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Transactions Briefs

Stability Analysis of Linear Time-Delay Systems Subject to a globally stabilizing state feedback controller by means of an asymp-

Input Saturation totic observer for time-delay systems. In [19], a dynamic anti-windup
method was presented for the systems with input delay and saturation.
Yong-Yan Cao, Zongli Lin, and Tingshu Hu Al of these works have mainly focused on the stabilizability of the sys-
tems.

] ) - ) ) In this paper, we will first analyze the stability and domain of at-
Abstract—This paper is devoted to stability analysis of linear sys- o tion for linear systems with time-delay in state and actuator satu-
tems with state delay and input saturation. The domain of attraction . . . . ! .
resulting from an a priori designed state feedback law is analyzed using fation. A less conservative estimate of the domain of attraction will be
Lyapunov—Razumikhin and Lyapunov—Krasovskii functional approach. derived based on the Lyapunov—Razumikin and Lypunov—Krasovskii
Both delay-independent and delay-dependent estimation of the domain of functional approaches. This estimate is then maximized over the choice
attrglctlon o presenteld using the ]['”e;l; mlitlnx mequﬁutx tecrr]mlgue. Thef of the feedback gains. It is known that the estimates of the domain of
problem of designing linear state feedback laws such that the domain o . . L . o
attraction is enlarged is formulated and solved as an optimization problem Qttractlon mad_e by small gain theo_rem’ Popov criterion or C'rCI_e crite
with LMI constraints. Numerical examples are used to demonstrate the 0N are sometimes very conservative. In [12], a less conservative anal-
effectiveness of the proposed design technique. ysis approach is proposed to analyze the stability and the domain of
Index Terms—Actuator saturation, domain of attraction, linear matrix attraction for S_ySIems W't_h actuator Sa_turatlon'_ T_he '_dea Is to forrn_u-
inequality, time-delay. late the analysis problem into a constrained optimization problem with
constraints given by a set of linear matrix inequalities (LMI's). In this
paper, we will further exploit the idea in [12] to arrive at an estimate
I. INTRODUCTION of the domain of attraction for the linear systems subject to both delay

Nonlinear systems with time-delay constitute basic mathematidgiState and actuator saturation. An LMI optimization approach will be
models of real phenomena, for instance, in circuits theory, economRi@Posed to design the state feedback gain which maximizes this esti-
and mechanics. Not only dynamical systems with time-delay aféate of the domain of attraction.
common in chemical processes and long transmission lines in pneul N paper is organized as follows. Section Il gives some preliminary
matic, hydraulic, or rolling mill systems, but computer controlledSults and states more precisely our problem formulation. Delay-de-
systems requiring numerical computation have time-delays in contR§indent and delay-independent stability and domain of attraction of
loops. The presence of time-delays in control loops usually degradg§ closed-loop system with input saturation and state delay will be
system performance and complicates the analysis and design@@lyzed in Sections Il and IV respectively. Numerical examples il-
feedback controllers. Stability analysis and synthesis of retardii$trating our design procedure and its effectiveness are given in Sec-
systems is an important issue addressed by many authors andtif§# V- The paper is concluded in Section VI.
which surveys can be found in several monographs ésg€[7], [9], Notations: The following notations will be used throughout the
[10], [13], [17], [20)). paper.R denotes the set of real numbeRs; denotes the set of non-

Another common, but difficult, control problem is to deal with actul€gative real numberg" denotes the dimensional Euclidean space
ator saturation since all control devices are subject to saturation (i#d ™" denotes the set of aih x n real matrices. The notation
ited in force, torque, current, flow rate, etc.). The analysis and synthedis = Y (respectively,. X’ > V), where X andY” are symmetric
of controllers for dynamic systems subject to actuator saturation h4v@{rices, means that’ — 1" is positive semidefinite (respectively,
been attracting increasingly more attention (see, for example, [1], [LPpSitive definite)C.,, = C([-7.0],R") denotes the Banach space
[14], [15] and the references therein). of continuous vector functions mapping the interval7| 0] into

