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Stability Analysis of Linear Time-Delay Systems Subject to
Input Saturation

Yong-Yan Cao, Zongli Lin, and Tingshu Hu

Abstract—This paper is devoted to stability analysis of linear sys-
tems with state delay and input saturation. The domain of attraction
resulting from an a priori designed state feedback law is analyzed using
Lyapunov–Razumikhin and Lyapunov–Krasovskii functional approach.
Both delay-independent and delay-dependent estimation of the domain of
attraction are presented using the linear matrix inequality technique. The
problem of designing linear state feedback laws such that the domain of
attraction is enlarged is formulated and solved as an optimization problem
with LMI constraints. Numerical examples are used to demonstrate the
effectiveness of the proposed design technique.

Index Terms—Actuator saturation, domain of attraction, linear matrix
inequality, time-delay.

I. INTRODUCTION

Nonlinear systems with time-delay constitute basic mathematical
models of real phenomena, for instance, in circuits theory, economics
and mechanics. Not only dynamical systems with time-delay are
common in chemical processes and long transmission lines in pneu-
matic, hydraulic, or rolling mill systems, but computer controlled
systems requiring numerical computation have time-delays in control
loops. The presence of time-delays in control loops usually degrades
system performance and complicates the analysis and design of
feedback controllers. Stability analysis and synthesis of retarded
systems is an important issue addressed by many authors and for
which surveys can be found in several monographs (seee.g.,[7], [9],
[10], [13], [17], [20]).

Another common, but difficult, control problem is to deal with actu-
ator saturation since all control devices are subject to saturation (lim-
ited in force, torque, current, flow rate, etc.). The analysis and synthesis
of controllers for dynamic systems subject to actuator saturation have
been attracting increasingly more attention (see, for example, [1], [11],
[14], [15] and the references therein).

Actuator saturation and time-delays are often observed together in
control systems. To deal with both problems effectively, appropriate
design methods are required. Up to now, only a few methods were
reported to deal with these problems simultaneously. Chenet al. [5]
studied the stabilization problem of saturating time-delay system with
state feedback and sampled-state feedback and they derived several suf-
ficient conditions to ensure the system stability in terms of norm in-
equalities. Chouet al. [6] exploited a sufficient condition to stabilize
a linear uncertain time-delay system containing input saturation. The
problem of robust stabilization of uncertain time-delay systems con-
taining a saturating actuator was addressed by Niculescuet al.[16] by a
high gain approach. Oucheriah [18] considered a method to synthesize
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a globally stabilizing state feedback controller by means of an asymp-
totic observer for time-delay systems. In [19], a dynamic anti-windup
method was presented for the systems with input delay and saturation.
All of these works have mainly focused on the stabilizability of the sys-
tems.

In this paper, we will first analyze the stability and domain of at-
traction for linear systems with time-delay in state and actuator satu-
ration. A less conservative estimate of the domain of attraction will be
derived based on the Lyapunov–Razumikin and Lypunov–Krasovskii
functional approaches. This estimate is then maximized over the choice
of the feedback gains. It is known that the estimates of the domain of
attraction made by small gain theorem, Popov criterion or circle crite-
rion are sometimes very conservative. In [12], a less conservative anal-
ysis approach is proposed to analyze the stability and the domain of
attraction for systems with actuator saturation. The idea is to formu-
late the analysis problem into a constrained optimization problem with
constraints given by a set of linear matrix inequalities (LMI’s). In this
paper, we will further exploit the idea in [12] to arrive at an estimate
of the domain of attraction for the linear systems subject to both delay
in state and actuator saturation. An LMI optimization approach will be
proposed to design the state feedback gain which maximizes this esti-
mate of the domain of attraction.

The paper is organized as follows. Section II gives some preliminary
results and states more precisely our problem formulation. Delay-de-
pendent and delay-independent stability and domain of attraction of
the closed-loop system with input saturation and state delay will be
analyzed in Sections III and IV respectively. Numerical examples il-
lustrating our design procedure and its effectiveness are given in Sec-
tion V. The paper is concluded in Section VI.

