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This paper examines a single-stage production system that manufactures multiple products under deteriorating equipment conditions.
The machine condition worsens with production, and improves with maintenance. The condition of the process can be in any one
of several discrete states, and transitions from state to state follow a semi-Markov process. In many production environments, the
quality or yield of output depends heavily on the condition of the production process. The problem considers the trade-offs between
manufacturing products that have a higher profit, a longer processing time, and therefore, a higher deterioration probability versus
products that have a smaller profit, shorter processing time with a lower process deterioration probability. The firm needs to determine
the optimal production choice in each state in a way that maximizes the long-run expected average reward per unit time.

The paper makes three sets of contributions. First, it introduces the concept of critical ratios for the firm’s manufacturing decision
at each state regarding whether to switch from one product to another. Second, through the use of critical ratios, the main result
shows that the optimal production choice for each state can be determined independently of the actions taken in other states, despite
the complex interconnections between the production decisions and state transitions. Third, the paper provides generalizations that
illustrate the depth, scope and richness of the proposed solution technique by extending the model in the number of machine states, to
settings where maintenance is performed in intermediate states, and to settings where transition probabilities are influenced by both
mean and variance of processing times.
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1. Introduction

This paper studies optimal production decisions for a man-
ufacturing system that produces multiple products under
deteriorating equipment conditions. In many production
environments, the quality or output yield depends heavily
on the condition of the production process. Traditionally,
researchers exploring the connections between process con-
dition and yield have focused on quantity, i.e., how large
should be the production batches given that some fraction
of the finished units will be defective. In contrast, this paper
considers the question of which product should be produced
depending on the process condition.

We consider a single-stage manufacturing system that
produces multiple product types. The condition of the sys-
tem deteriorates with production, and the quality (yield)
of the final output is a function of both the process con-
dition and the product type. In environments as diverse as
semiconductor wafer manufacturing, pharmaceutical man-
ufacturing and optical lens production, the process condi-
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tion deteriorates over time and reduces the amount of yield.
The goal of the production manager is to determine the op-
timal production decision, i.e., which product to produce,
in each equipment condition. When the process reaches the
worst state, the manufacturer performs maintenance and
returns the equipment to its best state.

The process condition deteriorates differently according
to which product is being produced. In the motivating ex-
ample, we consider a semiconductor wafer manufacturer
who is concerned with the production of two products: a
high-end and a low-end technology product. A high-end
product typically has more circuitry per unit area on the
computer chip than a low-end product and therefore re-
quires a longer processing time. As production takes place,
the equipment becomes more contaminated, resulting in a
higher level of process deterioration. It is expected that a
high-end product will earn more revenue than a low-end
product. However, the higher circuit density means that
a high-end product will have a lower yield than a low-
end product for a given process condition (i.e., level of
contamination). Furthermore, the longer processing time
of a high-end product increases the likelihood of process
deterioration. Therefore, the manager’s trade-off at each
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equipment condition is: produce the high-end product and
earn a higher revenue but increase the risk of process de-
terioration versus produce the low-end product and earn a
lower revenue but reduce the risk of process deterioration.
Although the high-end product brings in more revenue per
unit, it also increases the likelihood of more frequent main-
tenance, and thus will increase the overall maintenance cost.

The main focus of this research is to identify the struc-
tural properties of the optimal production policy. The study
characterizes all potentially optimal solutions and deter-
mines the conditions that make them optimal.