Actuator saturation and time-delays are often observed togetheffin With the topology of uniform convergence. The following norms
control systems. To deal with both problems effectively, appropria_Y@” be used:|_| - || refers to either the Euclidean vector norm or the
design methods are required. Up to now, only a few methods wdpgluced matrix 2-normf|é|l. = sup_,,<o [|o(¢)[| stands for the
reported to deal with these problems simultaneously. Gheai. [5] Norm of a functiony &€ C» .. Moreover, we denote by, - the set
studied the stabilization problem of saturating time-delay system with .- = {¢ € Cu,7: [[6[|c < v}, wherev is a positive real number.
state feedback and sampled-state feedback and they derived several suf-
ficient conditions to ensure the system stability in terms of norm in- 1l. PROBLEM STATEMENT AND PRELIMINARIES
equalities. Chowet al. [6] exploited a sufficient condition to stabilize
a linear uncertain time-delay system containing input saturation.
problem of robust stabilization of uncertain time-delay systems con-Let us consider the linear system with time-delay in state and input
taining a saturating actuator was addressed by Niculetsil{16] by a  saturation
high gain approach. Oucheriah [18] considered a method to synthesize

o Problem Statement

2(t) =Ax(t) + Aqe(t — 7) + Bo(u(t)) @

x(t) =v(t), te[-70] 2
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whereo (u;) = sign(u;) min{l, |u;|}. Here we have slightly abused Then, the solution:(¢) = 0 of the (4) and (5) is asymptotically stable.
the notation by using to denote both the scalar valued and the vectdvloreover, the sekv (p) is an invariant set inside the domain of attrac-
valued saturation functions. Also, note that it is without loss of genetion.

ality to assume unity saturation level. We use€ C, - to denote the  Theorem 2 (Razumikhin Stability Theoren8uppose that.(s),
restriction ofz(t) to the interval { — 7, t] translated to -7, 0], thatis, v(s), w(s) andp(s) € R™ —— RT are scalar, continuous and
z(0) = x(t+86), 6¢€][-70. nondecreasing functionsy(s), v(s), w(s) positive fors > 0,

In this paper, we consider the control of the system (1) using a lineaf0) = v(0) = 0 andp(s) > s for s > 0. If there is a continuous
state feedback = Fz. The closed-loop system under this feedbacfunction V: R” —— R and a positive numbeg, such that for all
is given by e € Mv(p) == {¢ € Cor: V(¥(8)) < p, V8 € [-7,0}, the

#(t) = Ax(t) + Aua(t — 7)+ Bo (Fa(t)), w0 =1 € Cur. (3) following COI‘IdItIO?S hold. ’
I , . , . D a(flz])) < V(z) < vl]]]]).
We will be interested in the stability analysis and design for (3). For 2) v (x(t)) < —w(||=(t)|]), if V(x(t + 6)) < p(V(2(t))),V6 €

an initial conditionzo € C.,,-, denote the state trajectory of the system [-7.0].
(3) asu(t, o). Suppose that the solutiar#) = 0 is asymptotically Then, the solution:() = 0 of the (4) and (5) is asymptotically stable.
stable, then the domain of attraction of the origin is Moreover, the seffv (p) is an invariant set inside the domain of at-
S:= {arg € Cn,r: [lim\ x (t,x0) = 0}. traction.
AsetX C C, . is said to be invariant if C. Some Mathematical Tools
to EX = 2 €X Vi > 0. Let f; be thei-th row of the matrixF'. We define the symmetric
- polyhedron
In general, given a stabilizing state feedback Iz, it is impossible LF)={z€R": |fiz| <1, i=1,....m}.

to determine exactly the domain of attraction of the origin. The objeﬁ-the controlu does not saturate for l= 1 m, thatise € £(F)
tive of this paper is to obtain an estimate of the domain of attraction fﬁ{en the nonlinear system (3) admits th’e foflovx;ing linear repreéenta-
(3). The problems to be studied in this paper are the following.

Problem 1: Given a state feedback matifkand a set of initial con-

ditions D, determine ifD C S. #(t) = (A4 BF)x(t) + Agx(t — 7). (6)
Problem 2: Design anF' such that an estimate of the domain of
attraction is maximized. Let P € R"*" be a positive-definite matrix. For a numhet> 0, the
ellipsoid2( P, p) is defined by
B. Razumikhin Theorem and Krasovskii Theorem Q(P,p) := {r eR": 2" Px< p}.