Notations: The following notations will be used throughout the
paper. denotes the set of real numbers,+ denotes the set of non-
negative real numbers,n denotes then dimensional Euclidean space
and m�n denotes the set of allm � n real matrices. The notation
X � Y (respectively,X > Y ), whereX and Y are symmetric
matrices, means thatX � Y is positive semidefinite (respectively,
positive definite).Cn;� = C([��; 0]; n) denotes the Banach space
of continuous vector functions mapping the interval [�� , 0] into
n with the topology of uniform convergence. The following norms

will be used:k � k refers to either the Euclidean vector norm or the
induced matrix 2-norm;k�kc = sup���t�0 k�(t)k stands for the
norm of a function� 2 Cn;� . Moreover, we denote byCvn;� the set
Cvn;� = f� 2 Cn;� : k�kc < vg, wherev is a positive real number.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Let us consider the linear system with time-delay in state and input
saturation

_x(t) =Ax(t) + Adx(t� � ) +B�(u(t)) (1)

x(t) = (t); t 2 [��; 0] (2)

wherex 2 n is the state,u 2 m the control input,� a constant and
A, Ad andB are known matrices. Assume that the initial condition 
is a continuous vector-valued function,i.e.,  2 Cn;� . The function
�: m

!
m is the standard saturation function defined as follows:

�(u) = [�(u1) �(u2) � � ��(um)]T
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where�(ui) = sign(ui)minf1; juijg. Here we have slightly abused
the notation by using� to denote both the scalar valued and the vector
valued saturation functions. Also, note that it is without loss of gener-
ality to assume unity saturation level. We usext 2 Cn;� to denote the
restriction ofx(t) to the interval [t� �; t] translated to [�� , 0], that is,
xt(�) = x(t + �); � 2 [��; 0].

In this paper, we consider the control of the system (1) using a linear
state feedbacku = Fx. The closed-loop system under this feedback
is given by

_x(t) = Ax(t)+Adx(t� � )+B� (Fx(t)) ; x0 =  2 Cn;� : (3)

We will be interested in the stability analysis and design for (3). For
an initial conditionx0 2 Cn;� , denote the state trajectory of the system
(3) asx(t; x0). Suppose that the solutionx(t) � 0 is asymptotically
stable, then the domain of attraction of the origin is

S := x0 2 Cn;� : lim
t!1

x (t; x0) = 0 :

A setX � Cn;� is said to be invariant if

x0 2 X =) xt 2 X 8t � 0:

In general, given a stabilizing state feedbacku = Fx, it is impossible
to determine exactly the domain of attraction of the origin. The objec-
tive of this paper is to obtain an estimate of the domain of attraction for
(3). The problems to be studied in this paper are the following.

Problem 1: Given a state feedback matrixF and a set of initial con-
ditionsD, determine ifD � S .

Problem 2: Design anF such that an estimate of the domain of
attraction is maximized.

B. Razumikhin Theorem and Krasovskii Theorem

For stability analysis of systems with time-delay, the Razumikhin
Theorem and Krasovskii Theorem are used extensively. In what fol-
lows, we give a brief summary of the two theorems simplified to au-
tonomous systems.

Consider the retarded functional differential equation

_x(t) =f(xt); t � 0 (4)

x(t) = (t); t 2 [��; 0]: (5)

Assume that 2 Cn;� and the mapf( ): Cn;� 7�! n is contin-
uous and Lipschitzian in andf(0) = 0. Also denote the solution of
the functional differential (4) with the initial conditionx0 2 Cn;� as
x(t; x0).

Definition 1: The trivial solutionx(t) � 0 of (4) and (5) is said to
be asymptotically stable if

1) for every� > 0 there exists an� = �(�) such that for any 2
B(0; �) the solutionx(t;  ) of (4) and (5) satisfiesxt 2 B(0; �)
for all t � 0.

2) for every� > 0 there exist aT (�) and av0 > 0 independent of
� such that 2 B(0; v0) implies thatkxtkc < �, 8t � T (�).

The Krasovskii Theorem and the Razumikhin Theorem give condi-
tions forx(t) � 0 to be asymptotically stable. Actually, more informa-
tion about invariant set and regional stability is contained in the proofs
for these theorems in [9]. The additional information is incorporated in
the following statement of these theorems.

Theorem 1 (Krasovskii Stability Theorem):Suppose that the func-
tion f : Cn;� 7�! n takes bounded sets ofCn;� in bounded sets of
n and suppose thatu(s), v(s) andw(s) are scalar, continuous, pos-

itive and nondecreasing functions. If there is a continuous function
V : Cn;� 7�! + and a positive number� such that for allxt 2
LV (�) := f 2 Cn;� : V ( ) � �g, the following conditions hold.

1) u(kxt(0)k) � V (xt) � v(kxtkc).
2) _V (xt) � �w(kxt(0)k).

Then, the solutionx(t) � 0 of the (4) and (5) is asymptotically stable.
Moreover, the setLV (�) is an invariant set inside the domain of attrac-
tion.

Theorem 2 (Razumikhin Stability Theorem):Suppose thatu(s),
v(s), w(s) and p(s) 2 + 7�! + are scalar, continuous and
nondecreasing functions,u(s), v(s), w(s) positive for s > 0,
u(0) = v(0) = 0 andp(s) > s for s > 0. If there is a continuous
function V : n 7�! and a positive number�, such that for all
xt 2 MV (�) := f 2 Cn;� : V ( (�)) � �; 8� 2 [��; 0]g, the
following conditions hold.

