions 3.1 and 4.1, the
system is not GAS whether or not. So the necessity
of the condition is obvious. What remains is to show the suffi-
ciency of the condition. Now that the global boundedness of the
trajectories is guaranteed, the only thing needed to be shown is
that the system has no closed trajectory.

Since all the trajectories are kept unchanged when the vector
field is multiplied by a positive constant, we assume that

in the sequel for simplicity. Now we have

We first deal with the case where .
Lemma 5.1:Assume and is Hurwitz. If

, then (22) is GAS.
Proof: See the Appendix.

In what follows, we consider the case that . Let
, then we can assume thattakes the form

(23)

The assumption in Proposition 5.1 that and is
Hurwitz translates to

and the condition is equivalent to

Therefore, we can establish Proposition 5.1 by showing that the
system

(24)

is GAS. The proof will be carried out by evolving from the
simplest form where to the case
and finally to the general case . When

, the system is surely not GAS becauseis not Hurwitz,
but the trajectories in this case will be used as a reference to
show the convergence of the trajectories whenis decreased.

To proceed, we need a technical lemma. Recall (13)

if

if

Now we have and , so

Lemma 5.2: If and , then .
Proof: See the Appendix.

Now we consider the case where and ,

(25)

Given an initial point , denote the trajectory of (25) as
and as a comparison, denote the trajectory of

(26)

as . Then is closed for every by Proposi-
tion 4.2.

In the following, we present three lemmas about the intersec-
tions of with some straight lines.

Lemma 5.3:Assume .

a) Let . If , then (see
the dashed curve in Fig. 7) may intersect with the line

. Let the first intersection be , then
, i.e,

If , will go downward-
rightward at first, but will not intersect with the line

before it turns leftward (see the dotted curve in Fig. 7).
b) Let . Then goes

downward-leftward (see the dash-dotted curve in Fig. 7).
Let the first intersection of with the line

be , then , i.e.,

As a comparison, two are also shown in Fig. 7 (see
the solid curves). In Fig. 7, ’s are marked with *.

Proof: See the Appendix.
Lemma 5.4:Given , let

be a point on the line . Then will go
downward-rightward at first, then turn leftward and return to
the line . Let the intersection be , then

.
Proof: See the Appendix.

Lemma 5.5:Let be a point on the
line . Then goes downward-rightward at first
and turns leftward. Suppose has an intersection with
the line at , then (see Fig. 8).

Proof: See the Appendix
The following two lemmas give a complete characterization

of the trajectories of the system (25).
Lemma 5.6:Assume . Let . Then,

is a closed curve that lies within the central square.
Denote the region enclosed by as , then every point
inside is on a closed trajectory. And outside, any trajec-
tory will converge to (see Fig. 9).

Proof: See the Appendix.
Lemma 5.7:Assume . Let

be a point on the line , then goes upward at first
and will return to the line . Suppose intersects
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Fig. 7. Illustration for Lemma 5.3.

Fig. 8. Illustration for Lemma 5.5.

Fig. 9. Illustration for Lemma 5.6.

with the line . Let be the first intersection,
then .

Proof: See the Appendix.
Lemmas 5.6 and 5.7 give us a clear picture of the trajectories

of (25), where . Lemma 5.7 shows that if is
outside of , a trajectory will move closer and closer
to as it reaches the lines . Next we will show that as

is decreased, a trajectory of (24) will move even
closer to , as compared with . This will lead to our
final result about the global asymptotic stability of the system

(24) and hence the proof of Proposition 5.1. Rewrite (24) as
follows:

(27)

where , and . We will consider the
perturbation of the trajectories as is varied, so denote the
trajectory of (27) as and the slope of a trajectory
at be . As compared with (25), is the same but
is multiplied with a scalar . Because of this, the trajectories
of (27) exhibit some interesting properties.

Fact 5.1:

a) Let be a point above the line ,
then for all

as long as stays above the line .
b) Let be a point to the right of the line

, then for all

as long as stays to the right of .
See Fig. 10 for an illustration, where the solid curves

are and , and the dashed curves are
.

Fact 5.1a) implies that and are on
the same vertical line but the distance from to
the line is times that from to .
In particular, and return to the line

at the same time and the same point. This simply
follows from the fact that of (27) is times that of (25)
and that is independent of above the line . It can
also be directly verified from the expression of
and .

Fact 5.1b) implies that and are
on the same horizontal line but the distance from
to the line is times that from
to . In particular, and
return to the line at the same time and the same
point. This also follows from the fact that is scaled by .
If we scale the vector field to the right of the line by

, then is the same as that of (25) but is amplified
by . Note that the scaling of the vector field results in the
time scaling of .