The paper makes three sets of contributions. First, it in-
troduces the concept of the critical ratio of revenues, under
which the decision-maker is indifferent in her/his choice
of the product to be manufactured. Thus, it is sufficient
for the firm to compare the revenues of products in each
state with the critical ratio of the state in order to deter-
mine the optimal production policy. The critical ratios have
significant managerial implications because they enable the
manufacturer to evaluate analytically the reservation price
of a product, i.e., the minimum that she/he needs to earn
in order to justify the profitable production of this product
over other products. Owing to the fact that machine dete-
rioration probabilities change with the production choices
made in all states, it is unexpected to have separable opti-
mal production decisions for each state. A rather surprising
and counter-intuitive result, the second set of contributions
shows that despite the interdependencies between process-
ing times, machine deterioration probabilities and produc-
tion choices, the optimal production decision in a state can
be made independently of the production choices made in
other states. The third set of contributions involves general-
izing the problem to more complex settings and illustrates
the depth and richness of the proposed solution technique.
When the problem is extended in the number of states de-
scribing equipment condition, for example, the number of
potentially optimal policies increases dramatically. In our
approach, however, the decision-maker needs to evaluate
only one additional set of critical ratios for this new state
in order to determine the optimal production policy. In an-
other extension, when maintenance is allowed in intermedi-
ate states, we show the condition that when it is optimal to
perform maintenance in a state, then it is optimal to do so
in all of the following (worse) states. It is then proven that
the general problem with many states can be reduced to a
problem setting that considers the maintenance action only
in the threshold state and production in prior (better) states.
The final extension illustrates how these critical ratios can
be evaluated in more complex settings: first when both the
mean and variance of the processing times influence ma-
chine state transition probabilities, and then in the absence
of a functional relationship between processing times and
machine deterioration probabilities.

The results of the paper have both operational and man-
agerial implications. Operationally, they facilitate the devel-
opment of intuitive and easy-to-implement policies. Man-

agerially, they shed light on decisions regarding product
mix, pricing and process technology.

2. Literature review

A great deal of research has been performed on produc-
tion systems with variable yield. Readers are referred to the
extensive survey by Yano and Lee (1995) for a complete
review of the various issues and approaches used to study
such problems. The research that is most relevant to our
problem is the subset of variable yield models that explic-
itly accounts for the interaction between process condition
and yield. The first models in this area are Porteus (1986)
and Rosenblatt and Lee (1986). In both of these papers, the
classical Economic Manufacturing Quantity (EMQ) model
is extended to account for changes in the process condition.
Specifically, the process begins in an “in-control” state with
perfect production quality, and after some time, shifts to an
“out-of-control” state in which some fraction of production
is defective. The process state is observable only at the end
of a production run. Both papers show that the optimal
production quantity is smaller than the quantity resulting
from the traditional EMQ approach.

Many variations of these early models have been pur-
sued. Some models examine different cost structures that
depend on when defective items are detected (Lee and
Rosenblatt, 1989; Lee and Park, 1991). Other models al-
low inspections (i.e., observation of the process state) dur-
ing production, and the decision about when to inspect is
optimized along with the production quantity (Lee and
Rosenblatt, 1987; Porteus, 1990; Kim et al., 2001). The
problem has also been extended to incorporate various
aspects of maintenance and reliability such as preven-
tive maintenance (Zequeira et al., 2004), machine failures
(Makis and Fung, 1998; Boone et al., 2000) and imperfect
maintenance (Ben-Daya, 2002).

All of the aforementioned models only consider single-
product systems or treat all products the same way.
While this may be appropriate in some contexts, in many
environments different products will be affected differently
by the equipment condition. For example, leading-edge
technology products are more sensitive to the process
condition. The case of multiple products where the yield
depends on the equipment condition was first examined
by Sloan and Shanthikumar (2000, 2002). However,
both papers assume that the processing times are equal
for products, resulting in equal machine deterioration
probabilities. Thus, the machine deterioration probabilities
do not depend on the choice of the product. Sloan and
Shanthikumar (2002) applies the results of the earlier
paper in a heuristic fashion to a multi-stage environment.
Products make multiple visits to each workstation (referred
to as “layers”), so the total manufacturing time of different
products may be different. However, the processing times
at each station are assumed to be the same, so even though



 

Production policies for multiple products 189

one product may require 20 visits to each station (i.e., 20
layers) and another product requires only ten visits to each
station (i.e., ten layers), the model only accounts for this
difference with respect to the expected rewards, and not
with respect to the processing times or transition proba-
bilities. As we shall see in the forthcoming model section,
these differences between products play an important role
in determining the optimal production policy. Although
they derive sufficient conditions on the rewards that ensure
monotone production policies (i.e., policies that call for
the production of high-end products in better states and
low-end products in worse states), they fail to provide any
structural results regarding the optimality conditions using
differing processing times and transition probabilities.