1) u(kxk) � V (x) � v(kxk).
2) _V (x(t)) � �w(kx(t)k), if V (x(t + �)) < p(V (x(t))), 8� 2

[��; 0].
Then, the solutionx(t) � 0 of the (4) and (5) is asymptotically stable.
Moreover, the setMV (�) is an invariant set inside the domain of at-
traction.

C. Some Mathematical Tools

Let fi be thei-th row of the matrixF . We define the symmetric
polyhedron

L(F ) = fx 2 n: jfixj � 1; i = 1; . . . ;mg :

If the controlu does not saturate for alli = 1; . . . ; m, that isx 2 L(F ),
then the nonlinear system (3) admits the following linear representa-
tion:

_x(t) = (A+BF )x(t) + Adx(t� � ): (6)

Let P 2 n�n be a positive-definite matrix. For a number� > 0, the
ellipsoid
(P; �) is defined by


(P; �) := x 2 n: xTPx � � :

LetV be the set ofm�m diagonal matrices whose diagonal elements
are either 1 or 0. Then there are2m elements inV . Suppose that each
element ofV is labeled asDi, i = 1; 2; . . . ; 2m and denoteD�i =
I �Di. Clearly,D�i is also an element ofV if Di 2 V .

Lemma 1 [11]: Let F;H 2 m�n be given. Forx 2 n, if
kHxk1 � 1, then

�(Fx) 2 co DiFx +D
�

i Hx: i 2 [1; 2m]

where cof�g denotes the convex hull of a set.
Lemma 2 [3]: For anyx; y 2 n and a matrixM > 0 with com-

patible dimensions, the following inequality holds

2xT y � x
T
Mx+ y

T
M
�1
y:

III. D ELAY-INDEPENDENTANALYSIS

In this section, we will give methods for estimating the domain of
attraction for the system (3) with invariant sets. We will first give con-
ditions for a set to be an invariant set inside the domain of attraction and
then use optimization approach to enlarge the invariant set by choosing
the feedback gain matrixF and the Lyapunov function.

A. Razumikhin Functional Approach

Theorem 3: LetF 2 m�n be given. For a positive definite matrix
P 2 n�n and a number� > 0, consider the set

MV (�) = f 2 Cn;� :  (�) 2 
(P; �) 8� 2 [��; 0]g :

If there exist two matricesH 2 m�n andW 2 n�n,W > 0 such
that

(A +B DiF +D
�

i H
T
P

+ P A+B DiF +D
�

i H

+ PAdWA
T
d P + P

<0; i 2 [1; 2m]; (7)

P �W�1 (8)
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and
(P; �) � L(H); i.e., jhixj � 1 for all x 2 
(P; �), i =
1; 2; . . . ;m, then the solutionx(t) � 0 is asymptotically stable for
the system (3) and the setMV (�) is an invariant set inside the domain
of attraction.

Proof: GivenP > 0, consider a quadratic Lyapunov function
candidateV (x) = xTPx. First, we have"1kxk2 � V (x) � "2kxk

2,
where"1 = �min(P ), "2 = �max(P ). The derivative ofV along the
solutions of (3) is
_V (x(t)) = 2x(t)TPAx(t) + 2xT (t)PAdx(t� � )

+2xT (t)PB�(Fx(t)):

In what follows, we will be interested inxt 2 MV (�). In this case,
x(t) 2 
(P; �). Sincejhixj � 1 for all x 2 
(P; �), i = 1; 2; . . . ;m,
by Lemma 1, for everyx(t) 2 
(P; �)

�(Fx(t)) 2 co DiF +D�i H x(t): i = 1; . . . ; 2m :

It follows that for everyx(t) 2 
(P; �), we have
_V (x(t)) � max

i2[1;2 ]
2xT (t)P A+B DiF +D�i H x(t)

+2xT (t)PAdx(t� � ):

From Lemma 2 and (8), we further have

_V (x(t)) � max
i2[1;2 ]

xT (t) A+B DiF +D�i H
T
P

+ P A+B DiF +D�i H

+ PAdWATd P x(t) + V (x(t� � )): (9)

By Razumikhin Theorem, to prove thatMV (�) is an invariant set inside
the domain of attraction, it suffices to show that there exist an" > 1
and a� > 0 such that

_V (x(t)) �� �V (x(t));

if V (x(t+ �)) <"V (x(t)) 8� 2 [��; 0]: (10)

In the remainder of the proof, we will construct such" and� and show
that they satisfy (10).

