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Systems Under Saturation
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Abstract—A complete stability analysis is performed on aplanar  will also describe a surprising, but appealing, phenomenon that

system of the formi: = a(Ax) where A is a Hurwitz matrixand  even with an unstable matrix it is still possible for the system
o is the saturation function. Necessary and sufficient conditions for to have a bounded global attractor.

the system to be globally asymptotically stable (GAS) or to have a ) . -
closed trajectory are explicitly given in terms of the entries ofA. We would like to point out that the necessary and sufficient

These conditions also indicate that the system always has a closecconditions for planar linear systems operating on the unit square

trajectory if it is not GAS. to be GAS were recently identified in [8] and [9]. The class
Index Terms—Closed trajectories, neural networks, saturation, Of linear systems operating on the unit square can be put in a
stability. form similar to (1) withes being a state-dependent function that

takes zero value instead #fl as the saturation function does,
whenever the state is to leave the unit square. By forcing the state
within the unit square, the dynamical behavior is completely
YNAMICAL systems with saturation nonlinearities arisedifferent. For example, the closed trajectory would not exist [9].
frequently in neural networks, analog circuits, and control We will begin searching for the necessary and sufficient con-
systems (see, for example, [2], [4], [5], and [8] and the refedition for the system to be GAS by drawing a general picture
ences therein). In this paper, we consider the systems of the fafithe vector field in Section Ill. Some constants are captured
lowing form: to characterize the vector field. In Section IV, we show that it
is these constants, rather than the stability ofAhmatrix, that
z=o(Az), z€ER" (1) determine the global boundedness of the trajectories. An inter-
esting example is presented to show that evef i§ unstable,
wheres: R — R" is the standard saturation function. With dhe System can still have a bounded g|oba| attractor.
slight abuse of notation, we use the same symbol to denote botirhe condition for the existence of a bounded global attractor
the vector saturation function and the scalar saturation functigg, given in Section 1V, along with the stability of the matrix

. INTRODUCTION

ie., ifv e R", theno(v) = [o(v1), o(va), -+, o(v,)]" @and  guarantees the system to be GAS. This is shown in Section V.
. Now that all the trajectories are bounded, the only problem to
-1, ify, < -1 . : ; ; ;
. be solved in Section V is the nonexistence of a closed trajec-
o(v)=q v, if-1<wv<1, (2) ; ; ;
1 if o> 1 tory. This problem turns out to be quite complicated due to the

partition of the vector field by the saturation. In the central unit

Systems of the form (1) and their discrete counterparts mairfiguares(z) = z, and a trajectory in this region follows that
arise in neural networks and in digital filters. of a linear system. Off the central square, the sequence of the

As with any dynamical system, stability of these systems i@tersections of a trajectory with a straight line is governed by
of primary concern and has been heavily studied in the literat#dirst-order linear time invariant discrete-time system. The real
for a long period of time (see, for example, [1], [6], [7], [8], andomplexity arises when a'trajectory tr.averses betwe_en the cen-
[10] and the references therein). As seen in the literature, 5@l Square and other regions. We will approach this problem
stability analysis of such systems are highly nontrivial. Even fdfrough evolving models with
the planar case, only sufficient conditions for global asymptotic
stability are available [1], [8], [10]. In this paper, we present
a complete analysis of the planar system of the form (1). In A= [
particular, necessary and sufficient conditions for the system to
be globally asymptotically stable (GAS) or to have a limit circl
are explicitly given in terms of the entries of the matrxWe

—1 “12} L ap > 1, k>1
—kaizaze, a2

% the primary modehs; = 1 andk = 1. In the secondary
modela,, = 1 andk > 1. In the third-level modehk,, €

(0, 1) and%k > 1. The trajectories of the secondary model are
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Il. MAIN RESULTS Remark 2.1:We recall a recent sufficient condition for

global asymptotic stability of the system (4) from [1]. The

results of [1], tailored to the special form of in (5), is

i = o(Az), e R 3) summarized as follows. the system (4) is GASlifs Hurwitz
and one of the following conditions is satisfied.

Consider the following system

wheres: R% — R? is the saturation function, i.e., if € R?, a) az < 0.

theno(v) = |7*)| ando is as defined by (2). For this system, b) a2z 2 0 anday, > ara. _ o

we observe that ifs dynamics are left unchanged under the state ~ 1ne fact thataz; > 0 and A is Hurwitz imply that

transformation: = 7'z if T is of the form7" = PS whereP is a1z > 0.

a permutation matrix anfl = diag(+1, &1). In view of Remark 2.1, we only need to consider the case
We assume through out this paper thett(A) # 0. This im- Whereaz; > 0 anday; < ay2. In this case, the four parameters

plies thatA is nonsingular and the system has a unique equilibz1. @12, a21, a2 are all nonnegative.

rium point at the origin. Following the idea of [1], let= Az.

The system (3) is then transformed into the following form: lll. THE VECTORFIELD

In this section, we present a general picture of the following

= Ab = Ao(Aw) = Ao(z). vector field:

We see that the dynamics of the system (3) and hence its stability

properties are equivalent to those of the system n=s a110(21) + a120(x2) = f1(2),
T2 = — az1o(@1) + azeo(x2) =: fo(x) (6)
z = Ao(z). 4
where0 < a1 < aj2, ag1, azz > 0 anddet(A) # 0. Denote
We will focus on (4) in this paper. the slope of the trajectory atas
Given an initial statexg, denote the trajectory of the system
(4) that passes througty att = 0 as(¢, xo). Mainly, we (z) := f2(“’).
consider the positive trajectory(¢, xo), ¢ > 0. However, oc- fi(=)
casionally we us&(—t, z¢), t > 0 for the purpose of compar-

The vector field of (6) is partitioned into nine regions, ac-

ison. . . ) -
Definition 2.1: The system (4) is said to be stable at its eqwc_ordmg to the saturation function, by two vertical lings= +1

librium z, = 0 if, for any > 0, there exists & > 0 such that andtwolhorizontal lines, = +1 (see Fig. 1). In the central unit
|#(t, zo)|| < e forall¢ > 0 and||zo|| < é. Itis said to be GAS square;i = Ax. ) )
if z. = 0is a stable equilibrium ankim; ., . (¢, z¢) = 0 for In the regionl/ = {a: |21] < 1, x2 2 1}
all zo € R%. Also, it is said to be locally asymptotically stable
if it is stable andim; _, o, % (¢, z9) = 0 for zo € Uy, a neigh- )
borhood ofz. = 0. Tz = — a1 + a2z.

Obviously,z. = 0 is a locally asymptotically stable equilib- o ) ) )
rium if and only if A is Hurwitz. In this case, at least one of its>iNC€a11 < a1, &1 > 0 in this region and the trajectories go
diagonal elements must be negative. Without loss of generalfightward. Also note that is independent of», so for all the

we assume throughout the remaining part of this paper that Points on a vertical liner; = ¢, [¢[ < 1 in this regionz is
the same. Because of thisqif € U andi(¢, z¢) € U for all

T1 = —anx1 + a2

_ t € [0, t1], then withA > 0
A= [ 1L al?} ) ai; > 0, az 2 0. %) 0. 7.}
—a21, G22 0 0
. ) t, =9(t,
Otherwise, we can us€ = [? }] as the state transformation v < rot [AD Wlt, wo) + [A}
matrix to makeaz;; > 0 or usel’ = [§ _9] to makeay; > 0. vVt e [0, t]. @)

Our main result in this paper, presented in the following the-
orem, gives a complete description of the stability properties Wfe call (7) the vertical shifting property in the regith Specif-
the system (4) witkd given in (5). As explained above, any Hur-ically, let zy = [—1 , o2 > 1 be a point on the line; = —1,

WOZ]

witz A can be transformed into the form of (5). then
Theorom 2.1: The system (4) is GAS if and only # is Hur-
witz and one of the following conditions is satisfied: wi(t) = e mt(—1) 4+ 212 (1—e ot
a) azz < 0; o
b) aze > 0 andajiaz > aiza2. = — <1 + %> gont 4 912 8)
a1l ail

On the other hand, if none of a) and b) is satisfied, the system )
¥(\;|rllyhave diverging trajectories and there will be a closed trajecb(t) = Zo +/ (—anz1 (1) + az) dr
. 0
In proving this main result, we will also obtain conditions azi (a2 + a11) (1—cont) det A y

under which all the trajectories of the system (4) are bounded. = %oz + a?, a1

)
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Fig. 1. The partion of the vector field.