Our paper departs from earlier studies in two ways. First,
products are differentiated not only based on their yield
(and reward) but also based on their processing times and
their impact on the equipment deterioration process. There-
fore, for a given state, the transition probabilities vary ac-
cording to the product choice. Second, while the majority
of previous research has been focused on the question of
how much to produce, this paper investigates the question
of which product to produce. In addition, those papers that
do investigate which products to produce only consider suf-
ficient conditions for optimality of certain types of policies,
such as monotone policies. Our work is a significant gen-
eralization of these papers as it develops the necessary and
sufficient conditions to characterize all forms of optimal
policies (monotone and non-monotone), while capturing
the complex interdependencies between processing times,
deterioration probabilities and rewards.

3. The model

This section presents the model used to prescribe the firm’s
production decisions in a single-stage manufacturing sys-
tem. The firm can produce multiple products, indexed by
parameter k = 1, 2, . . . , K, corresponding to a total of K
products. The equipment condition deteriorates as produc-
tion takes place. Each product influences the process deteri-
oration differently, therefore, the firm’s objective is to deter-
mine the set of optimal production decisions that maximize
the long-run expected average reward. The analysis of this
section isolates the impact of varying expected processing
times on the machine deterioration under equal variances
(in processing times); the case of unequal variances is ex-
amined in Section 4.

The equipment condition is described by a set of N dis-
crete states, and is indexed by i (and j) = 1, 2, . . . , N, where
i = 1 represents the best state and i = N represents the
worst state. At each decision epoch, the firm is forced to
make a two-part decision: first, whether to produce or main-
tain; and second, if production is picked, which product to
produce. When the firm chooses to produce, the action is
denoted by variable a ∈ {1, 2, . . . , K}, and when the firm de-
cides to maintain the equipment (so that the process returns

to its best state) is represented by a = m. The time required
to perform action a is a random variable with mean τa and
variance σ 2

a .
The transition probability for the process is denoted as

pa
ij, corresponding to the probability of the equipment being

in state j at the next decision epoch given that at the cur-
rent epoch the machine is in state i and action a is taken.
It should be observed here that the transition probabilities
are defined in such a way that the machine condition gen-
erally gets worse while producing, but would not move to a
better state. More precisely, the transition probabilities for
production actions (a = 1, 2, . . . , K) are defined as follows:

pa
ij




> 0 for all 1 ≤ i ≤ j ≤ N,

= 0 for all j < i,
= 1 for j = i = N.

For the maintenance action (corresponding to action a =
m), the equipment returns to the best state with probability
one:

pm
ij

{
= 0 for all 1 ≤ i ≤ N and 2 ≤ j ≤ N,

= 1 for all i = 1, . . . , N and j = 1.

It should be noted here that even though the transition
probabilities defined as pa

ij refer to the machine state only
at decision points, the equipment condition can change be-
tween decision epochs. For example, even if production is
commenced in state 1, the machine condition may deteri-
orate significantly during production, before the action is
completed.

The process deterioration probabilities are impacted dif-
ferently by the choice of production action ai = 1, . . . , K
in each state i. It is the motivating argument of this paper
that the longer the expected production time for a prod-
uct, the higher the deterioration probability for that action.
Therefore, the relationship between the process deteriora-
tion probabilities of two different products, products k and
l, is defined as a function of the relative values of the ex-
pected (mean) processing times and the variance in pro-
cessing times (denoted by σ 2

k and σ 2
l for products k and l,

respectively):

pk
ij = cβk,lpl

ij + εkl
ij

(
σ 2

k , σ 2
l

)
for all 1 ≤ i < j ≤ N, (1)

where βk,l = τk/τl is the ratio of expected production times
for products k and l, c is a constant that indicates how
the deterioration probabilities change vis-à-vis the ratio of
expected processing times and εkl

ij (σ 2
k , σ 2

l ) is the functional
term representing the impact of the variances on processing
times. When c > 1, the deterioration probability for prod-
uct k increases at a rate faster than the ratio of expected
processing times, and when 1/βk,l < c < 1, it increases at a
rate slower than the ratio of expected production times. The
difference between the variances of the two products also
influences the transition probabilities, and this is expressed
by the function εkl

ij (σ 2
k , σ 2

l ). The value of εkl
ij (σ 2

k , σ 2
l ) can be

positive or negative, corresponding to an increment or re-
duction in the transition probability, and is restricted to
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be such that |εkl
ij (σ 2