From (7), we see that there exists a� > 0 such that

(A +B DiF +D�i H
T
P

+ P A +B DiF +D�i H

+ PAdWATd P + (1 + 2�)P

<0; i 2 [1; 2m]:

Let " = 1 + �. Now suppose thatV (x(t + �)) < "V (x(t)); 8� 2
[��; 0]. Then from (9), we have

_V (x) � max
i2[1;2 ]

xT A +B DiF +D�i H
T
P

+ P A+B DiF +D�i H + PAdWATd P + "P x

<� �V (x(t)):

This completes the proof.
Note that the condition of Theorem 3 does not include any infor-

mation of time-delay,i.e., the theorem provides a delay-independent
condition for regional stability of linear time-delay systems with input
saturation in terms of the feasibility of several linear matrix inequali-
ties. This result can also be easily extended to systems with multiple
time-varying time-delays in state [2].

Remark 1: In practice, we may be interested in the stability region in
which the asymptotic stability of closed-loop system (3) is guaranteed
under saturation and the linear closed-loop system (6) (i.e., unsaturated
closed-loop system) is�-stable. As shown in [17],�-stability is equiv-
alent to

_y(t) = (A+BF + �I)y(t) + e��Ady(t� � )

which is stable. This can be guaranteed by the following matrix in-
equality:

(A+BF )TP +P (A+BF )+e2��PAdWATd P +2�P < 0: (11)

Remark 2: If the matrixAd is rank deficiency, i.e. there exists a
decompositionAd = DdEd, whereDd 2

n�p,Ed 2 p�n, p < n,
then we can prove with similar arguments thatMV (�) is an invariant set
inside the domain of attraction if there exist two matricesH 2 m�n

andW 2 p�p > 0 satisfying the matrix inequalities

(A +B DiF +D�i H
T
P

+ P A+B DiF +D�i H

+ PDdWDT
d P + P

<0; i 2 [1; 2m]; ET
d W

�1Ed � P:

With all theMV (�) satisfying the set invariance condition, we would
like to choose the “largest” one to obtain the least conservative estimate
of the domain of attraction by the method introduced in [12]. We see
that the “size” of the setMV (�) is proportional to the size of
(P; �).
Here we would like to take the shape of
(P; �) into consideration. For
this purpose, we introduced the notion of shape reference set as in [12].
Let XR � n be a prescribed bounded convex set containing origin.
For a setS � n containing origin, define the size ofS with respect
to XR as

�R(S) := supf� > 0: �XR � Sg:

Obviously, if�R(S) � 1, thenXR � S. Two typical types ofXR are
the ellipsoid

XR = fx 2 n: xTRx � 1g R > 0

and the polyhedron

XR = cofx1; x2; . . . ; xlg

wherex1; x2; . . . ; xl are some given points inn.
Theorem 3 gives a condition for a setMV (�) to be inside the domain

of attraction for the closed-loop time-delay system subject to input sat-
uration (3). With a given shape reference set, we can choose from all the

(P; �)’s that satisfy the condition such that the quantity�R(
(P; �))
is maximized. This problem can be formulated as

sup
P�W >0;�;H

�; s.t.

a) �XR � 
(P; �);

b) A+B DiF +D�i H
T
P + P A+B DiF +D�i H

+ PAdWATd P + P < 0; i 2 [1; 2m];

c) jhixj � 1; 8x 2 
(P; �); i 2 [1; m]: (12)

LetQ = (��1P )�1,  = 1=�2 andG = HQ. With similar proce-
dure as in [12], we can transform the above optimization problem to an
LMI problem. That is, if we substitute�W with W , then for the case
thatXR is a polyhedron, the optimization problem (12) can be rewritten
as follows:

inf
W�Q>0;G

; s.t.

a)
 xTi
xi Q

� 0; i 2 [1; l]:

b) QAT +AQ+B DiFQ+D�i G

+ DiFQ+D�i G
T
BT +AdWATd

+Q < 0; i 2 [1; 2m]:

c)
1 gi
gTi Q

� 0; i 2 [1; m]: (13)

If XR is an ellipsoid, then we need to replacea) in (13) with

��2R � ��1P () R�1 � Q:
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As is proven in [12], for systems without delay,i.e.,Ad = 0, solving
the above LMI optimization problem will give a less conservative es-
timate of the domain of attraction than other methods resulting from,
for example, the circle criterion.

If the unsaturated system is required to have some stability margin,
i.e.,it is required to be�-stable, based on Remark 1, the additional LMI
constraint (11) needs to be added to optimization problem (13), leading
to the following LMI optimization problem:

inf
W�Q>0;G

; s.t.

a) b) andc) in (13):

d) QAT + AQ+BFQ+ (BFQ)T

+ e
2��

AdWA
T
d + 2�Q < 0: (14)

The problem of designing a feedback matrixF such that the estimate
of the domain of attraction is enlarged can be formulated by simply
taking the parameterF in (13) as a variable for optimization. To do so,
we just need to replaceY = FQ in (13b) with a new varaiableY .