With Fact 5.1, we are ready to present a final lemma that leads
to the proof of Proposition 5.1.
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Fig. 10. Illustration for Fact 5.1.

Fig. 11. Illustration for the Proof of Proposition 5.1.

Lemma 5.8:Let
. Suppose intersects with the line

at a point and , then
if is sufficiently small, will
intersect with at a point to the right of . If it
also intersects with the line , the intersection will
be to the left of .

For an illustration of Lemma 5.8, see Figs. 16–18 where
the solid curves are and the dashed curves are

.
Proof: See the Appendix.
Proof of Proposition 5.1:The necessity of the condition

simply follows from Propositions 3.1 and 4.1. With Lemma 5.1,
it remains to be shown that the system (27) or (24) is GAS. We
will first show that any point on the line is not on a
closed trajectory. We can restrict our attention to the points to
the left of , since for the points to its right, they can be
traced back to the left as the trajectories go rightward above the
line . Let , then of
the system (25) (see the solid curve in Fig. 11) will return to the
line at a point . From Fact 5.1, will also
return to for all (see the dashed curve in Fig. 11).

We have shown in Lemma 5.7 that for any to the left of
, if reaches the line at some point

Fig. 12. Illustration for the Proof of Proposition 5.1.

, then , i.e., is to the left of .
By Lemma 5.5, is also to the left of . From Lemma 5.8,
we know that as is decreased from 1, the intersection of

and will move leftward and, hence, re-
main to the left of and . Note that is on ,
so overlaps with . Therefore, is
not on a closed trajectory (note that a closed trajectory must be
symmetric).

Next we exclude the possibility of the existence of a closed
trajectory that does not intersect with . Suppose there is
one, then it must intersect with the line at some
point, say , then at and

. When , is an ellipse that
touches the lines (see the solid curve in Fig. 12). By
Lemma 5.8, as is decreased to ,
will intersect with at a point to the right of and

. After that, it will stay above and above the
line (see the dashed curves in Fig. 12). Thus no
closed trajectory can be formed.

If , then . If , then
and it can be verified that ,

(assume ). So by Proposition 4.1, all the
trajectories of (27) are bounded, and they must converge to the
origin.

Proof of Theorem 2.1:Combining Remark 2.1, Proposi-
tions 3.1, 4.1, and 5.1, we can obtain the necessary and sufficient
condition for the system (4) to be GAS. Condition b) in Theorem
2.1 is a simple combination of Condition b) in Remark 2.1 and
Propositions 3.1, 4.1, and 5.1. This simplification is justified as
follows.

Since is Hurwitz and , we must have .
If , Remark 2.1 b) and Proposition 3.1 say the

system is GAS. If , because , the
system is also GAS by Proposition 5.1.

Conversely, suppose but , we have

Since is Hurwitz
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Therefore

i.e., . Hence by Propositions 3.1 and 4.1, the system
is not GAS whether or not. And in both cases, the
system has unbounded trajectories and there is also a closed
trajectory.

VI. CONCLUSIONS

We gave a complete stability analysis of a planar linear
system under saturation. The analysis involves intricate in-
vestigation on the vector field and the intersections of the
trajectories with the lines and . Our main
result provides a necessary and sufficient condition for such a
system to be GAS.

APPENDIX

PROOF OFLEMMAS

Proof of Lemma 5.1

Under the condition, we have .
By Proposition 4.1, the system has a bounded global attractor.
We need to show that there exists no closed trajectory. Suppose,
on the contrary, that there is such a one. Denote the region en-
closed by the closed trajectory as, then by Green’s Theorem

Since a closed trajectory must enclose the origin, the area of
the intersection of and the central square is nonzero. Thus,
the left-side integral is strictly smaller than zero. Note that

in the central square and
nonpositive in other parts of the plane. This is a contradiction.

Proof of Lemma 5.2

We only need to show that the lemma is true when .
First, let , then

(28)

As and as . Suppose
there is an extremum in the interval , then at this ex-
tremum . From routine computation, this implies

Put this into the formula (28), we get the only possible extremum
value

Since at the two end points of the interval , we
must have on the whole interval.

Next we show that for any fixed , for all
. Here we have

We have just shown that for any given , . As
, we also have . Suppose there is an extremum

between , then . This implies

Put this into the function , we get

(note that ). It follows that for all
and .

Proof of Lemma 5.3

a) This can be shown by comparing with
. Since is symmetric with respect to

the line , it will intersect with at
for any . Since at the same point, if

, then of (25) is smaller (more negative) than
that of (26) and of the two is the same, so
is below . Hence, the first intersection of

with , if there is one, must be below that
of with , which is . This shows
that .