For stability analysis of systems with time-delay, the Razumikhiket V' be the set ofn x m diagonal matrices whose diagonal elements
Theorem and Krasovskii Theorem are used extensively. In what falke either 1 or 0. Then there &@#& elements in. Suppose that each

lows, we give a brief summary of the two theorems simplified to aglement ofV is labeled asD;, i = 1,2,...,2™ and denoteD;” =
tonomous systems. I - D;.Clearly,D; is alsoanelementdf if D; € V.
Consider the retarded functional differential equation Lemma 1 [11]: Let F.H € R™*" be given. Forx € R", if
» |Hz||l < 1,then
(t) =f(xo), 20 ) o(Fz) € co{D;Fx+ Dy Hx:i € [1,2"]}
(t) =y9(t), t€[=70] (®)  where cd-} denotes the convex hull of a set.
Assume that) € C, . and the mapf(v): C..., — R" is contin- Lemma 2 [3]: For anyx,y € R™ and a matrix}/ > 0 with com-
uous and Lipschitzian ig and f(0) = 0. Also denote the solution of Patible dimensions, the following inequality holds
the functional differential (4) with the initial condition, € C, , as 207y < ' Ma 4yt My,
x(t, o).
Definition 1: The trivial solutionz(¢) = 0 of (4) and (5) is said to IIl. DELAY-INDEPENDENTANALYSIS

be asymptotically stable if

1) for every$ > 0 there exists am = €(§) such that for any) €
B(0, €) the solutionz(t, ¢/) of (4) and (5) satisfies, € B(0,6)
forallt > 0.

2) for everyn > 0 there exist &'(n) and avo > 0 independent of
n such that) € B(0, vo) implies that||z.||. < 7, ¥Vt > T'(n).

The Krasovskii Theorem and the Razumikhin Theorem give condk. Razumikhin Functional Approach

tions forz(¢) = 0 to be asymptotically stable. Actually, more informa-

tion about invariant set and regional stability is contained in the prooj§ nxn .

. " . L eR and a numbep > 0, consider the set

for these theorems in [9]. The additional information is incorporated in - o / , .

the following statement of these theorems. M"’(ff) =we C_"’T: v(8) € P, p) ) Vo € [_Tj O]}
Theorem 1 (Krasovskii Stability TheoremBuppose that the func- If there exist two matrice#f € R™*" andWW' € R"*", W > 0 such

tion f: C,.., — R" takes bounded sets 6f, , in bounded sets of that .

R" and suppose that(s), v(s) andw(s) are scalar, continuous, pos- (A +B(D,F+D;H)) P

itive and nondecreasing fun(.:t.ions. If there is a continuous function +P (A +B (DiF + D{H))

V: C.,, — RT and a positive numbeps such that for allz, € I

Lyv(p):={y € Cu,- : V(¥) < p}, the following conditions hold. +PAWA P+ P
1) w0} < Vo) < oflfaelle). <0. i €[L.27], )
2) Vi(ze) < —w((lz(0)]]). p>w ®

In this section, we will give methods for estimating the domain of
attraction for the system (3) with invariant sets. We will first give con-
ditions for a set to be an invariant set inside the domain of attraction and
then use optimization approach to enlarge the invariant set by choosing
the feedback gain matrik’ and the Lyapunov function.

Theorem 3: Let F € R™*" be given. For a positive definite matrix
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andQ(P,p) C L(H), ie.,|hiz| < lforallz € Q(P,p),i = which is stable. This can be guaranteed by the following matrix in-
1,2,...,m, then the solutiorx(¢t) = 0 is asymptotically stable for equality:
tk;e ftystei_m (3) and the s&fy (p) is an invariant set inside the domain (A+BF)TP+P(A+BF)+¢* PAWATP+23P < 0. (11)
of attraction. . . . . .
Proof: Given P > 0, consider a quadratic Lyapunov function Remark 2: If the matrix 4, is rank deficiency, i.e. there exists a

) ! e n X xXn .
candidatey” () = ' Pa. First, we have  [J[|> < V() < =5||«||?, 9€COMPOSItioMy = DyEy, whereDa € R* %, Eq € R*°", p < n,
wheres, = Amin(P), 22 = Amax(P). The derivative o along the then we can prove with similar arguments thét (o) is an invariant set
solutions of (3) is o inside the domain of attraction if there exist two matridéss R *"
. . " andW € RP*P > () satisfying the matrix inequalities
V(x(t)) = 22(t)" PAx(t) + 22" () PAgz(t — 1) fing _ T a