k , σ 2
l )| < min(cβk,lpl

ij, 1 − cβk,lpl
ij). The

term εkl
ij (σ 2

k , σ 2
l ) can be interpreted as the variance effect

in the change in deterioration probabilities. In this section,
emphasis is placed on the impact of the expected processing
times, so it is assumed that σ 2

k = σ 2
l for products k and l,

and therefore εkl
ij (σ 2

k , σ 2
l ) = 0. The impact of the variance

effect is studied in depth in Section 4.
The choice of the product to be manufactured not only

influences the process deterioration probabilities, but also
the reward earned in each state. This is because each product
brings a different reward in each state. As the machine dete-
riorates with production actions, the yield for each product
decreases, leading to reduced rewards. Therefore, the re-
ward for each product k is non-increasing in the machine
state, i.e., r1k ≥ r2k ≥ . . . ≥ rNk.

This study examines the interrelationships and interde-
pendencies of the three problem parameters, namely the
production times which impact the machine deterioration
probabilities and the rewards earned in each state with
production. In order to capture the trade-offs between
expected processing times and rewards, the products are
rank ordered according to their expected processing times:
τ1 ≥ τ2 ≥ . . . ≥ τK . Thus, product 1 has the longest ex-
pected processing time, and product K has the shortest ex-
pected processing time. In order to study the relationship
between the rewards and the processing times, the prod-
ucts are assumed to have their rewards in the following
order in the best state: r11 ≥ r12 ≥ . . . ≥ r1K , where product
1 (which has the longest expected processing time) provides
the highest reward and product K (which has the lowest
expected processing time) has the lowest reward in state 1.
It should be noted here that there are no assumptions made
about the ordering of rewards in other states. We next de-
fine RRi

k,l = rik/ril as the ratio of rewards between products
k and l in a given state i. Finally, it should be stated here
that we make the mild assumption that the rewards are such
that the long-run average reward for each policy featuring
the production of a single product type has a positive value;
otherwise this product type is not profitable and its produc-
tion would not be justified.

To summarize, the time between decision epochs, the ma-
chine state transition probabilities, and the rewards earned
depend only on the current state and the action taken. Thus,
this scenario can be modeled as a Semi-Markov Decision
Process (SMDP). A stationary policy (i.e., time invariant)
induces a discrete-time Markov chain that characterizes the
equipment condition at decision epochs. This is referred
to as the Embedded Markov Chain (EMC). The transition
probabilities defined above describe the evolution of the
EMC over time; that is, pa

ij = Pr {Xt+1 = j | Xt = i, at = a},
where Xt denotes the machine state and at denotes the ac-
tion taken at decision epoch t .

Several approaches are available to solve this type of
problem (see Howard (1960), Heyman and Sobel (1984) or
Puterman (1994) for general discussions and Tijms (1986)

for SMDP-specific material). We use a policy improvement
approach, which finds the optimal decision rule by starting
with a reference policy and comparing it to another policy
that differs by only one action in one state. To accomplish
this, one must compute the expected long-run average profit
of a given policy, and we denote this expected value as EV .

Let A = [ai | i = 1, . . . , N] denote a stationary policy
vector that specifies action ai when the machine is in state i.
Define πi(A) as the stationary (or steady-state) probability
that the associated EMC is in state i when policy A is used.
A unique set of steady-state probabilities is guaranteed as
long as the EMC induced by a stationary policy results
in a single, closed set of recurrent states. The conditions
shown in (Tijms, 1986) are satisfied because the number of
machine states is finite, production causes the equipment
condition to deteriorate and maintenance causes the ma-
chine to return to the best state. Thus, there exists a single
set of recurrent states, and therefore there exists a unique
set of steady-state probabilities, regardless of the initial state
of the process. Note that the stationary probability for one
state may depend on the machine state transition proba-
bilities of all other states, so πi(A) is a function of the en-
tire policy vector. However, the rewards and the production
(and maintenance) times depend only on the action taken
in the current state; thus, they do not depend on the entire
policy vector. The average reward rate of policy A can then
be expressed as

EV (A) =
∑N

i=1 ri,ai πi(A)∑N
i=1 τai πi(A)

. (2)

A policy A∗ is average reward optimal if EV (A∗) ≥ EV (A)
for each stationary policy A. The optimal action in state i
is defined as a∗

i .
The total number of policies one can generate in this

problem grows significantly in the number of products and
in the number of states that describe the process condi-
tion. Considering K products and N machine states with
maintenance being performed only in the worst state, the
manufacturer has to evaluate the expected values of (K)N−1

potentially optimal policies before choosing the one that
maximizes the expected average reward. The purpose of this
paper is to explore the structural properties of the problem
by using the approach outlined above to provide insight
into the solution. For this purpose, we exploit the analyt-
ical properties of a smaller setting of the original problem
with two products and three machine states. The detailed
analysis of this smaller setting forms the foundation of the
generalizations that follow. All proofs are provided in the
Appendix.