B. Krasovskii Functional Approach

In this subsection, we will consider the following Lyapunov-
Krasovskii functional:

V (xt) := x
T (t)Px(t) +

t

t��

x
T (s)Wx(s)ds (15)

whereP > 0 andW > 0. This type of functional has been widely
used for stability analysis of time-delay systems (see,e.g., [9]).

Theorem 4: Let the feedback gainF 2 m�n be given. For given
P;W > 0 and� > 0, consider the set

LV (�) =  2 Cn;� :  
T (0)P (0) +

0

��

 
T (s)W (s)ds � � :

(16)

If there exists a matrixH 2 m�n such that we get (17) shown at the
bottom of the page and
(P; �) � L(H), then the solutionx(t) � 0
of the system (3) is asymptotically stable. Moreover, the setLV (�) is
an invariant set inside the domain of attraction.

Proof: Consider the Lyapunov functional given by (15). First, we
have

"1kxt(0)k
2 � V (xt) � "2kxtk

2
c

where"1 = �min(P ), "2 = �max(P ) + ��max(W ). Then
_V (xt) = x

T (t)(ATP + PA+W )x(t) + 2xT (t)PAdx(t� � )

+2xT (t)PB�(Fx(t))� x
T (t� � )Wx(t� � ):

We will be interested inxt 2 LV (�). In this case,x(t) 2 
(P; �) �
L(H) and we have

�(Fx(t)) 2 co DiF +D
�
i H x(t): i 2 [1; 2m] :

With similar arguments as in the proof of Theorem 3, we get the
second equation shown at the bottom of the page where�T (t) =
xT (t) xT (t� � ) . Under the condition (17), there exists a� > 0

such that we get the third equation shown at the bottom of the page.
It follows that

_V (xt) < ��x(t)TPx(t) � ��"1kx(t)k
2
2:

By Krasovskii Stability Theorem,LV (�) is an invariant set inside the
domain of attraction.

As an estimate of the domain of attraction, the invariant setLV (�)
in Theorem 4 depends not only on theP matrix, but also on an inte-
gration over [�� , 0]. This makes the structure of the setLV (�) much
more complicated than the invariant setMV (�) in Theorem 3 based
on Lyapunov-Razumikhin functional approach. Hence, it is not easy to
measure the size of the setLV (�). Because of this, we would like to
determine a subset ofLV (�) which is of a more regular shape, say, like
MV (�) in Theorem 3.

Let z(t) = P 1=2x(t). Then

kztkc = sup
�����0

kz(t)k

= sup
�����0

x
T (t)Px(t)

1=2

and V (xt) � 1 + ��max P
�1=2

WP
�1=2 kztk

2
c :

Let

�1 =
�

1 + ��max (P�1=2WP�1=2)
:

Then, we have

M (�1) =  2 Cn;� :  (�)
T
P (�) � �1;

8� 2 [��; 0] � LV (�):

On the other hand, let

� =
�

�max(P ) + ��max(W )

then the ballB(�) = f 2 Cn;� : k k
2
c < �g is inside the domain

of attraction. We see that the size ofM(�1) is proportional to the size
of 
(P; �1). With a givenXR, we can choose from all the
(P; �1)’s

A +B DiF +D�i H
T
P + P A+B DiF +D�i H +W PAd

ATd P �W
< 0; i 2 [1; 2m] (17)

_V (xt) � max
i2[1;2 ]

�(t)T
A+B DiF +D�i H

T
P + P A +B DiF +D�i H +W PAd

ATd P �W
�(t)

A+B DiF +D�i H
T
P + P A +B DiF +D�i H +W PAd

ATd P �W
< �

�P 0

0 0
; i 2 [1; 2m]:
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such that the quantity�R(
(P; �1)) is maximized. This problem can
be formulated as shown in (18) at the bottom of the page.

As in Section III-A, we can cast the problem into the LMI frame-
work. LetQ = (��1P )�1, = 1=�2,G = HQ and substitute�W�1

with X, we can reduce the optimization problem (18) to the one with
LMI constraints as shown in (19) at the bottom of the page. IfXR is an
ellipsoid, thena) should be replaced with

��2R� 1 + ��max P�1=2WP�1=2
P

�
>0

, (1 + �")R�1 <Q:

Also, as in Section III-A, a controller design problem can be readily
formulated by takingF in (19) as an optimizing parameter.