Suppose:(t) remains in the regio® before it intersects with
the linez; = 1 att = 7" with z(T) = [, ], then by solving
(8) with 1 (T") = 1 we get

a12 + a1

1
T=—log

a1 a12 —ail

and from (9) witht = 7" we have

2a91 det A a1+ ay1
T2 — 202 = -~ log .
aii aiy ai2 —ail

In the above derivation, we have assumed that< a;». As
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pointzg = [**], o1 > 1 on the linex, = 1 and crosses the
linex; = —1atapoints(T) = [*71], 71 > 1, thenzry — o1
is a constant. We denote this constanf.aslt can be verified,
as with the the constanb, that

hy =@ — @01
2 det A ,
— %12 62 10g az1 + a22, if az >0
— 22 a5 az1 — G22 (13)
2@11 .
= if agy = 0.
a21
Inthe regionk := {x: =1 > 1, 22 < —1}
_ | a1 — an
—ag1 — a2 |
We denote the constant slopér) in this region as
8= 21 + a2 (14)
a11 + a2

The remaining four regions are symmetriclfoV, W, and R.
We denote them asl/, -V, —W, —R.

For a general second-order nonlinear system that has a unique
equilibrium point at the origin, its GAS can be proven if we
can show that all its trajectories are bounded and there exists no
closed trajectory. Here we have some criteria to determine the
existence of closed trajectories for the system (4).

Lemma 3.1:

Proposition 3.1 will showg;; = a;, automatically ensures the @) Let( be a closed bounded region that does not contain the

global asymptotic stability of the system (4)Afis Hurwitz.
As expected, the increment of from¢ = 0tot = T is
independent ofy.. We denote this constant as

2@21 det A

a1l

ays +ai

a12 — 411

log (20)

ha i= 272 — T2 = 5]
a11

In the regionV := {x: 1 > 1, 25 > 1}

|

is a constant. So the slope of the trajectories is a constant.
denote this constant slopgz) as

—a11 + a12
—a91 + a22

_ —ao1 +ax
—a11 + a2

X1 2 ].7 |.’L’2| S 1}

(11)

In the regionV := {z:
T1 = — a1 + a12%2

To = — Qo1 + G2272.

In contrast to the regiofY, 4 is independent af;. If zo € W
andy(t, xo) € W for all t € [0, ¢;], then withA > 0 we have

(e [3] weme 3

Vte [0, tl]. (12)

We call (12) the horizontal shifting property in the regidh As
Proposition 3.1 will show, ifiz; < a2, the system (4) will not
be GAS. Now for the case thab; > as2, 2 < 0 and points

downward in this region. In this case, if a trajectory starts at a

origin. If no trajectory leave€& or no trajectory enterg,
then there will be a closed trajectory withip

b) Let @ be a simply connected region. (Bf;/0x1) +
(8f2/0z2) is not identically zero and does not
change sign in@, there will be no closed trajectory
in Q. (Note that for f; and f; as defined by (6),
(8f1/021) + (0f2/0x,) exists inside each region of the
partition of the state space Fig. 1.)

Lemma 3.1 a) is a simple application of the
Poincaré—Bendixon Theorem to the system (4) and its time
@ ersed system = — Ao (). In addition, b) follows from the

endixon Theorem. It can also be easily obtained from Green’s

Theorem. This theorem will be frequently applied in this paper.

If the system (4) has a closed trajectory, daythenl” must
enclose the origin (by the index theory) since the origin is the
unique equilibrium point. And” must be symmetric to the
origin. Since the vector field is symmetric to the origial” is
also a closed trajectory. I is not symmetric, thed = —I"
and the two different trajectories will have intersections. This
is impossible since no trajectories can intersect.

We next digress to address two special casgs= a2 and
az1 < azz.

Proposition 3.1: AssumeA is Hurwitz.

a) If a;1 = a12, then the system (6) is GAS.

b) If as; < age (which implies thata;; # ay2), then the
system has diverging trajectories and also has a closed
trajectory.

Proof:

a) We see that a) is an extension of b) in Remark 2.1 and can
be proven by a method similar to [1]. First we claim that
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2

the vertical stripd = {z: |z1| < 1} is an invariant set
and a global attractor. Sincé is Hurwitz (det A > 0) 15}
anday; = aj2, Wwe must haves; > aso.

Ontheliner; =1,%; < 0andonz; = —1,4; > 0.
So no trajectory ind points out of it and hence it is an osk
invariant set. Inthe regioW, 1 = 0, 22 = —ag;+age <
0, so all the trajectories in this region will ent&r. In or
W, z1 <0, 22 < 0, so all the trajectories will enter the sl
central square ortheregid In R, &1 = —a11 —a12 < 7
0, 2 = —az1 — aze < 0, so all the trajectories will enter -
the region—{J. Similar arguments apply to the regions
-V, =W, —R. This shows that all the trajectories outside
of the stripH will enter it. Hence, it is a global attractor. Z———————— . - - - .

Next we show that all the trajectoriesithare bounded.

Letp, = [—}}]’ h > 1bea point on the line; = —1. Fig. 2. lllustration for the proof of Proposition 3.1.

Thenn(py) = B > 0. In the regionU, n(z) depends

only onz; and it can be easily verified thag(x) is a In the regionV’, the trajectories are straight lines that go
decreasing function of; and#, > 0 for z; € [-1, 1). downward-rightward; In the regioR, the trajectories go down-
So if we draw a straight lin& with slopes atp;, thenno ward-leftward.

trajectory inU will cross E upward. Symmetrically, no  In the central square, on the ling = (a11/a12)x1, 1 = 0
trajectory will cross— E downward. This shows that theand on the lineco = (a22/a01 )1, 2 = 0.

parallelogram enclosed iy, —F andz; = 41, denoted  Finally, in this caseh;, h2, o andg are all well defined.
as P, is also an invariant set anfl(t, z¢) € P for all

t > 0 aslong as;y € P. Since for everyzg € U there IV. CONDITIONS FOR THE GLOBAL BOUNDEDNESS
exists such a parallelogram that enclosgsit follows OF THE TRAJECTORIES

that all the trajectories are bounded.

InH, (afl/a$1)+(af2/a$2) <0 (I —aj1in lf, -U
or —ay; + asq in the central square) so by Lemma 3.1b), S A | a1 a2
there exists no closed trajectoryih SinceH is a global & =do(z) = —az1 G622 o(2)
attractor, all the trajectories will enter it and then converge aii, as1, a;2 > 0, as > 0. (15)
to the origin. Thus, the system is GAS.

b) From0 < az < as» We haveas, > 0, otherwise Assume thati; < aiz andaz > as (this impliesdet(A) #
det(A) = 0. We also haver > 0, ||z|| > 0, andzz ¢ 0.) We do not assume that is Hurwitz in this section since
[0, 7 /2] inthe region’. So every trajectory starting from the critical case wherel has a pair of pure imaginary eigen-
within this region will diverge along a straight line withvalues will be useful to our study. It turns out that the system
slope« and is unbounded. Lep; be the polygon with can have a bounded global attractor, eved i unstable. The
vertices 1, 2,--, 8 (see Fig. 2, where at point2 = global boundedness dependsfar, b1 andh,, rather than the
(0,1 /a,] @nd the line from 3 to 4 has slop®. From 2 stability of A.
to 34, = 0andi; > 0. From 3t0 4/4 > tan~! B—, Proposition 4.1: Assumea;; < a2 andaz; > ag2. The
so the trajectories direct outward frafh . It is also easy SYStem (15) has a bounded global attractor if and only if one of
to see that on other parts of the boundaryf all the the following conditions is satisfied.
trajectories remain on it or direct outward from it. Since @) aii1az; > ai2a22.