3.1. The core problem

The core of the analysis regarding the optimal production
choice can be developed using two products in a setting
which defines the machine condition in three states. In
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this simplified version of the problem, we consider poli-
cies that require production actions in the first two states
(describing a better machine condition with higher yields
and revenues) and the maintenance action in state 3. Us-
ing the earlier notation, action ai = 1 refers to producing
product 1, action ai = 2 refers to producing product 2 in
state i = 1, 2 and action a3 = m corresponds to performing
maintenance in state 3. Four policies are possible in this
context: A1 = [1, 1, m]: produce product 1 in states 1 and 2;
A2 = [1, 2, m]: produce product 1 in state 1, and product 2
in state 2; A3 = [2, 1, m]: produce product 2 in state 1, and
product 1 in state 2; and A4 = [2, 2, m]: produce product 2
in states 1 and 2. Given that production is to be under-
taken in states 1 and 2, we can now focus on the question of
which product to produce in these two states. Although the
problem can be solved computationally, the goal here is to
characterize the optimal policy without explicitly solving
the problem each time.

We begin our analysis by describing the steady-state
probabilities for machine states. Steady-state probabilities
for a policy A can be determined by using the machine state
transition probabilities associated with the action taken in
each state. Due to the fact that processing times for different
products are different, the machine state transition proba-
bilities depend on which product is produced in each state.
Making use of the state balance equations for the EMC, the
stationary probability for states 1, 2 and 3 associated with
policy A = [a1, a2, a3 = m], which specifies that action a1 is
taken in state 1 and a2 in state 2, are

π1(A) =
(
1 − pa2

22

)
(
1 − pa2

22

) + pa1
12 + (

1 − pa1
11

)(
1 − pa2

22

) ,

π2(A) = pa1
12(

1 − pa2
22

) + pa1
12 + (

1 − pa1
11

)(
1 − pa2

22

) ,

and

π3(A) =
(
1 − pa1

11

)(
1 − pa2

22

)
(
1 − pa2

22

) + pa1
12 + (

1 − pa1
11

)(
1 − pa2

22

) .

Note that a change in one action in one state changes all
of the stationary probabilities, therefore making it difficult
to compare different production policies. Thus, one would
not expect the optimal production choice in a state to be
independent of the decisions made in other states. This mo-
tivates the investigation of optimality conditions that ac-
count for the best action to be taken in each state.

The expected value of a particular policy can be deter-
mined by plugging the above stationary probabilities into
Equation (2) and simplifying:

EV (A = [a1, a2, a3 = m])

= r1,a1

(
1 − pa2

22

) + r2,a2 pa1
12 + r3m

(
1 − pa1

11

)(
1 − pa2

22

)
τa1

(
1 − pa2

22

) + τa2 pa1
12 + τm

(
1 − pa1

11

)(
1 − pa2

22

) .

(3)

The following example identifies the “common sense”
approaches that are widely used in developing solution ap-
proaches for similar problems. It demonstrates, however,
that these approaches do not necessarily generate optimal
policies.

Example 1. Consider the following problem with two
products and three machine states. The profit earned for
product 1 is r11 = 950 in state 1 and r21 = 600 in state 2,
and the profit for product 2 is r12 = 600 in state 1 and
r22 = 301 in state 2. The maintenance cost is r3m = −800.
The expected time required to produce product 1 is τ1 = 2,
and product 2 is τ2 = 1, yielding a ratio of processing times
β1,2 = τ1/τ2 = 2. The expected time required to perform
maintenance is τm = 2. We let c = 0.95, which means that
the deterioration probabilities for product 1 increase at a
lower rate than the ratio of expected processing times. The
deterioration probabilities for product 1 are then equal to
p1

ij = cβ1,2p2
ij = 1.90 × p2

ij for all 1 ≤ i < j ≤ 3. Performing
maintenance, on the other hand, returns the equipment con-
dition to state 1 with probability one. The machine state
transition probability for each action, pa

ij, refers to the prob-
ability of the machine being in state j at the next decision
epoch given that at the current epoch the machine is in state
i and action a is taken. Their values are