+22" (t)PBo(F(t)). (A +B(D.F+ D7 H)) P

In what follows, we will be interested im; € My (p). In this case, +r (A +B (DiF + D;H))

z(t) € QUP, p). Sincelh;z| < 1forallz € Q(P,p),i =1,2,...,m, +PD,WDGP+P
by Lemma 1, for every:(t) € (P, p) <0, i€[1,2™, E;WT'E;<P
o(Fx(t)) € co{(D;F + Dy H)x(t):i =1,....2" }. With all the M (p) satisfying the set invariance condition, we would
It follows that for everyz(¢) € Q(P, p), we have like to choose the “largest” one to obtain the least conservative estimate
V(z(t)) < max ]Qm'T(t)p (A+ B (D;F + Dy H)) «(t) of the domain of attraction by the method introduced in [12]. We see
te[1,2m

[r: that the “size” of the seldy (p) is proportional to the size G2( P, p).
+247 (1)PAsx(t — 7). Here we would like to take the shapef P, p) into consideration. For

From Lemma 2 and (8), we further have this purpose, we introduce_d the notion of shape reference setas ir_l [_12].
Let Xr C R" be a prescribed bounded convex set containing origin.
V(x(t)) < mas ]xT(t) <(4 + B (DiF + DjH))T P For a setS C R" containing origin, define the size &f with respect
1€[1,2M Y
’ to Xr as

+P(A+B(D,F+D; H))

ar(S) :=sup{a > 0: aAr C S}.
PAWALP a(t) + V(x(t —1)).

+ aWAq )l( )+ V(a(t—7)) ©) Obviously, ifoer (S) > 1, thenXr C S. Two typical types oftr are

By Razumikhin Theorem, to prove thaf, (p) is an invariant set inside the ellipsoid

the domain of attraction, it suffices to show that there exist an 1 Xp={r€R":2"Re<1} R>0
and aé > 0 such that

‘ and the polyhedron
Vix(t)) < — 6V (x(t)),

_ ’ Ar =cof{zi,v2,.... 21}
it Viw(t+6)) <eV(x(t)) Vo € [=7.0]. (10) wherexy, x2, ..., x; are some given points iR".
In the remainder of the proof, we will construct suchndé and show  Theorem 3 gives a condition for a et (p) to be inside the domain
that they satisfy (10). o of attraction for the closed-loop time-delay system subject to input sat-
From (7), we see that there exists & 0 such that uration (3). With a given shape reference set, we can choose from all the
(A +B (D.F + D{H))T p Q(P, p)’s that satisfy the condition such that the quantity(Q( P, p))
+ P(A+ B (D,F +D; H)) is maximized. This problem can be formulated as
A T AT ' sup a, S.t
+ PAWAG; P+ (14 26)P oW 150 .4
<0, i€[L2"] a) aXe C QP p).

Lete = 1 + 6. Now suppose thal’(;r,(t—l— 9)) < EV(I('L’)), Vo € b) (A+B (DLF—i—D:H))lP—I—P (A—i—B (DlF—i—DTH))
[—7, 0]. Then from (9), we have o7 . /
+ PAWA;P+P <0, i€]1,2™],

V(r) < max 2’ ((A +B(D:iF+ D H))' P ¢) |hiz| < 1. Vo € Q(P,p), i€ [1,m]. (12)

i€[1,2m
e LetQ = (p 'P) ', v =1/a* andG = HQ. With similar proce-
+P(A+B(D:F+D;H))+PAWAIP+ €P> ,  dureasin[12], we can transform the above optimization problem to an
LMI problem. That is, if we substitutel¥ with 177, then for the case
< = 6V (x(t)). thatAR is a polyhedron, the optimization problem (12) can be rewritten

This completes the proof. m follows:

Note that the condition of Theorem 3 does not include any infor-
mation of time-delayij.e., the theorem provides a delay-independent

inf vy, st
W>Q>0,G

SO
condition for regional stability of linear time-delay systems with input a) { po } >0,7€[L1].
saturation in terms of the feasibility of several linear matrix inequali- v Q
ties. This result can also be easily extended to systems with multiple b) QA" + AQ + B (D:FQ + D; G)
time-varying time-delays in state [2]. n (D,-FQ n DjG)T BY 4 AW AL

Remark 1: In practice, we may be interested in the stability region in

which the asymptotic stability of closed-loop system (3) is guaranteed +Q<0.i €[1.27].

under saturation and the linear closed-loop system (6) (i.e., unsaturated ¢) { 11 gi} >0, i€[l,m]. (13)
closed-loop system) js-stable. As shown in [17};-stability is equiv- g9 Q-
alent to If Ak is an ellipsoid, then we need to replacein (13) with