A is Hurwitz, there exists a Lyapunov level €g§ inthe  b) ai1as1 = arsaze andpBhy + hy < 0.

central square such that all the trajectories ingjgewill If a11a21 = a12a22 @andBhy 4 ho = 0, then outside certain
stay inside and converge to the origin. lgt= Q1 \ Qy, region, all the trajectories are closedalfias; < aj2a2e (OF
then no trajectory will ente®, so by Lemma 3.1, there is a11a21 = ai2az2 andBhy + hy > 0), there will be unbounded

1

1.5}

In this section, we consider the system

a closed trajectory i6). O trajectories and if, inadditionAis Hurwitz, there exists a
Now that the two special cases are cleared, we now turn to #esed trajectory.
remaining case wherg; < a;» andas; > ass. For this case, Proof: Under the assumption that; < a2 andas; >

all the trajectories go clockwise, see Fig. 1 for some typical traz2, we havex < 0, 8 > 0, |hy], |ha] < oc.
jectories. Here we summarize the properties of the trajectoried et
as follows.
In the regionl/, &7 > 0 and the trajectories go rightward. If p1 =
1 < CLQQ/CLQl,jZQ > 0 and |f$1 > CLQQ/CL21, T2 < 0.0n the line
21 = as /asy, the trajectories turn from upward to downwardbe a point on the line; = 1. See the point labeled 1 in Fig. 3.
In the region, 5 < 0 and the trajectories go downward.Let the trajectory starting frorp; be (¢, p1). We will show
On the linezy = a;1/a12, the trajectories turn from rightward later thaty (¢, p1) will go through regions, W, R, and-U
to leftward. consecutively (not fall into the central square before leaving

1 o
[Uk + 1:| y Uk 2 max <07 B ([3}11 +h2)7 @h1>
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Fig. 3. lllustration for the Proof of Proposition 4.1. Fig. 4. lllustration for the Proof of Proposition 4.1: Case 1.

—U). Let the intersections of(¢, p1) with the linesz, = outward fromQ;. If A is Hurwitz, there will be a Lyapunov

1,20 =-1, 21 =1,21 = -1 be level set@q in the central square which is invariant. Let

[1 JZU’“} , [1 J:;U’“} , [_11_ ) } and [_1 __1 3.1, there is a closed trajectorydpas illustrated in Fig. 4.
Tk k1 Case 2 {11021 > aisaz2): This inequality is equivalent to

which correspond to the points 2, 3, 4, 5in Fig. 3. Then —(B/a) < 1. Since—(f3/c) > 0, in this case the discrete-time
system (16) is stable. Let* be chosen such that

} @ = Q1 \ Qo, then no trajectory will ente€) and, by Lemma

1
Vi = — —Ug
3
@ 1 min <—/— u* + Bhy + ha, u*)
W :vk—i-hl:—auk—i—hl @
a
3 ax | 0, = (Bh1 +h h 17
v = B = — L + By >mx< » 5 (Phtha), @ 1) (17)
a

anduyy; = 7 + ho, i.e., and

2
Upg1 = —guk + Bhy + ha. (16) <</—;> — 1) w4+ <1 — g) (Bhy+ o) < -1 (18)

The requirement that the trajectory does not enter the centtrr(]':ll ithus > u*. the traiect ) R ttallint
square is equivalent ta., wx, 7%, urt1 > 0. This can be guar- 1en Withuz = -, e trajec Oy (t, [, 41]) does not fall into

the central square before it returns to the line= 1 (This is
anteed byu; > max (0, («/3) (Bh1 + hs), ahy). If we also
haveuk+im> max(of (a(/ﬁ/) (2321 i ha) ?)ahl),lzhen we can guaranteed by (17). Moreover, because of (18), we have

continue with the above process symmetrically to get an inter- 3 2 3
section with the linec; = 1, [H,}LHZ} (point 9in Fig. 3) where  Uk+2 — Up = <<E> - 1) up + <1 - E) (Bh1 + h2)
3 2
Upy2 = b Upq1 + Bhi + ho < <<£> - 1) w4 <1 - ﬁ) (Bhy + h2)
o « «
and so on. Equation (16) defines a first-order linear time in- < —1. (19)

variant discrete-time system.

Case 1 {iia2i < apaz) This inequality is Letp, = [,1,.] (see point 1 in Fig. 5). Then by the foregoing
equivalent to —(3/a) > 1. So in this case, the argumenty(t, p1) will return to the linex; = 1 at a point
discrete-time system (16) is unstable. Iy > 2 betweerp; and[}]. By connecting 1 and 2, we get a closed
max (0, (a/(a+ B)) (Bh1 + he), (o/B) (Bh1 + h2), ah1),  curve. Denote the region enclosed by this closed cun@,as
thenug41 > ug, g2 > urt1, - - - Will be an exponentially Since on the line between 1 and 2lirects inward of);. Thus,
increasing sequence and the trajectory starting fr[qgirl] P (¢, zo) will stay in Q1 as long asco € Q1. Therefore); is
will be unbounded. an invariant set.

Let py = [it.,] where > Let zo be any point outside af;, theny(t, zo) goes clock-
max (0, (a/(cc + 3)) (Bh1 + h2), («/B) (Bh1 + hz), ahy)  wise and will intersect with the line; = 1 above 2, say at
(see point 1 in Fig. 4). Then by the foregoing argumenp,= [, ]. If uo < u*,i.e.,pis between1and 2, thef(z, o)
(¢, p1) will return to the linex; = 1 at a point above; (see will enter@; afterward and stay there.df, > «*, then by (19),

2 in Fig. 4). By connecting 1 and 2, we get a closed curve. Leie haveus < wug — 1, ug < ug — 1, -+~ until ug, < u* for
the region enclosed by this closed curvethe From 1to 24 some finitek. This impliesy(¢1, x9) € @1 for somet; > 0.
is a constant andt € (—(x/2), 0) sincea < 0. Sos directs Therefore ), is a global attractor.
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Fig. 5. lllustration for the Proof of Proposition 4.1: Case 2. Fig. 6. A global attractor.
Case 3a;1a2; = ajpaze!  In this case—(8/a) = 1 and Consider the time-reversed system of (20),
2= —Ao(z). (21)

U2 — Up = 2([3}11 + hg)
SUpPOSEIh, - hy < 0. the SeqUENcey. sy - - will de- Erei)r:r(])t(ezls’t\r,?éeﬁ;%g as(t, xo). Thenp,(—t, xo) = ¢(¢, zo).
crease steadily before the trajectory touches the central square,
similar to Case 2, there exists a global attractor. Ji=—JAo(z) = —JAJo(Jz) = Ao(Jz)
Suppose3h; + he > 0, the sequence will increase steadily
and the trajectory will go unbounded. Also, similarly to Case 2hus,.J¢(t, zo) = 91(¢, Jxo). SinceJzy = zo, it follows that

there exists a closed trajectory. 1(t, o) = Jip1(—t, o).
Suppose (hy 4+ he = 0, then Iif To show that the trajectory is symmetric with respect {c=
Uk > max (0, (a/B) (Bh1 + h2), ahy), we will —z2, we write (20) as
haveur = up41 = -+ = upyn forall N. So [ 1, ] isona .
closed trajectory. Le®; be the region enclosed by the closed [ ”_71} - [_all _C‘l?} [ a(x1) }
trajectory passing through, i, ], then all the trajectories —t2 a2 an | [o(~w2)
outside ofQ; are closed. 0. 4T [ o(z1) }
To demonstrate Proposition 4.1, consider the system with o(—x2) |’