If , will go down-
ward-rightward at first and when it reaches the line

, it is below the point . Since

does not go beyond the line

(at the intersection ), will not intersect
with the line before it turns leftward.

b) If , then goes downward-leftward.
Suppose intersects with at . Let the
region enclosed by and the two lines ,

be , then by Green’s Theorem

where denotes the boundary ofthat goes clockwise.
Note that along the trajectory , the integral on the
boundary is zero, so we have
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Let

then from the above equation

(29)

Since intersects with downward, so
at we must have . This implies must be to
the right of , i.e., . Similarly,

. It can be shown by the manipulation of
quadratic functions that for any there is a
unique satisfying (29) and due to

and .

Proof of Lemma 5.4

Since , at , , and . Thus,
goes downward-rightward. In the region , above

the line , and below the line , so
turns downward-leftward on meeting this line.

By the horizontal shifting property (12) of the trajectories in
the region , it suffices to show that the lemma is true for one

. Choose sufficiently large such that when

reaches the line at , it is still inside ,
i.e., . Obviously, the quantity is independent of

like . If , then is to the left of the line

. This implies must have intersected the

line at before it reaches . Note that

goes downward-leftward below the line .
Thus , i.e., .

What remains to be shown is that is indeed the case.
Trivial calculation shows that

When we get . Let , then

This is similar to . Since , we have
, so by Lemma 5.2, .

Proof of Lemma 5.5

When we must have , otherwise we would
get . However, we know that by Lemma 5.2.
What remains to be shown is the case where .
Since depends continuously on , it suffices to show that

for any . We prove this by contra-
diction.

Assume that for some . Then
the line to is vertical.

Case 1: does not intersect with the line
before it reaches . Applying Green’s Theorem
to the region enclosed by and the vertical line

to . Since in the region,
we have

This leads to , which contradicts the condition
that .

Case 2: intersects with the line before
it reaches . Let the intersections be

, see Fig. 8. Again applying Green’s
Theorem to the region enclosed by the lineto ,
the line to and the trajectory , we get

This leads to

(30)

By Lemma 5.3, (= is taken when
), so . By Lemma 5.4, ,

so . This contradicts (30).
Combining the two cases, we must have for any

. Also, by continuity, .

Proof of Lemma 5.6

At , , so goes rightward. By
Lemma 5.3, will not intersect with the line
before it turns leftward. Since has a pair of pure imaginary
eigenvalues, the trajectory will touch the line at .
And by symmetry, it will return to thus form a closed curve.
Note that because at , so has only one
intersection with each of the lines and . It
follows that is inside the central square.

If , then will stay within since the tra-
jectories will not intersect with . Thus is in
the linear region and will be a closed trajectory.

Since , and
, Condition a) in Proposition 4.1 is satisfied, thus,

every trajectory of (25) will enter a bounded attractor
and hence is bounded. To prove the remaining part of the lemma,
it suffices to show that there is no closed trajectory outside.
We prove this by contradiction.

Suppose there is a closed trajectory outside of, say , then
goes clockwise and must have two intersections with the line
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Fig. 13. Illustration for the Proof of Lemma 5.6: Case 1.

. Denote the region enclosed byas , then by Green’s
Theorem, we have

Denote the area of a region as , then

(31)

Note that in the central square and in the region ,
, in ,

and in , . Also note that must
be symmetric with respect to the origin. Equation (31) implies
that must also intersect with the line and the area of
the part of in the region and that in the region must be
equal. We will show that this is impossible.

Case 1: The intersections are all on the boundary of the cen-
tral square. See Fig. 13, where are the intersections with

, are the intersections with . By symmetry,
should intersect with at . The contradiction will

be .
Denote

Then by Lemma 5.3, and hence

(32)

Get a symmetric projection of with respect to the line
on the region and denote it as (see the dashed

curve in Fig. 13). The corresponding intersections with the line
are . From (32), and are

between and .
At a point , the slope of is

Fig. 14. Ilustration for the Proof of Lemma 5.6: Case 2.

By symmetry (exchanging and and taking the inverse of
the slope), at a point the slope of is

Clearly, equals the area of the region enclosed by
and the line . For the two areas and

to be equal, and must have two
intersections, say and , with .
At the left intersection , crosses upward and
at the right intersection , crosses downward.
This implies

(33)

Let

then , and from (33), we have

The function changes sign three times, so has at least
three zeros between and . Obviously there are only two
zeros in this interval, hence, and cannot have
two intersections. Consequently, . A
contradiction.