§(t) = (A+ BF + 8D)y(t) + " Agy(t — ) a?R>p P = R ' <~0Q.
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As is proven in [12], for systems without delag., A, = 0, solving We will be interested in:; € Ly (p). In this casegz(¢) € Q(P,p) C

the above LMI optimization problem will give a less conservative esz( H) and we have

timate of the domain of attraction than other methods resulting from, o(Fa(t)) € co{(DiF + Dy H) x(t):i € [1,2™]} .

for example, the circle cntenpn. . . With similar arguments as in the proof of Theorem 3, we get the
If the unsaturated system is required to have some stability marg%%

S i " cond equation shown at the bottom of the page whéfe) =
i.e.,itis required to bes-stable, based on Remark 1, the additional LM rT(t) 2Tt — 7_)]' Under the condition (17), there existssa> 0

constraint (1.1) needsto.be. adQed to optimization problem (13), lead %h that we get the third equation shown at the bottom of the page.
to the following LMI optimization problem: It follows that

weblo o St V(ae) < =ba(t)" Pa(t) < —b=ul|x(t)3.
a) b) a/n’dc) in (13). B By Krasovskii Stability TheoremLv (p) is an invariant set inside the
d) QA" + AQ + BFQ + (BFQ)" domain of attraction. m
+e?PT A WAL 4280 < 0. (14) As an estimate of the domain of attraction, the invariant/sety)

in Theorem 4 depends not only on thematrix, but also on an inte-

ration over -7, 0]. This makes the structure of the dat(p) much

ore complicated than the invariant sdft (p) in Theorem 3 based
‘on Lyapunov-Razumikhin functional approach. Hence, it is not easy to
measure the size of the skt (p). Because of this, we would like to
B. Krasovskii Functional Approach determine a subset dfy (p) which is of a more regular shape, say, like

. . . . . My (p) in Theorem 3.
In this subsection, we will consider the following Lyapunov- Let=(t) = P'/?z(t). Then

Krasovskii functional:

The problem of designing a feedback matfixsuch that the estimate
of the domain of attraction is enlarged can be formulated by sim
taking the parametdr in (13) as a variable for optimization. To do so
we just need to replacé = F'Q in (13b) with a new varaiabl¥ .

, | o lzelle = sup [|=(0)]
Viae) :=a (t)Px(t) —1—/ x (s)Wa(s)ds (15) —7<6<0
t—r s 1/2
whereP > 0 andW > 0. This type of functional has been widely = sup (’»Ul (f)Pl’(f)>
used for stability analysis of time-delay systems (geg, [9]). Pl s e )
Theorem 4: Let the feedback gaili € R"™*" be given. For given and V(z,) < (1 + T Amax (P_ 7PWpT /'>> llz¢]lz-

P, W > 0 andp > 0, consider the set Let

-0
Lv(p) =t € Cnr: 00" (0)P(0) —I—/ O (s)Wib(s)ds < pp. p1 = 4 .

—r 14 TAmax (P~12W P-1/2)

(16) Then, we have

If there exists a matrif € R™*" such that we get (17) shown at the
bottom of the page and(P, p) C L(H), then the solutior:(¢) = 0 M (p1) :{w € Cpr: b(0) Py(8) < pi,
of the system (3) is asymptotically stable. Moreover, thelsefp) is

an invariant set inside the domain of attraction.
Proof: Consider the Lyapunov functional given by (15). First, we Vo € [T, 0]} C Lv(p).
have
On the other hand, let
1 flz(0)]1* < V(i) < ealla|? 5= P
; ) X (P) 4 TAmae (W)
v_\{herecl _,TA””"(I;')'w N A‘""”(vp) + T)\"'a;m )- Then then the ball3(§) = {¢ € C...: [|¢¥||? < 6} is inside the domain
Vi) =2 ()(A P+ PA+W)x(t) + 22" () PAaz(t — 7) of attraction. We see that the sizedf(p, ) is proportional to the size
+227 (H)PBa(Fa(t)) — 27 (t — )Wa(t — 7). of Q(P, p1). With a given.Xr, we can choose from all tHe(P, p1)’s

{(‘4 +B(D,;F+D;H)) P+P(A+B(D:F+D;H)+W PAy

ALP _W} <0,i€[L1,2m] (17)