IV. DELAY-DEPENDENTANALYSIS

To reduce conservativeness in the analysis when the information on
the delay is available, in this section, we will establish a delay-depen-
dent stability result for the time-delay system (3) with input saturation.
For simplicity, denoteÂi := A + Ad + B(DiF +D�i H):

Theorem 5: Let the state feedback gainF be given. Consider the
ellipsoid
(P; �). If there exist matricesH 2 m�n,P1,P2 2 n�n,
P1 > 0, P2 > 0 and�0 > 0 such that

Âi
TP + PÂi + �0PAd(P1 + P2)A

T
d P + 2�0P

<0; i 2 [1; 2m] (20)

A+B(DiF +D�i H)
T
P�11 A+B DiF +D�i H

�P; i 2 [1; 2m] (21)

ATd P
�1
2 Ad �P (22)

and
(P; �) � L(H), thenx(t) � 0 of the system (3) is delay-de-
pendent asymptotically stable. Moreover, for any time-delay� � �0
and any initial condition ,  (�) 2 
(P; �), 8� 2 [��; 0], we have
limt!1 x(t) = 0.

Proof: Sincex(t) is continuously differentiable fort � 0; using
the Leibniz-Newton formula, one can write

x(t� � ) =x(t)�
t

t��

_x(s)ds

=x(t)�
t

t��

Ax(s) +Adx(s� � )

+B�(Fx(s)) ds (23)

for t � �: Thus the system (3) can be rewritten as

_x(t) =(A+ Ad)x(t)

� Ad
t

t��

Ax(s) + Adx(s� � ) +B�(Fx(s)) ds

+B�(Fx(t))

x(t) = (t); 2 [�2�; 0] (24)

where 2 Cn;2� . By [9], [21], the asymptotic stability of the above
system will ensure the asymptotic stability of the original time-delay
system (3).

Choose the Lyapunov functional candidate asV (x(t)) =
xT (t)Px(t): To prove the theorem, it suffices to show thatx(t) � 0
is asymptotically stable for the system (24) and that the set

MV (�) = f 2 Cn;2� :  (�) 2 
(P; �); 8� 2 [�2�; 0]g

is an invariant set inside the domain of attraction. Here we usext to
denote the restriction ofx(t) to the interval [t � 2�; t] translated to
[�2�; 0], that is,xt(�) = x(t+ �); � 2 [�2�; 0]:

We are interested inxt 2 MV (�). In this case,x(t) 2 
(P; �) and
we have

_V (x(t)) �2 max
i2[1;2 ]

xT (t)PÂix(t)

+ �xT (t)PAd(P1 + P2)A
T
d Px(t)

+
0

��

[Ax(t + s) +B�(Fx(t+ s))]T P�11

� [Ax(t+ s) +B�(Fx(t+ s))]ds

+
0

��

xT (t� � + s)ATd P
�1
2 Adx(t� � + s)ds:

By the convexity of the functionxTP�11 x and Lemma 1, we have

[Ax(t) +B�(Fx(t))]TP�11 [Ax(t) +B�(Fx(t))]

� max
i2[1;2 ]

x(t)T (A+B(DiF +D�i H))T

� P�11 (A+B(DiF +D�i H))x(t):

It follows from (21) that

[Ax(t) +B�(Fx(t))]T

�P�11 [Ax(t) +B�(Fx(t))] � xT (t)Px(t)

and from (22), we have

xT (t)ATd P
�1
2 Adx(t) � xT (t)Px(t):

sup
P>0;�;H

�; s.t.

a) �XR � 
 (P; �1) :

b)
A+B DiF +D�i H

T
P + P A +B DiF +D�i H +W PAd
ATd P �W

< 0; i 2 [1; 2m]:

c) jhixj � 1; 8x 2 
(P; �); i 2 [1; m]: (18)

inf
Q>0;X>0;G;�

; s.t.

a)
 (1 + �")xTi

(1 + �")xi (1 + �")Q
> 0; Q � "X; i 2 [1; l]:

b)
QAT + AQ+B DiFQ+D�i G + DiFQ+D�i G

T
BT +AdXA

T
d Q

Q �X
< 0; i 2 [1; 2m]:

c) Constraint(13c): (19)



238 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 2, FEBRUARY 2002

Hence

_V (x(t)) �2 max
i2[1;2 ]

xT (t)PÂix(t)

+ �xT (t)PAd(P1 + P2)A
T
d Px(t)

+
0

��

V (x(t+ s))ds

+
0

��

V (x(t� � + s))ds: (25)

By Razumikhin Theorem, to show thatMV (�) is an invariant set
inside the domain of attraction, it suffices to construct an" > 1 and a
� > 0 such that

_V (x(t)) <� �V (x(t));

if V (x(t+ �)) <"V (x(t)) 8� 2 [�2�; 0]: (26)

Under the condition of (20), there exists a�1 > 0 such that

Âi
TP + PÂi + �0PAd (P1 + P2)A

T
d P + 2�0 (1 + 2�1)P < 0;

i 2 [1; 2m] :

Let " = 1 + �1. Suppose thatV (x(t � �)) < "V (x(t)) 8� 2
[�2�; 0]. Then from (25), we have