[
p1

ij

] =




0.430 0.285 0.285
0 0.430 0.570
0 0 1


 ,

[
p2

ij

] =




0.700 0.150 0.150
0 0.700 0.300
0 0 1


 ,

[
pm

ij

] =




1 0 0
1 0 0
1 0 0


 .

To determine the optimal policy, one could easily sub-
stitute the appropriate values into Equation (3) for each
policy, and choose the one with the highest expected value.
But is there a way to determine the optimal policy with-
out explicitly comparing all policies? One might intuit that,
for example, choosing the action that maximizes the ex-
pected reward for each state would be optimal. Based on
these rewards, producing product 1 in states 1 and 2 ap-
pears to be optimal using this “greedy” approach, so the
optimal policy would be [1, 1, m], generating an expected
value of 191.787 for its average reward. A second common
sense approach to determining the optimal policy might
be to choose the action that maximizes the expected aver-
age reward per unit time for each state. In state 1, produc-
ing product 2 earns 600/1 = 600 per unit time, and prod-
uct 1 earns 950/2 = 475. In state 2, producing product 2
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earns 301/1 = 301, while product 1 earns only 600/2 = 300.
Thus, the second approach indicates that policy [2, 2, m]
would be optimal, generating an expected value of 195.476
for its average reward.

It turns out that both of these “common sense” ap-
proaches are incorrect: the optimal policy is [2, 1, m] with
an expected value of 196.535 for its average reward. This
result is quite surprising. One would think that if product 2
is superior to product 1 in state 1, then it would also be
superior in state 2. Similarly, if product 1 is preferred to
product 2 in a worse state, then it should also be preferred
to product 2 in a better state. We now turn our attention to
explaining this counter-intuitive behavior by exploring the
structural properties of the optimal policy.

We next introduce a solution approach that uses the com-
parison of the policies that feature the manufacturing of
a single product, A1 = [1, 1, m] and A4 = [2, 2, m], corre-
sponding to the production of only product 1 and only
product 2, respectively. The solution approach takes one of
these two products as its reference product and the policy
that features the manufacturing of this product in each state
as the reference policy. We begin our analysis by considering
product 2 as the reference product and policy A4 = [2, 2, m]
as the reference policy. We next investigate the conditions
that make the firm switch its production choice from this
reference product (product 2) to product 1 in each state.
Let us first examine state 2, the second-to-last state. Con-
sider policy A3 = [2, 1, m], which differs from A4 only in
that product 1 is produced in state 2 rather than product 2.
Referring to Equation (3), this means that a2 = 2 for A4,
while a2 = 1 for A3. Comparing these two policies deter-
mines when the firm prefers to switch its manufacturing
choice from product 2 (the reference product) to product 1
in state 2.

Is it possible to find the point at which the decision-maker
is indifferent between the two products in state 2? Such a
point depends on the ratio of the rewards earned for each
product in state 2, and thus we refer to the indifference point
as the critical ratio for the firm’s decision to switch its man-
ufacturing choice from the reference product (product 2) to
product 1. We define αi

k,l as the critical ratio of the rewards
in state i for products k and l when product l is the refer-
ence product. When the actual ratio of rewards in state i for
these two products, defined earlier by RRi

1,2, is greater than
αi

1,2, then the firm prefers to produce product 1 rather than
product 2. Otherwise, if RRi

1,2 is less than the critical ratio
αi

1,2, then the firm prefers to keep manufacturing product
2 rather than switching to product 1. Therefore, the com-
parison of policies A4 = [2, 2, m] and A3 = [2, 1, m] in the
core problem leads to the critical ratio of rewards in state
2, and is expressed as α2

1,2. Similarly, the firm can develop
the critical ratio for state 1, α1

1,2, by comparing the ref-
erence policy A4 = [2, 2, m] with A2 = [1, 2, m], where the
two policies differ only in the production decision made in
state 1.