. . A4+ B(D;F+D; H "P+P(A+B D,F+ D H W PA
Vi) < maX}E(t)T{( + 5 + D H)) —i:ﬂ; +B( + D H))+ _I;}E(t)

i€1,2m

(A+B(D:F+D;H)) P+P(A+B(D:F+D;H))+W PAJ} _{513 0

. ieL2m].
ATP -W 0 0] ez
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such that the quantityr (©2(P, p1)) is maximized. This problem can for ¢ > 7. Thus the system (3) can be rewritten as

be formulated as shown in (18) at the bottom of the page. S0P (4 A N
As in Section IlI-A, we can cast the problem into the LMI frame- &) =(4+ A‘{Z’Lm
work. LetQ = (p"*P)",v = 1/o?, G = HQ and substitutg W ~* - Ad/ [A,r(g) + Aga(s — 1) + B(J'(F,r(s))]ds
with X, we can reduce the optimization problem (18) to the one with t—7
LMI constraints as shown in (19) at the bottom of the pagéifis an + Bo(Fx(t))
ellipsoid, thenz) should be replaced with x(t) =¢(t), € [-27,0] (24)
o"ZR — (1 T FAmax (P““WP‘”Q)) P >0 wherey e Cn,2-. By [9], [21], thg asym.p.totic stabilit.y.of thg above
p system will ensure the asymptotic stability of the original time-delay
& (14+79)R™ <~Q. system (3).

Choose the Lyapunov functional candidate &gx(t)) =
(t)Px(t). To prove the theorem, it suffices to show thdt) = 0
is asymptotically stable for the system (24) and that the set

Also, as in Section IlI-A, a controller design problem can be readll}/
formulated by taking” in (19) as an optimizing parameter.

I\V. DELAY-DEPENDENTANALYSIS My (p) = {¥ € Caar:v0(0) € QP p), VO € [-27,0]}

To reduce conservativeness in the analysis when the informationidr2n invariant set inside the domain of attraction. Here weayse
the delay is available, in this section, we will establish a delay-depefnote the restriction of () to the interval { — 27, ] translated to
dent stability result for the time-delay system (3) with input saturatiof—27- 0], thatis,z(¢) = x(t + 6), ¢ € [-27,0].

For simplicity, denoted; := A + A, + B(D,F + D] H). We are interested in; € My (p). In this casegz(¢) € (P, p) and
Theorem 5: Let the state feedback gaifi be given. Consider the We have
ellipsoidQ2( P, p). If there exist matrice® € R™*", P, P, € R"*", V(x(t)) <2 max a7 (t)PAa(t)
= iel,2m]

P > 0,P > 0andr > 0 such that

P / AL p.
AP+ PA; + o PAL(P, + P)AY P 4 27, P +ra (OPAPL + Po)Aq Pa(t)

-0
<0, i €[1,2™) (20) +/ [Az(t + s) + Bo(Fa(t + 5))]” P,
['X+B(DF+D H)] ['X+B(DF+D H)] X [Ax(t + s) + Bo(Fu(t+ s))]ds
gP, i€1,2™ (21) 0 AL Py .
Afl'P{lAd <p 22) +/_T[$ (t=—74+s5)A; P dx(t — 7+ s)ds.
andQ(P,p) C L£(H), thenz(t) = 0 of the system (3) is delay-de- By the convexity of the function’ ;"= and Lemma 1, we have
pendent asymptotically stable. Moreover, for any time-delag o [Aa(t) + Ba(Fa:(t))]TP*I[A:L’(t) + Bo(Fa(t))]
and any initial conditiony, ¢/(6) € Q(P,p), V8 € [—, 0], we have ) ’ ! B e
limy—c 2(t) = 0. < e @(t)" (A+ B(D:F + D; H))
Proof: Sincexz(t) is continuously differentiable far > 0, using . P7'(A 4 B(D:F + DT H))a(t).

the Leibniz-Newton formula, one can write
It follows from (21) that

x(t — 1) =x(t) — /tiT i(s)ds [Ax(t) + Bo(Fa(t))]"
o » . P '[Ax(t) + Bo(Fa(t))] < z (t)Px(t)
=) - /tff [A{L(b) +Auzls =) and from (22), we have
+ Bo(Fa(s))|ds (23) 2T (AT P An(t) < 27 (H)Pa(t).

sup «, S.t
P>0,p,H

a) aXn CQ(Pp1).
(A+B(D:F+ D H))' P+P(A+B(D,F+D;H))+W PA,

" ATp | <0 i€ [1,2™].
c) |hix| €1, Vo € Q(P,p), i € [1,m]. 18)
Q>0,1>?i0,(;,,7 7 St
g (14 72)ay
< el
“) {(I—I—TE);L@ (Atre)q |~ @seXielll

_x <0,i€[1,2™].