_V (x(t)) �2 max
i2[1;2 ]

xT (t)PÂix(t)

+ �0x
T (t)PAd(P1 + P2)A

T
d Px(t)

+ 2�0"x(t)
TPx(t)

= max
i2[1;2 ]

xT ÂTi P + PÂi + �0PAd(P1 + P2)A
T
d P

+ 2�0"P x(t)

<� 2�0�1x(t)
TPx(t):

This completes our proof.
Remark 3: By lettingQ = �P�1,G = HQ and �Ai = A+Ad, we

see that the matrix inequalities (20) to (22) are equivalent to the LMIs
shown in (27)–(29) at the bottom of the page where we have replaced
P1 andP2 with P1=� andP2=�.

Theorem 5 provides a delay-dependent condition for regional sta-
bility of linear time-delay systems with input saturation in terms of the
feasibility of several linear matrix inequalities. This result can also be
easily extended to systems with multiple time-varying time-delays in
state [3]. Note that in the proof the transformation (23) is used to trans-
form the time-delay system with single time delay to a system with dis-
tributed delay. It is shown in [8] that such a transformation may incur
some additional dynamics that can be characterized by appropriate ad-
ditional eigenvalues. And hence, if the smallest of such delays is less
than the stability delay limit of the original system, then any stability
criteria obtained using such transformation will be conservative.

Remark 4: Theorems 4 and 5 can also be strengthened whenAd is
rank deficiency as in Remark 2.

As in Section III-A, we can propose an LMI optimization method
for estimating the domain of attraction for any given time-delay for the
system (3). IfXR is a polyhedron, then we have the following opti-
mization problem for estimating the domain of attraction for systems
with � � �0

inf
Q>0;P >0;P >0;G

; s.t.

a)
xTi
xi Q

� 0; i = 1; 2; . . . ; l

b) LMI (27)–(29); i 2 [1; 2m] ;

c) Constrain(13c): (30)

As usual, the analysis problem can be easily modified for controller
design by takingF as an optimizing parameter.

V. NUMERICAL EXAMPLES

Example 1: Consider the example given in [22]. The system is de-
scribed by (1) with

A =
1 1:5

0:3 �2
; Ad =

0 �1

0 0

B =
10

1
; � = 1; umax = 15:

In [22], a feedback matrix

F = [�0:3592 � 0:1421]

is obtained with local stability in the ballB(�) = fx 2 n: kxk2 �
�g with � = 1:7919 � 103. As in [22], we require that the origin of
the saturated system be asymptotically stable and that the unsaturated
system is�-stable with� = 1. By Theorem 3 and solving optimization
problem (14) with the above control law and a unit ball as the reference
set, we obtain

� = 47:0626; P =
0:1324 0:0283

0:0283 0:4489
� 10�3:

This means that the asymptotic stability of the saturated system and
�-stability (� = 1) of the unsaturated system are guaranteed in the
ellipsoid
(P; 1)which include the ballB(�)with � = �2 = 2:2149�
103. Obviously, this estimation is less conservative than the result of
[22].

If we only require that the saturated system be asymptotically stable,
i.e.,, � = 0, by Theorem 3, we obtain

� = 67:0618 P =
0:2223 0:0000

0:0000 0:2223
� 10�3:

This means that the asymptotic stability of the saturated time-delay
system is guaranteed in the ellipsoid
(P; 1) which includes the ball
B(�) with � = �2 = 4:4973� 103. This is an estimate of the domain
of attraction of the saturated time-delay system. Note that this estimate
of the domain of attraction is delay-independent,i.e.,, it holds for any
size of time-delay. This ellipsoid
(P; 1) is shown in Fig. 1. The dot-

Q �ATi + �AiQ+B(DiFQ+D�i G) + (DiFQ+D�i G)TBT + �0Ad(P1 + P2)A
T
d + 2�0Q <0 (27)

Q [AQ+B(DiFQ+D�i G)]T

AQ+B(DiFQ+D�i G) P1
�0 (28)

Q QATd
AdQ P2

�0 (29)
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Fig. 1. Estimation of domain of attraction of Example 1.

TABLE I
COMPUTATION RESULTS OFEXAMPLE 1 BY LYAPUNOV-KRASOVSKII APPROACH

TABLE II
COMPUTATION RESULTS OFEXAMPLE 2

dashed curves are the state trajectories with the initial conditions on
this ellipsoid and� = 10. Obviously, all trajectories converge to the
origin.

If we use the LMI optimization (19) by Lyapunov-Krasovskii ap-
proach with the above control law, the computational results are shown
in Table I. From this table, we find that our result is less conservative
than that of [22] because our estimate of domain of attraction when
� = 1 and� = 1 includes the ballB(�) with � = �2 = 3:004� 103

which is much bigger than the ball given in [22]. We can also find that
the estimation of the domain of attraction by Lyapunov-Krasovskii ap-
proach becomes smaller as the size of time-delay becomes larger.