A= [Z}3].Clearly,Ais exponentially unstable, but; az; > . . _

a12a29. SO the system has a global attractor (see Fig. 6). Ve also have-JA™J = A”. Following the same procedure
An interesting case is that; = as» andas; = ay». Inthis @S above by considering the stéﬁ@z]_ instead, we can show

case A has a pair of pure imaginary eigenvalues. For the linetjat all the trajectories are symmetric with respect to the line

systemi = Ax every pointin the plane is on a closed trajectoryt1 = —<2- ] . 0
This is also true for the saturated system The system (20) is not GAS but is useful for us to develop the

condition for global asymptotic stability. We will establish the
_ main result of the paper by comparing the trajectory of a general
&= Ao(x) = [_ZE Zij o(z), a2 >an>0. (20)  gystem with that cr:f (p20). Y EomPaTng J yores
Denote the trajectory of (20) a8 (¢, o). V. PROOF OFTHEOREM 2.1
Proposition 4.2: All the trajectories of (20) are closed. Each
trajectory is symmetric with respect to the ling = 2, and the
linez; = —xs.
Proof: For this systemaiias1 = aj2a22 and it can also ) —ay; a2
be verified that3h, + ho = 0. By Proposition 4.1y, (¢, o) is & =Ao(z) = [—aﬂ QQJ o ()
bounded for every:,. On the other hand, sincé has a pair of a1, 12, a21 > 0, az >0 (22)
pure imaginary eigenvalues, there are closed trajectories in any
neighborhood of the origin. Thus, amy is outside of a closed with ai2 > a11, as; > aos.
trajectory. Thereforey, (¢, z¢) will be a closed curve or go to  Proposition 5.1: Assume that» > a;; andA is Hurwitz,
a closed curve. Sincg, (¢, zo) goes clockwise, it will intersect the system (22) is GAS if and only dif; 1 az1 > a12a90.
the linex; = x2 somewhere, say, @t]. So, for simplicity, we  This proposition can be established as follows. First note that
can assume that, = [7] for somer > 0. To showy; (¢, zg)isa ais > ai; andajias; > ajsase IMPly as; > ase. If aj1a21 =
closed trajectory and is symmetric to the line= xz», it suffices a;2a00 and A is Hurwitz, then it can be verified thath; +
to show that) (¢, zo) = J¢1(—t, xo) WwhereJ = [(1) (1)]. hy < 0. Hence, this proposition shows that the stability/bf

In view of Remark 2.1 and Proposition 3.1, we only need to
consider the following system:
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along with the global boundedness condition in Proposition 4.1Now we consider the case whetg, = 1 andk > 1,
guarantees the system to be GAS.

If a11a21 < aj2a99, then by Propositions 3.1 and 4.1, the 7= [ -1 “12} o(z), ap>1, k>1. (25)
system is not GAS whethe; > a2 or not. So the necessity —kaiz 1
of the condition is obvious. What remains is to show the suffi- Given an initial pointz,, denote the trajectory of (25) as

ciency of the condition. Now that the global boundedness of t%(t x0) and as a comparison, denote the trajectory of
trajectories is guaranteed, the only thing needed to be shown is ’

that the system has no closed trajectory. . -1 a2
Since all the trajectories are kept unchanged when the vector r= {—am 1 } o(x) (26)
field is multiplied by a positive constant, we assume that= ] i
1 in the sequel for simplicity. Now we have 5}31/)1527 o). Theny, (¢, zo) is closed for every by Proposi-
tion 4.2.
A { -1 am} In the following, we present three lemmas about the intersec-
T | —ag1 o |’ tions of 2 (¢, o) with some straight lines.

Lemma 5.3: Assumek > 1.

a) Letzg = [*]. If zo1 € (1/a12, 1], thenya(t, xo) (see
the dashed curve in Fig. 7) may intersect with the line
z1 = 1. Let the first intersection be. = [ ], then

Zea < o1, 1.8,
[
c 1 .

«- [l <

If xzo1 € [L/kai2, 1/a1s], ¥2(t, z0) will go downward-
rightward at first, but will not intersect with the ling =
The assumption in Proposition 5.1 that; < a2 and A is 1 before it turns leftward (see the dotted curve in Fig. 7).
Hurwitz translates to b) Letzg = [}], 502 < 1/a12. Thenu(t, zo) goes

) downward-leftward (see the dash-dotted curve in Fig. 7).
ap2 > 1, az <1, katy > 1 Let the first intersection ofss(¢, o) with the linezy =

—1bez. = [*7], thenzoy > —x.y, i€,

o= )] === 2])

Therefore, we can establish Proposition 5.1 by showing that theas a comparison, twe (¢, o) are also shown in Fig. 7 (see

We first deal with the case whetgs = 0.
Lemma 5.1: Assumeay» > ai1 andA is Hurwitz. If ass =
0, then (22) is GAS.
Proof. See the Appendix. O
In what follows, we consider the case that > 0. Letk =
a21 /a12a22, then we can assume thattakes the form

A:[ -1 “12}, k>0, as >0 (23)

—kaioa22 a2

and the conditior1as1 > aj2a92 IS equivalent to

k>1.

system the solid curves). In Fig. %;’s are marked with *.
1 a Proof: See the Appendix. O
& =Ao(z) = 12\ o (x) Lemma 5.4:Giveny > 0, letzg = [*17], 51 € (1/a12, 1]
—kaisaze a2 !

be a point on the line:;y = 1 + ~. Thenya(¢, zo) will go
downward-rightward at first, then turn leftward and return to
the linez; = 1+ 7. Let the intersection be. = [*1], then
s1+ s2 > 0.

Proof: See the Appendix. O
Lemmab.5:Letzy = [**], zo1 > 1/ka12 be apointon the
Iipoe 22 = 1. Theny. (¢, x¢) goes downward-rightward at first
and turns leftward. Supposg& (¢, zo) has an intersection with

the linez, = —1 atz, = [*¢], thenz < zo; (see Fig. 8).
Proof: See the Appendix

a12>1,k21,0<a22<1 (24)

is GAS. The proof will be carried out by evolving from the

simplestformwheres; =1, k = 1tothecases; =1,k > 1

and finally to the general case < as2 < 1, £ > 1. When

a2z = 1, the systemis surely not GAS becausis not Hurwitz,

but the trajectories in this case will be used as a reference

show the convergence of the trajectories whenis decreased.
To proceed, we need a technical lemma. Recall (13)

2a15 det A asy + ass . The following two lemmas give a complete characterization
T o2 log o — Gn if agy >0 of the trajectories of the system (25).
hl — 22 22 21 22 1/ka12
2a11 i 0 Lemma 5.6:Assumek > 1. Letz* = 17|. Then,
-, a = U. . . ey .
as1 # ¥a(t, 2*) is a closed curve that lies within the central square.

Denote the region enclosed By(¢, «*) asSy, then every point

Now we haveny; > 0 andaz; = ka1za, SO inside.S, is on a closed trajectory. And outsidg, any trajec-

1 ) kajs + 1 tory will converge toy. (¢, «*) (see Fig. 9).
hy = = <—2a12 + (kai; — 1) log m) : Proof: See the Appendix. |
Lemma 5.7: Assumek > 1. Letzg = [*1*], 201 < 1/kai
Lemmab5.2:1f ass > 0, a1 > 1 andk > 1, thenh; < 0. be apointontheline, = 1, them)x (¢, 2) goes upward at first

Proof. See the Appendix. O and will return to the linex, = 1. Suppose)s (t, xo) intersects
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LN (24) and hence the proof of Proposition 5.1. Rewrite (24) as

osf 1 follows:

0.6} M

odl .’i’l = —O’(.’L’l)+a120(.’1’2)

o2l To =age (—kalga(azl) +O($2)) 27)

or R 1 whereai» > 1,k > 1 and0 < as < 1. We will consider the
02} : perturbation of the trajectories as- is varied, so denote the
o4 trajectory of (27) as)(¢, xo, a22) and the slope of a trajectory
el atz ben(z, az2). As compared with (25);, is the same but,

' is multiplied with a scalat;2. Because of this, the trajectories
-08

of (27) exhibit some interesting properties.
Fact 5.1:

a) Letzg = [2%1], zo2 > 1 be apointabove the ling, = 1,

02

then for allass > 0

-1 N .
-1 05 0

Fig. 7. lllustration for Lemma 5.3.