¢) Constraint(13c). (19)

” {QAT+AQ+B(DiFQ+DjG) (D:iFQ+ D; C) BT + 4,XAT @
Q
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Hence As in Section IlI-A, we can propose an LMI optimization method
. , . for estimating the domain of attraction for any given time-delay for the
Vi(z(t)) <2 (@ ()P Ax(t) system (3). IfXk is a polyhedron, then we have the following opti-
e . mization problem for estimating the domain of attraction for systems
+ 72 (H)PA(Pr + P) Ay Pr(t) with = < 7
0 -
+ / Vx(t+ s))ds inf ~. st
T Q>0,P1>0,P;>0,G ' -
o o
+/ Vet — 1+ 5))ds. (25) a) {” Q} >0, i=1,2,...,1
. x;

By Razumikhin Theorem, to show thafy (p) is an invariant set b) LM (27.)_(29)’ 1€ 127,
inside the domain of attraction, it suffices to constructan 1 and a c) Constrain(13c). (30)

6 > 0 such that . . o
As usual, the analysis problem can be easily modified for controller

V(x(t)) < — 6V (x(t)). design by taking?’ as an optimizing parameter.
if V{x(t+6 eVi(x(t 0 ec[-2 . 2
it Via(t+6) <eV(z(®) V6 €[-27.0] (26) V. NUMERICAL EXAMPLES
Under the condition of (20), there exist$-a> 0 such that Example 1: Consider the example given in [22]. The system is de-
- . , T scribed by (1) with
Ai" P+ PA + 10PA,(PL+ P)A; P+ 279 (14 26) P <0,
. m 1 1.5 0 -1
t €]1,27]. A= L Ay =
1,27 A {0.3 —2] Ad L) 0 }
Lete = 1+ &. Suppose that’(z(t — 0)) < £V (x(¢)) v € B 10 — 1 — 15
[-27,0]. Then from (25), we have Tl TT S Umax =AY
V(x(t)) <2 r[nax ].TT(t)Pfi,j.T,(t) In [22], a feedback matrix
te[1,27
+ 702l () PAJ(P + Po) AL Pa(t) F=1[-0.3592 —0.1421]
+ 270z (t)” Pa(t) is obtained with local stability in the bai(s) = {x € R": ||z|* <

T ;T 7 T 6} with & = 1.7919 x 10°. As in [22], we require that the origin of
= max z (A; P+ PA; +70PA«P+ P)A; P -
zel[lﬂ)fn] N < P +o (P4 Po)Ag the saturated system be asymptotically stable and that the unsaturated
system is?-stable with3 = 1. By Theorem 3 and solving optimization
problem (14) with the above control law and a unit ball as the reference

4+ 279 €P> x(t)
set, we obtain

< = ZToélgv(f)TP:v(t).
) 0.1324 0.0283 3
This completes our proof. B u a=47.0626, P = {0.0283 0.4489} x 1077
Remark 3: By letting@ = pP~',G = HQ andA; = A+ A4, we . ) -
see that the matrix inequalities (20) to (22) are equivalent to the LMI&1is means that the asymptotic stability of the saturated system and
shown in (27)—(29) at the bottom of the page where we have replacégtability (3 = 1) of the unsaturated system are guaranteed in the
P, and P, with P, /p and P, /. ellipsoid{2( P, 1) which include the balB(é) with 6 = o = 2.2149x
Theorem 5 provides a de|ay_dependent condition for regional Sﬂé)?' ObViOUSIy, thIS estimation iS Iess Conservative than the I’esu|t Of
bility of linear time-delay systems with input saturation in terms of the22]. ) _
feasibility of several linear matrix inequalities. This result can also be If we only require that the saturated system be asymptotically stable,
easily extended to systems with multiple time-varying time-delays ire-» 7 = 0, by Theorem 3, we obtain
state [3]. Note that in the proof the transformation (23) is used to trans- ;
- L . - - 0.2223  0.0000
form the time-delay system with single time delay to a system with dis- a=067.0618 P= )
. . . : . 0.0000 0.2223
tributed delay. It is shown in [8] that such a transformation may incur
some additional dynamics that can be characterized by appropriate Bisis means that the asymptotic stability of the saturated time-delay
ditional eigenvalues. And hence, if the smallest of such delays is legstem is guaranteed in the ellipséid P, 1) which includes the ball
than the stability delay limit of the original system, then any stabilit{3(§) with § = o = 4.4973 x 10*. This is an estimate of the domain
criteria obtained using such transformation will be conservative.  of attraction of the saturated time-delay system. Note that this estimate
Remark 4: Theorems 4 and 5 can also be strengthened wheis  of the domain of attraction is delay-independeémt,, it holds for any