Fig. 2. Estimate of domain of attraction of Example 2.

Example 2: Consider the following delay system (1) with

A =
0:5 �1

0:5 �0:5

Ad =
0:6 0:4

0 �0:5

B =
1

1
; umax = 5:

For simplicity, we also use the unit ball as our reference set. We are
not able to obtain a feasible solution to LMI optimization problem (13).
This means that this system may not be delay-independently stabiliz-
able by a saturated memoryless state feedback law. Fortunately, the op-
timization problem (30) is feasible for�0 � 0:35. This means that this
saturated system is delay-dependently stabilizable with a memoryless
state feedback. Table II shows the computational results with different
time-delay. From Table II, we find that� increases when the system
time-delay�0 decreases. Fig. 2 illustrates the estimate of the domain
of attraction and the state trajectories for� = 0:35. The outer ellip-
soid is
(P; 1) and the inner ellipsoid is the ballB(�). The dot-dashed
curves are the state trajectories with initial conditions inside this ellip-
soid
(P; 1).

VI. CONCLUSIONS

In this paper, the domain of attraction of time-delay system subject
to input saturation is addressed by applying Lyapunov-Razumihkin and
-Krasovskii functional approach. An estimation of the domain of attrac-
tion is proposed by using the linear matrix inequality optimization. We
also proposed a memoryless state feedback design method for the sys-
tems with time-delay in state and subject to input saturation to enlarge
the domain of attraction. Both the delay-independent and delay-depen-
dent local stabilizing controllers are discussed. Numerical examples
show the effectiveness of the proposed method.
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Multiple Resonance Networks

Antonio Carlos M. de Queiroz

Abstract—This brief shows how “multiple resonance networks” of any
order and with many possible structures can be systematically designed
using standard lossless impedance synthesis techniques. These networks
are composed of linear lumped or distributed capacitors, inductors, and
transformers, with a switch separating one of the capacitors from the re-
maining circuit. They have the property of transferring completely the en-
ergy initially stored in the capacitor insulated by the switch, to another,
much smaller, capacitor in the circuit, through a linear transient when the
switch is closed. These circuits find applications in the production of very
high voltages for pulsed power systems.

Index Terms—Linear network synthesis, power converters, resonance.

I. INTRODUCTION

“Multiple resonance networks” [1] is a name that generalizes the
“double resonance” [2], [3], “triple resonance” [4]–[6], and the higher
order networks discussed in this brief. These circuits are usually com-
posed of a transformer and some extra capacitors and inductors and
work by transferring the energy initially stored in a capacitor at one
side of the transformer to another, much smaller, capacitor at the other
side of the transformer, through a linear transient composed (in the ideal
lossless case) of a sum of several cosinusoidal waveforms (Fig. 1).

The “double resonance” case is long known [2], [7] as the “Tesla
coil” [3]. In this case, only two capacitors and one transformer are used,
resulting in a fourth-order system with a transient formed by two oscil-
latory modes (Fig. 2). With the system properly designed, after some
cycles all the initial energy inC1 is transferred toC2, and the obtained
voltage is given, by energy conservation, by

voutmax = vin(0)
C1

Cp

(1)

(with p = 2). This same equation fixes the maximum output voltage
for all the systems of this type.

More recently, triple resonance systems were developed [4]–[6] for
instrumentation used in high-energy physics. An additional capacitor
and an inductor were added to the output side (Fig. 3), with the aim
of reducing the voltage stress over the transformer and of taking into
consideration the output capacitance of the transformer. With only the
extra inductor added, the system is still a double resonance system, long
known as the “Tesla magnifier.” With the extra capacitor the system is
of sixth order and the transient has three oscillatory modes, but opera-
tion with complete energy transfer is equally possible.

In all the cases found in the literature, the design of these systems is
based on the analysis of a fixed structure. The following sections show
that the design can be made by synthesis, can be applied to a wide range
of structures, and can be extended to systems of any order.

II. SYNTHESIS APPROACH

The transformer can be left out of the problem, because it can be
inserted after the synthesis of a “ladder” structure composed of series

Manuscript received November 29, 2000; revised July 26, 2001, and
September 19, 2001. This paper was recommended by Associate Editor P. K.
Rajan.

The author is with the Electrical Engineering Program – COPPE and the
Electronic and Computer Engineering Department, Federal University of Rio
de Janeiro, Rio de Janeiro 21945-970, Brazil (e–mail: acmq@coe.ufrj.br).

Publisher Item Identifier S 1057-7122(02)01185-6.

1057–7122/02$17.00 © 2002 IEEE