[0 1]t 2o, 622) — To2 = a22 ([0 1]epa(t, o) — zo2)

0.5
[1 0]%(t, o, aze) =[1 0] a(t, zo)
oF o
as long as)(t, zo, az) stays above the line, = 1.
s b) Letzo = [?21] , zo; > 1 be a point to the right of the line
z1 = 1, then for allazy > 0
B [1 0]?/)(t7 Lo, CL22) — Zo1
1
= —([1 0]%(aznt, x0) —xo1)
-15 - . . . : az2
-1 =0.5 4] 05 1 1.5 2

Fig. 8. lllustration for Lemma 5.5.
[0 1]%(t, zo, a22) = [0 1]¢2(az2t, zo)

as long as/(t, o, as2) stays to the right of; = 1.

See Fig. 10 for an illustration, where the solid curves
are o(t, x9) and vq(agst, xo), and the dashed curves are
T/)(t, Zo, CLQQ), ase < 1.

Fact5.1a) implies that(t, xo, az2) andy(t, zo) are on
the same vertical line but the distance fragitt, =g, az2) to
the linexs = g2 IS aso times that fromys (¢, o) t0 x2 = 2.

In particular,p2(t, z0) andw(t, xo, az2) return to the line
x2 = xoo at the same time and the same point. This simply
follows from the fact thati, of (27) isass times that of (25)
and thatz is independent of, above the linec; = 1. It can
- e —————————— also be directly verified from the expressiompft, g, az)
and”(/}g(t, .’L'()).
Fig. 9. lllustration for Lemma 5.6. Fact5.1b) implies tha}{;(t7 Zo, a22) a_r](jh/)Q(aQQt7 -TO) are
on the same horizontal line but the distance froth, o, a22)
with the linezs = —1. Letz, = [*1] be the first intersection, to the linex; = woy is 1/az; times that fromyz(az2t, zo)
then—(1/kai2) < o1 < —o1. to z1 = wo1. In particular,z(agst, zo) andy(t, xo, azz)
Proof: See the Appendix. O return to the liner; = z(; at the same time and the same

Lemmas 5.6 and 5.7 give us a clear picture of the trajectoriegint. This also follows from the fact that is scaled byus;.
of (25), whereays = 1, k& > 1. Lemma 5.7 shows that ify is If we scale the vector field to the right of the ling = 1 by
outside ofSy, a trajectoryy» (¢, ) will move closer and closer 1/a22, theni, is the same as that of (25) biit is amplified
to S, as it reaches the lines = +1. Next we will show that as by 1/a2.. Note that the scaling of the vector field results in the
ags is decreased, a trajectory(t, z,) of (24) will move even time scaling ofia(aast, o).
closer toSy, as compared witl, (¢, ). This will lead to our With Fact 5.1, we are ready to present a final lemmathat leads
final result about the global asymptotic stability of the systeto the proof of Proposition 5.1.

-1}

-2F
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w
o

25}

0S|

-1}

} . ‘ . . . s . . . ‘
s o s 3 05 1 15 2 A5 = s ) 05 1 15

Fig. 10. lllustration for Fact 5.1. Fig. 12. lllustration for the Proof of Proposition 5.1.

is . , , , , z. = [*1], thenzy < —woy, i.e.,z. is to the left of —zo.

By Lemma 5.5,z is also to the left ofz{,. From Lemma 5.8,

we know that asi»» is decreased from 1, the intersection of
P(¢, z(, azz) andze = —1 will move leftward and, hence, re-
main to the left of-zq andz(. Note thatz(, is ony(t, xo, azz),
s0(t, xy, azz) overlaps withy(t, xo, aze). Thereforexy is

not on a closed trajectory (note that a closed trajectory must be
symmetric).

Next we exclude the possibility of the existence of a closed
trajectory that does not intersect with = 1. Suppose there is
one, then it must intersect with the ling = ka;>x; at some
point, sayzo = [2%1], zo2 < 1, then atzg, &, = 0 andz, €
So. Whenagzs = 1, (¢, xo, az2) = ¥2(t, zo) is an ellipse that

s S o8 o o8 v s touches the lines; = +z(; (see the solid curve in Fig. 12). By
Lemma 5.8, asoo is decreased tass — &, (¢, xo, azs — 6)
Fig. 11. lllustration for the Proof of Proposition 5.1. will intersect withy (¢, zo, as2) at a point to the right of:, and
—xo. After that, it will stay above)(t, xo, as2) and above the

Lemma 5.8:Let 7o = [;g;] Jz02 € (0,1], moy > line zo = —z02 (see the dashed curves in Fig. 12). Thus no

zoz/kaiz. Suppose(t, xo, azz) intersects with the line closed trajectory can be formed.

To = —xg2 at a pointa;c — [“iOxloz] andz.; < zg1, then If k> 1,. thenallagl__> aizag. If k = 1, thenajiar; =

if 6 € (0, aze) is sufficiently small,i(¢, xo, age — &) will ~ @12a22 and it can be verified that = az2, Bh1 +hy = az2(1 -
intersect withy)(¢, xo, as2) at a point to the right ofo. If it @22)hs < 0 (assumez;; = 1). So by Proposition 4.1, all the
also intersects with the lines = —x¢», the intersection will trajectories of (27) are bounded, and they must converge to the
be to the left ofz.. origin.

For an illustration of Lemma 5.8, see Figs. 16-18 where Proof of Theorem 2.1:Combining Remark 2.1, Proposi-

the solid curves are)(t, o, az2) and the dashed curves ardions 3.1, 4.1, and 5.1, we can obtain the necessary and sufficient
W(t, zo, as — 6). condition for the system (4) to be GAS. Condition b) in Theorem

Proof: See the Appendix. O 2.1is asimple combination of Condition b) in Remark 2.1 and
Proof of Proposition 5.1:The necessity of the condition PrOpOSitionS 31, 4.1, and 5.1. This Simplification is jUSt|f|Ed as
simply follows from Propositions 3.1 and 4.1. With Lemma 5.1follows.
it remains to be shown that the system (27) or (24) is GAS. WeSinceA is Hurwitz andas> > 0, we must haver;> > 0.
will first show that any point on the line; = 1isnotona If a1z < a1, Remark 2.1 b) and Proposition 3.1 say the
closed trajectory. We can restrict our attention to the points ®Stém is GAS. lin;y > a11, becauseniaz > aizas, the
the left of [/%12| | since for the points to its right, they can beyStem is also GAS by Proposition 5.1.
traced back to the left as the trajectories go rightward above the-CVErSely, Supposes,; = 0 butaiiaz; < aiza22, we have
linexy, = 1. Letzg = [Woi , Tor < 1//%‘@12, then’(/)g(t, .Z‘o) of G192 a1
the system (25) (see the solid curve in Fig. 11) will return to the L > P
line zo, = 1 ata pointz). From Fact 5.1y (¢, xq, az2) will also
return tox{, for all a2 > 0 (see the dashed curve in Fig. 11). SinceA is Hurwitz
We have shown in Lemma 5.7 that for amy to the left of ao Gz
>