} x 1072,

rank deficiency as in Remark 2. size of time-delay. This ellipsoif?( P, 1) is shown in Fig. 1. The dot-
QA + 4,Q+ B(D,FQ+ D7 G) + (D;FQ + D7 G) " B" + 70 A4(P, + Py)AL +27Q <0 (27)
p ) -7
| Q  He+BDFQ+DIG)T (28)
AQ+ B(D;FQ+ D G) Py

[Q QAT
A B

} >0 (29)
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Fig. 1. Estimation of domain of attraction of Example 1. Fig. 2. Estimate of domain of attraction of Example 2.
TABLE | Example 2: Consider the following delay system (1) with
COMPUTATION RESULTS OFEXAMPLE 1 BY L YAPUNOV-KRASOVSKII APPROACH
0.5 -1
A=
Bl o € P {0.5 —0.5}
0.8703 0.2046 _4 0.6 04
1001 947215 | 23225 | | (oo maes | X 10 4, = { A 5}
0.8895 0.1949 4 -
101 86.5436 2.1114 0.1949 09240 x 10 B {1} R
0.0835 0.0166 3 1] M
1 1 54.8073 1.7449 00166 0.1139 x 10 . N .
117 10 | no solution For S|mpI|C|ty_, we alsq use the_unlt ball as o_ur _refe_rence set. We are
0.7231 0.3103 ) not able to obtain a feasible solution to LMI optimization problem (13).
01001 | 976418 | 41145 | | Jai00 o eeay | X 10 This means that this system may not be delay-independently stabiliz-
0.1 86.5569 | 2.3225 0.8567 0.2143 10~ able by a saturated memoryless state feedback law. Fortunately, the op-
oo ; ’ 0.2143 0.8801 timization problem (30) is feasible fox < 0.35. This means that this
0.1305 0.0060 -3 saturated system is delay-dependently stabilizable with a memoryless
0 1 59.8417 0.9850 x 10 . . .
0.0060 0.1371 state feedback. Table Il shows the computational results with different
ol 10 | 278434 |o.a177 83?2 g‘g}lgg x 10~ time-delay. From Table II, we find that increases when the system
: . time-delayr, decreases. Fig. 2 illustrates the estimate of the domain
of attraction and the state trajectories fo= 0.35. The outer ellip-
TABLE Il soid is€2(P, 1) and the inner ellipsoid is the bafl(«). The dot-dashed
COMPUTATION RESULTS OFEXAMPLE 2 curves are the state trajectories with initial conditions inside this ellip-
soid (P, 1).
T0 a P F
0.1 | 1.5685 _g'ggég ‘g-gggg [ —1.6523 08092 | VI. CONCLUSIONS
- — In this paper, the domain of attraction of time-delay system subject
02 || 1.2507 03631~ —0.0260 2.0026 0.8110 : ioni - inki
: : —0.0260  0.0431 [ -2 : ] to input saturation is addressed by applying Lyapunov-Razumihkin and
0.5067 —0.0373 -Krasovskii functional approach. An estimation of the domain of attrac-
0.3 | 1.2557 [ -2.3284 0.7827 ] PR ; ; e ; i At
—0.0373  0.0311 tion is proposed by using the linear matrix inequality optimization. We
0.9033 —0.0393 also proposed a memoryless state feedback design method for the sys-
035 | 0.9680 —0.0393  0.0256 [ -2.6383 07204 ] tems with time-delay in state and subject to input saturation to enlarge

the domain of attraction. Both the delay-independent and delay-depen-
dent local stabilizing controllers are discussed. Numerical examples

dashed curves are the state trajectories with the initial conditions siow the effectiveness of the proposed method.
this ellipsoid andr = 10. Obviously, all trajectories converge to the

origin.

If we use the LMI optimization (19) by Lyapunov-Krasovskii ap-
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Il. SYNTHESIS APPROACH
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