Case 2: intersects with the lines
as in Fig. 14. From to , the slope of the straight
line is , so

. From Lemma 5.3,
, note that is symmetric

and must intersect with at . Hence, if we get
a symmetric projection of on the region (see the
dashed curve in Fig. 14), then is to the right of and
is below . Suppose , will
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Fig. 15. Illustration for the Proof of Lemma 5.6: Case 3.

intersect with twice. This is impossible as was shown
in Case 1.

Case 3: The four intersections are as shown in Fig. 15.
Similarly, since , we have

and
. Also get a symmetric projection of

on the region (see the dashed curve in Fig. 15), thenis
below and is below . Similar to Case 1, we can show
that . A contradiction.

Because , there is no such case whereonly encloses
and but not and .

Combining the above three cases, we see that there is no
closed trajectory that intersects with any of the lines
and twice. So there is no closed trajectory outside of

and if a trajectory starts outside of , it will converge to the
boundary of .

Proof of Lemma 5.7

Since is outside of and is to the left of , so
goes upward-rightward at first. After crossing the line

, it goes downward and returns to the line .
Since goes clockwise, at the first intersection with
the line it crosses the line downward, so at

and . Let be the time when
intersects with , i.e., . Suppose

, then and is
a closed curve. This is impossible by Lemma 5.6. Now suppose

, then is to the right of . Let the region en-
closed by , ,
the line to and the line to be , then on the line
from to , and points outward from . Simi-
larly, on the line from to , also points outward from.
Thus, no trajectory outside of will enter it. This contradicts
with Lemma 5.6 since is in the interior of .

Therefore, we must have .

Proof of Lemma 5.8

Without loss of generality, assume . When
, the proof can be carried out similarly. There are three

cases.
Case 1: and does not intersect with

the line (see Fig. 16).

Fig. 16. Illustration for the Proof of Lemma 5.8: Case 1.

Because , both and
go downward-rightward until reaching

the line (see the dashed line passing through the
origin). (On this line, ). After that, the trajectories turn
leftward.

At , the slopes of both trajectories are negative and
, so will go

to the right of at the begining. On the part of
that is above the line ,
and on the part that is below the line

. So can only cross
leftward below the line. We will show that the crossing point
(see Fig. 16) is to the right of and . After the crossing,

will stay to the left of until
meeting the line . This leads to the desired result.

Let be the intersections of
and with the vertical line

, respectively. Since is to the left of , so is
above the line . Assume on the contrary that there is
no intersection of with that is
to the right of the line , then must be above , i.e.,

and is to the right of
before meeting the line . Denote the area of the region
enclosed by and the line from to as and
the area of the region enclosed by with the
line from to as , then . Applying Green’s theorem
to the vector fields corresponding to and , we have

(34)

(35)

Note that is the same for both the vector
fields. Subtracting (35) from (34), we obtain

We know that from to since the trajectories
go leftward. By assumption, , so .
A contradiction. Therefore, we must have and
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Fig. 17. Illustration for the Proof of Lemma 5.8: Case 2.

intersects at a point to the
right of .

Case 2: and intersects with ,
see Fig. 17.

Let be the first intersection of with ,
be the second one.
Let the horizontal distance from to

at be and that at be . Then

is on . By the horizontal

shifting property (12) of the trajectories, will

intersect the line at . From Fact

5.1, also returns to the line
at . Because is on ,
overlaps with . It follows that .

Let and be defined similarly to Case 1, we will also
show that is above by contradiction. First, we need an
upper bound for .

Let be a point on and be a
point on . Define

then the slope of at is and
the slope of at is

. It easily can be verified that for ,
is a decreasing function of , so

(36)

We can view as a function of . Routine analysis shows
that

Note that the part of from to is above the
line . It follows from (36) that

Fig. 18. Illustration for the Proof of Lemma 5.8: Case 3.

Since , we have

Therefore

(37)

Let be the intersection of the extension of the line
from to with and be that of the line
from to (see Fig. 17). Denote
as the areas of the regions enclosed by straight lines
and corresponding to the sets of vertices

,
respectively. Denote as the areas
of the regions enclosed by straight lines and

corresponding to the sets of vertices
,

respectively. Then by Green’s theorem, we have

(38)

(39)

Note that there are small triangle areas inand that are
in the region . They are of the order . Since is arbitrarily
small, we can treat them as a region in the central square for
simplicity.

It follows from Fact 5.1 b) and the horizontal shifting property
in the region that . From (37), we have
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By assumption, is above , so . Sub-
tracting (39) from (38) we get

A contradiction with and .
Case 3: (see Fig. 18).
In this case, goes downward-rightward, then

turns downward-leftward and returns to the line at
a point, say, . Because , is above the line

. By Fact 5.1, will also return to the
line at the same point. After that ,
remains to the left of untill it meets the line

and the desired result follows.
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