[l/"‘l‘“ﬂ, if 4p2(t, xo) reaches the line; = —1 at some point P

[ X1 4

-1t
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Therefore Next we show that for any fixed,;> > 1, h; < 0 for all
k > 1. Here we have
2 > max <a217 a22> >1
a11 a2z a21 k 1
hl(/{}) = —2a19 + (/{}CL%Q — 1) log ]ﬁ2—+
i.e.,a12 > ay1. Hence by Propositions 3.1 and 4.1, the system a2 — 1

is not GAS whethens; > as2 or not. And in both cases, the

system has unbounded trajectories and there is also a clo&jnave just shown that for any givem, > 1, h1(1) < 0. As
trajectory. k — oo, we also havér; — 0. Suppose there is an extremum

k* between(1, oo), thendhy/dk = 0. This implies

VI. CONCLUSIONS )
- . ) k*a12 +1 2 (k*af; — 1)
We gave a complete stability analysis of a planar linear log Taa—1  a (s —1) (a1 1)
system under saturation. The analysis involves intricate in- 12 12\ e 12
vestigation on the vector field and the intersections of t
trajectories with the lineg; = +1 andx> = £1. Our main

result provides a necessary and sufficient condition for such a

IAlgut this into the functiork, (k), we get

2a3, + 2 — 4k*a?,

system to be GAS. B (K = <0
1( ) aio (/{}*alg — 1) (/{}*CL12 + 1)
APPENDIX
PROOF OFLEMMAS (note thata;> > 1, & > 1). It follows thath, (k) < 0 for all
k> 1andax > 1. O

Proof of Lemma 5.1

Under the condition, we havwey; > aso, a11az1 > ajaaze. Proof of Lemma 5.3
By Proposition 4.1, the system has a bounded global attractora) This can be shown by comparings(, zo) with
We need to show that there exists no closed trajectory. Suppose, P1(t, xo). Sinceyy(t, xo) is symmetric with respect to
on the contrary, that there is such a one. Denote the region en-  the fine s, = ., it will intersect withz; = 1 at [

9001]

closed by the closed trajectory s then by Green’s Theorem for any zo; € [1/ai2, 1]. Since at the same point, if
5 z1 > 0, theng, of (25) is smaller (more negative) than

// < f1 ) dry drs = 0. that of (26) andt; of the two is the same, sp.(¢, zo)
Iz Ows is below #1(¢, zg). Hence, the first intersection of

¥a(t, zo) with z; = 1, if there is one, must be below that
Since a closed trajectory must enclose the origin, the area of ~ of ¢y (¢, o) with z; = 1, which is [,! ]. This shows
the intersection of) and the central square is nonzero. Thus,  that|lzo — [1]|| < |lz. — [1]]]-

the left-side integral is strictly smaller than zero. Note that If zo1 € [1/ka12, 1/a12], a(t, o) will go down-
(0f1/0x1) + (8f2/022) = —1 in the central square and ward-rightward at first and when it reaches the line
nonpositive in other parts of the plane. This is a contradidiion. 21 = 1/ais, it is below the point [1/”’12}. Since

1 (t, [ l/“lzD does not go beyond the ling; = 1
(at the intersectiori; = 0), 92(t, o) will not intersect
with the line before it turns leftward.

b) If 202 < 1/ai2, thenys(t, x¢) goes downward-leftward.

Proof of Lemma 5.2

We only need to show that the lemma is true when = 1.
First, letk = 1, then

2 a2 +1 Suppose)s(t, xo) intersects withe, = —1 atz,.. Let the
hi(ai2) = —2a12 + (af, — 1) log p— (28) region enclosed by (¢, ) and the two lines;; = 1,
12 xo = —1 be S, then by Green’s Theorem

Asa;p — 1, hy — —2and asa;2 — oo, hy — 0. Suppose
there is an extremuna}, in the interval(1, oo), then at this ex-

: : o : f2 dxy fl( )d$2
tremumdh, /da;> = 0. From routine computation, this implies

15}
CLTQ + 1 2 // < fl ) da:l dxg
log —=—= = . ox1 83:2

*® *®
aj, —1 12

Putthis into the formula (28), we get the only possible extremum

value wheredS denotes the boundary 6fthat goes clockwise.
9 Note that along the trajectofy, (¢, z), the integral on the
hi(als) = — < 0. boundary is zero, so we have

12

Sinceh; < 0 at the two end points of the intervél, co), we

-1 Tel
must have:; < 0 on the whole interval. _/l, (=14 222 dos +/1 (=karzzy — 1) doy = 0.

02
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Let

Assume thatr,; = o1 for somezy; € (1/ka;», 1). Then

the linezq to z. is vertical.

CcC =

1
1|

1
Ty — |:_1:|H =z02 +1

c =

then from the above equation

k
iz 2 (1+kaz)c= %62 —(1+ap)e. (29)

Sinceys(t, zo) intersects withes = —1 downward, so
atx,. we must haver, < 0. This impliesz, must be to
the right of | ~//**12)| 'i.e. ¢ < 1+ 1/kay,. Similarly,

Case 1:1)2(t, zo) does not intersect with the line, = 1

before it reaches, = —1. Applying Green’s Theorem
to the region enclosed h§x (¢, x¢) and the vertical line
xot0z.. Sincedfi /0z1 + I f2/Oz2 = 0inthe region,

we have

74' folw) dvy — fi(w) d

1
= —/ (—3701 + CL12$2) dxo = 0.

-1

This leads targ; = 0, which contradicts the condition
that.’L'Ol > 1//6'@12.

e < 1+ 1/aso. It can be shown by the manipulation of Case 2:42(¢, () intersects with the linec; = 1 before
quadratic functions that for any< 1 + 1/ay, thereis a it reachesz; = —1. Let the intersections bg; =
uniquec < 1+ 1/ka, satisfying (29) and: < ¢ due to [L],p> = [L], see Fig. 8. Again applying Green’s
k> 1andajs > 1. O Theorem to the region enclosed by the lineto o,
the linep; to p» and the trajectory. (¢, o), we get
Proof of Lemma 5.4

Sinces; € (1/a2, 1], atzo, &, > 0, andi, < 0. Thus, L J
Pa(t, 20) goes downward-rightward. In the regid#, above /_1 (=01 + a1272) dz2
the linexs = 1/a12, &1 > 0 and below the linet; < 0, so 52
Pa(t, zo) turns downward-leftward on meeting this line. +/ (=1+ arzwz) dry = 0.
s1

By the horizontal shifting property (12) of the trajectories in
the regionW, it suffices to show that the lemma is true for one

~v > 0. Choosey sufficiently large such that wheny(t, xo) This leads to

reaches the line, = —s; at |*7772], it is still inside W, a1o

. . st 2 = — 1-— . 30
i.e.,v + A > 0. Obviously, the quantity\ is independent of To1 = (51~ 52) ( 2 (51 + 32)) (30)

—8
x1 = 14 4. This impliesy(t, x9) must have intersected the
linez; = 1+~ at [*17] before it reache lfzfﬂ. Note that
a(t, x0) goes downward-leftward below the ling = 1/a1>.
Thusss > —sq, i.e.,81 + 59 > 0.
What remains to be shown is that < 0 is indeed the case.
Trivial calculation shows that

v like hy. If A < 0, then ["7F2| is to the left of the line _
By Lemmab.3s1 < zo1, s2 > —xo1 (=is taken when

k =1),50s1 —s2 < 2x01. ByLemmab.4s;+s2 > 0,

so(1 — (a12/2) (s1 + s2)) < 1. This contradicts (30).
Combining the two cases, we must hayge # xo; for any
o1 € (1//{}@12, 1). Also, by COntinUiterOI > Zel- O

Proof of Lemma 5.6

At z*, 2o = 0,21 > 0, sS0a(t, *) goes rightward. By
Lemma 5.3;2(¢, *) will not intersect with the linez; = 1
before it turns leftward. Sincd has a pair of pure imaginary
eigenvalues, the trajectory will touch the ling = —1 at —z*.

And by symmetry, it will return ta:* thus form a closed curve.
Note that because dtz*, 22 = 0, soy2(¢, *) has only one
intersection with each of the lines, = 1 andzy, = —1. It
follows thatw»(¢, «*) is inside the central square.

If o € So, thenys(t, xo) will stay within Sy since the tra-
This is similar toh;. Sinces; € (1/ay2, 1], we haved;s > jectories will not intersect withy, (¢, ). Thusis (¢, o) is in
1, k> 1,s0bylLemma5.2} < 0. U the linear region and will be a closed trajectory.

SinceCLllCLQl = kaio > a1z = aisaoo, ajp > ap and
a1 > age, Condition a) in Proposition 4.1 is satisfied, thus,

Whenzo; > 1 we must have:.; < zo1, otherwise we would every trajectoryp, (¢, xo) of (25) will enter a bounded attractor
geth; > 0. However, we know thatk; < 0 by Lemma 5.2. and hence is bounded. To prove the remaining part of the lemma,
What remains to be shown is the case wheyec (1/ka10, 1). it suffices to show that there is no closed trajectory outsigle
Sincex,.; depends continuously anyy, it suffices to show that We prove this by contradiction.

Ze1 # xo1 foranyzo; € (1/kai2, 1). We prove this by contra-  Suppose there is a closed trajectory outsidékayl’, then
diction. I" goes clockwise and must have two intersections with the line

kai2 + s1

A= —20/1231 + (IfG/%Q — 1) IOg m

Whens; = 1 we getA = h;. Letas = aias1, k = k/s?, then

— ko + 1
A =25+ (kaZ, — 1) log —=——.
12+ (b, = 1) log 220

Proof of Lemma 5.5
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Fig. 13. lllustration for the Proof of Lemma 5.6: Case 1. Fig. 14. llustration for the Proof of Lemma 5.6: Case 2.

xz2 = 1. Denote the region enclosed byasS, then by Green’s By symmetry (exchanging; andz, and taking the inverse of

Theorem, we have the slope), ata point € I';,__, . the slope ofl” is
afl af? _ . —1+4aox:
Z/ (6 + 502 ) deadea =0 R ey ay

Denote the area of a regicki as.A(X), then Clearly, A(S N W) equals the area of the region enclosed by

I, _.,, and the liner, = 1. For the two areasi(S N /) and
A(S N W) to be equall’y, ., andT, _, must have two
A(SNU) - A(SNW) =0. (31) intersections, say; = [*1] andz, = &:g , With 21 < z,1.
At the left intersectionr;, I, crossed’;, ., upward and
Note that in the central square and in the regibnR, atthe rightintersection,, 1", _  crossed’, —,, downward.

8f1/8a:1 + 8f2/8a:2 =0,inU, 8f1/8a:1 + 8f2/8a:2 = —1 This lmplles
and inW, 9f1/9z1 + 9f2/0z2 = 1. Also note thatS must

be symmetric with respect to the origin. Equation (31) implies
thatI’ must also intersect with the lingg = 1 and the area of
the part ofS in the regionl/ and that in the regiofV must be

m(zan) < ne(zn), n(zr1) > m2(zr1). (33)

equal. We will show that this is impossible. Let
Case 1: The intersections are all on the boundary of the cen-
tral square. See Fig. 13, whewg p, are the intersections with me(z1) =m(z1) — n2(z1)
x2 = 1, p3, py are the intersections withy = 1. By symmetry,  —aga(k — 1)(af — (k+ Dapw; +1)
I" should intersect withr, = —1 at—p;. The contradiction will o (—x1 + a12)(—kaa + 1)
be A(SNU) > A(SNW).
Denote thenn;2(—1) > 0, 712(1) < 0 and from (33), we have
S1 S2 1 1
p1:|:1:|7 P2 = [1}7 D3 = [3 }7 Pa= [ } mz(zin) <0,  n2(zr) > 0.
3 54

The function changes sign three times,;ge(x;) has at least
three zeros betweenl and—1. Obviously there are only two
zeros in this interval, hencé’ andl',, _,, cannot have

Then by Lemma 5.353 < s, s4 > —(—s1) and hence

51 < 54 < 83 < 82 (32)  two intersections. Consequepr?itlyi}(s NU) > ASNW). A
contradiction.

Get a symmetric projection df,, —.,, with respect to the line  Case 2:1' intersects with the lines; = 1,22 = 1
x; = xz ontheregiod/ and denoteitak, _,, (seethedashedas in Fig. 14. Fromp, to ps, the slope of the straight

curve in Fig. 13). The corresponding intersections with the lilme is « = (ka2 +1)/(—-1+a2) < -1, so

zy = 1arepy = [¥], p} = [*]. From (32),ps andpy are ||p2 — [1]|| > |lps — [1]||- From Lemma 5.3||ps — [11]|| >
betweerp; andps. —p1— | 4]|| = |lpr = [1']]|, note thatl’ is symmetric
At a pointz inl',, —,,, the slope ol is and must intersect with, = —1 at —p;. Hence, if we get
a symmetric projection of’,,_.,,, on the regionl/ (see the

—kajozy + 1 dashed curve in Fig. 14), thex is to the right ofp; andpf

me) = — “r is belowp,. SupposeA(S N U) = A(S N W), T, —p, wil
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Fig. 15. lllustration for the Proof of Lemma 5.6: Case 3. Fig. 16. lllustration for the Proof of Lemma 5.8: Case 1.
intersect Withl_‘;qg_)m twice. This is impossible as was shown Because xg; > 1/ka12, both (¢, zg, aze) and
in Case 1. ¥(t, xo, azz — 6) go downward-rightward until reaching

Case 3: The four intersections are as shown in Fig. 15.  the linexy; = x;/a12 (see the dashed line passing through the
Similarly, sincea < —1, 3 > 1, we have||p, — [}]|| > origin). (On this line,i; = 0). After that, the trajectories turn
ps—[t]|| and [pa—[L]] < fl-p—[4]]] 0 = lefward.
-7 H Also get a symmetric projection of,,_,, At ¢ = 0, the slopes of both trajectories are negative and
on the region/ (see the dashed curve in Fig. 15), thénis 7(zo, a22) < (o, aze — 6), SOY(t, xo, aze — &) Will go
belowp; andp’; is belowp,. Similar to Case 1, we can showto the right of (¢, o, as2) at the begining. On the part of

that A(S N /) > A(S N W). A contradiction. P(t, zo, azz) that is above the lines = 1 /a;2, n(x, az) <
Becausé:; < 0, there is no such case whédtenly encloses 7(z, a2z — §) and on the part that is below the linéz, as2) >
[4] and[7'] but not[!] and [7}]. n(x, aze—6). SOY(t, xg, aze—35) canonly cross(t, xo, ag)

Combining the above three cases, we see that there isl@ftward below the line. We will show that the crossing pgint
closed trajectory that intersects with any of the lings= +1 (see Fig. 16) is to the right ofy and z.. After the crossing,
andz, = %1 twice. So there is no closed trajectory outside of(t, zo, a2z — 8) will stay to the left of (¢, xg, azz) until
Sp and if a trajectory starts outside 6§, it will converge to the meeting the linez, = —1. This leads to the desired result.

boundary ofS;. O Let s; = [*m],s2 = [*] be the intersections of
P(t, xo, azz) and (¢, zo, a2z — 6) with the vertical line
Proof of Lemma 5.7 71 = zo1, respectively. Since. is to the left ofzg, S0 s; is
Sincez is outside 0fS, and is to the left of:*, S0, (¢, zo) above the linex; = —1. Assume on the contrary that there is
goes upward-rightward at first. After crossing the line = o intersection of)(t, o, az2 — &) with ¢(¢t, o, az2) that is

1/kayo, it goes downward and returns to the limg = 1. totheright of the liner; = xq, thens; must be above,, i.e.,
Sinces(t, zo) goes clockwise, at the first intersection wither > e2 andip(¢, zo, a2z — 6) is to the right ofy(¢, o, a22)
the linez, = —1 it crosses the line downward, 8 < 0 at before meeting the ling; = x0,. Denote the area of the region
z. andz, > —1/kajs. Lett,, be the time whenpy(¢, o) enclosed by)(, zo, az2) and the line from, to s; as.A and
intersects withzy = —1, i.e., ¥a(tn, 29) = z.. Suppose the area of the region enclosed BYt, zo, aze — 6) with the
Tl = —xop, thenz, = —zo and{ea(t, z0), t € [0, 2t,,]} is line fromzq to s; ask3, thenA < B. Applying Green’s theorem
a closed curve. This is impossible by Lemma 5.6. Now suppdigethe vector fields corresponding ¢g, andaszz — 6, we have
ZTe1 > —xo1, thenz, is to the right of—z,. Let the region en-

1
closed by{2(t, o), t € [0, t,]}, {102(t, —20), t € [0, tn]}, — | fi(z)dzy = Aaz — 1) (34)
the linex,. to —xy and the line-z.. to z¢ be S, then on the line

ey
from z. to —xg, 42 < 0 andz points outward fromS. Simi- 1
larly, on the line from—z.. to z¢, 4 also points outward frors. - / fi(z)dzs =B(az — 6 — 1). (35)
Thus, no trajectory outside f will enter it. This contradicts °
with Lemma 5.6 since, is in the interior ofS. Note thatf; () = —x1 + a1222 is the same for both the vector
Therefore, we must have(1/kais) <z < —zo1- O fields. Subtracting (35) from (34), we obtain

Proof of Lemma 5.8

Without loss of generality, assumg, = 1. Whenzgp, € /62 fi(@)dez = (B — A)(1 — az) + BS > 0.

(0, 1), the proof can be carried out similarly. There are three

cases. We know thatfi(x) < 0 from s; to so since the trajectories
Case 1: zo; < 1 andy (¢, zo, az2) does not intersect with go leftward. By assumptiorg; > ez, SO f:; filz)dzs < 0.

the linex; = 1 (see Fig. 16). A contradiction. Therefore, we must have < e and



HU AND LIN: A COMPLETE STABILITY ANALYSIS OF PLANAR LINEAR SYSTEMS UNDER SATURATION

ost i

(Y

1]

t

or 192‘
05
-1

'35 [} os 1 15
Fig. 17. lllustration for the Proof of Lemma 5.8: Case 2.

P(t, xo, aze — 6) intersectsy(t, zo, age) at a pointp to the
right of z.

Case 2: zg; < 1 ande(t, xo, azz) intersects withe; = 1,
see Fig. 17.

Let p; be the first intersection af(¢, xo, az2) with z; = 1,
p2 be the second one.

Let the horizontal distance fromw(t, zg, azz) to
T/)(t, Zo, 22 — (5) at p1 be A; and that atps be A,. Then
p1+ [Aol} : pi is ony(t, zo, aze — 6). By the horizontal
shifting property (12) of the trajectories;(t, p}, az2) will
intersect the line;; = 1 + Ay atps + [AO‘} =: p4. From Fact
5.1,9(¢, p}, ass — 6) also returns to the line; = 1+ A,
at p). Becausay, is on(t, zo, aze — 6), P(t, ph, azs — 6)
overlaps withi (¢, xq, aze — 6). It follows that A, = A;.

Let s1, 52 andp be defined similarly to Case 1, we will alsorespectively.
show thats, is aboves; by contradiction. First, we need angs

upper bound for\; .
Letv = [2] be a point o (t, xo, az2) and [** 2] be a
point on(t, zo, ase — 6). Define

(—kaiov1 + v2)

glvr, va) := —U1 + a12v2

then the slope ofi(¢, xo, as2) atv is aseg(vy, ve) =: m1 and
the slope ofi(t, o, aze — &) at ["F2] is (azz — 8)g(vy +
A, v3) =: 132. It easily can be verified that far, > 0, g(v1, v2)
is a decreasing function af;, so

YA >0, vy >0.

g1, v2) > g(v1 + A, v2), (36)

We can viewA as a function ofy;. Routine analysis shows

that

A _h—"n
dvy 2

Note that the part ofp(t, z¢, a22) from z, to p; is above the
line z2 = 0. It follows from (36) that

M — M2 = a22g(v1, v2) — (G22 — 8)glv1 + A, v2)
=a(g(vi, v2) — glvr + A, v2)) + dg(vy + A, va)
>bg(v1 + A, v2).
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Fig. 18. lllustration for the Proof of Lemma 5.8: Case 3.
Sinceg(vy + A, va) < 0, we have
dA o
dvl a2 — 6
Therefore
-1
dA 6
Al I/ - dUl < — (1 - .’L’Ol). (37)
Zo1 dvl a29 — 6

Let p{ be the intersection of the extension of the line
from p; to p} with 21 = =20, andpj be that of the line
from p, to p, (see Fig. 17). DenoteA,, A, Az, As
as the areas of the regions enclosed by straight lines
and (t, xzo, age) corresponding to the sets of vertices
{370, pf{, pl}’ {pg, P2, 31}, {pf{, P1, P2, pg}, {pl, p2},

Denote B, By, By, B; as the areas
the regions enclosed by straight lines and
P(t, zo, azx — &) corresponding to the sets of vertices

{3707 plllv pll}v {p/2/7 p/27 32}7 {piv p/2}7 {pb p&v p/27 p2}1
respectively. Then by Green’s theorem, we have

1
—/ fl(a:) dro = (—1 + CLQQ)(.Al + .AQ) + (—1 + CLQQ).Ag

+ a0 Ay (38)

1
—/ fl(l') d.’L’Q = (—1 —|— oo — 6)(31 +BQ)

+ (=14 ax — 6)As + (a2 — 6)Bs
+ (CLQQ - 6)35 (39)

Note that there are small triangle areadsnand 53, that are
in the regioni. They are of the ordef?. Sinces is arbitrarily
small, we can treat them as a region in the central square for
simplicity.

It follows from Fact 5.1 b) and the horizontal shifting property
in the regionV thatass. Ay = (agze — 6)B4. From (37), we have

(=1 +ax)Az — (=14 ax — 6)A3 — (a2 — 6)Bs
= (5./43 - (CLQQ - (5)65
= 6|lp1 — p2|[(1 — wo1) — (@22 — 8)|lp1 — p2||A1 > 0.
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By assumptiong; is abovess, so.4; + As < By + Bs. Sub- [9] R.Mantri, A. Saberi, and V. Venkatasubramanian, “Stability analysis of
tracting (39) from (38) we get continuous time planar systems with state saturation nonlinedEiyE
Trans. Circuits Syst, vol. 45, pp. 989-993, Sept. 1998.
e [10] J. H. F. Ritzerfeld, “A condition for the overflow stability of second-
f (a:)da: >0 order digital filters that is satisfied by all scaled state-space structures
1 2 ' using saturation,1EEE Trans. Circuits Systvol. 36, pp. 1049-1057,
€2
Aug. 1989.

A contradiction withe; > ez andfi(x) < 0.
Case 3: zp; > 1 (see Fig. 18).

In this case)(t, xo, az2) goes downward-rightward, then
turns downward-leftward and returns to the ling = zq; at
a point, sayp = |%°t|. Becausér; < 0, p is above the line
zo = —1. By Fact 5.13(¢, xg, az2 — &) will also return to the
line x; = xo; atthe same point. After that % (¢, zq, azz — 6)
remains to the left of:(¢, xo, az2) untill it meets the linec, =
—1 and the desired result follows.
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