A different set of critical ratios can be obtained by com-
paring the new reference policy of A1 = [1, 1, m] with policy
A2 = [1, 2, m] (where the two policies differ only in state 2)
and with A3 = [2, 1, m] (where the two policies differ only
in state 1). These critical ratios correspond to the ratio of
rewards that the firm prefers to switch from the reference
product of product 1 to product 2. They are denoted by
αi

k,l for products k and l in state i when product k is the
reference product. When the actual ratio of rewards in state
i for these two products (denoted by RRi

1,2) is greater than
αi

1,2, then the firm prefers to keep manufacturing product 1
rather than switching to product 2. Otherwise, when RRi

1,2

is less than the critical ratio αi
1,2, then the firm prefers to

switch its manufacturing from product 1 to product 2.
It should be observed here that one of the two

single-product policies will be preferred. When EV (A1 =
[1, 1, m]) ≤ EV (A4 = [2, 2, m]), the firm can use αi

1,2 val-
ues as its active set of critical ratios. Otherwise, when
EV (A1 = [1, 1, m]) > EV (A4 = [2, 2, m]), then the firm
uses αi

1,2 in order to choose the product to be man-
ufactured in state i. We define αi

1,2 as the active criti-
cal ratio, and it is determined by the relative value of
the two single-product production policies; i.e., αi

1,2 = αi
1,2

when EV (A1) > EV (A4), and αi
1,2 = αi

1,2 when EV (A1) ≤
EV (A4). The following proposition provides the closed-
form expressions for the critical ratios in each state, which
correspond to the exact ratio of rewards to determine which
product is preferred for manufacturing in each state.

Proposition 1. There exists a set of critical ratios for each
state that determines the firm’s manufacturing preference in
each state:

αi
1,2 = cβ1,2 + β1,2 (1 − c)

τ2EV (A1 = [1, 1, m])
ri2

for each state i = 1, 2, (4)

αi
1,2 = cβ1,2 + β1,2 (1 − c)

τ2EV (A4 = [2, 2, m])
ri2

for each state i = 1, 2, (5)
and

αi
1,2 =




αi
1,2 when EV (A1 = [1, 1, m])

> EV (A4 = [2, 2, m])

αi
1,2 when EV (A1 = [1, 1, m])

≤ EV (A4 = [2, 2, m])




(6)

for each state i = 1, 2.

(i) When RRi
1,2 > αi

1,2, the firm prefers to manufacture prod-
uct 1 in state i; (ii) when RRi

1,2 < αi
1,2, the firm prefers to

manufacture product 2 in state i; and (iii) when RRi
1,2 = αi

1,2,

the firm is indifferent between manufacturing products 1 and
2 in state i.

It should be observed that the critical ratios defined by
αi

1,2 and αi
1,2 have similar expressions, however, their val-

ues are different unless the expected values of the two



 

Production policies for multiple products 193

single-product policies are equal, i.e., when EV (A1) =
EV (A4). As evident from Equations (4) and (5), the crit-
ical ratios are impacted by the same set of parameters: (i)
the rate that the deterioration probabilities are influenced
by the increase in processing times; (ii) the expected process-
ing times and their relative ratios; (iii) the rewards earned
in each state; and (iv) the expected value of the reference
policy.

The critical ratios have the same behavior in response to
the changes in parameters. First, it can be observed that
the value of each critical ratio differs from one state to an-
other. For example, the critical ratio α1

1,2 for state 1 is not
equal to the critical ratio α2

1,2 for state 2 unless the rewards
for the reference product are identical in both states, i.e.,
r1a = r2a. The equality of rewards corresponds to the sit-
uation when the machine deterioration does not decrease
the yield in both states. However, the premise of this prob-
lem is that the yields, and therefore the rewards, decrease
as the machine condition deteriorates. Therefore, the case
of equal rewards is not of interest in this context. Secondly,
the increasing (or decreasing) behavior of the critical ratios
depends on the value of c, the rate that the deterioration
probabilities increase with respect to expected processing
times. These observations are formalized in the following
two propositions:

Proposition 2. (i) When c ≥ 1, the critical ratio αi
1,2 is non-

increasing in i; and (ii) when 1/β12 ≤ c < 1, the critical ratio
αi

1,2 is non-decreasing in i.

Proposition 3. (i) When c ≥ 1 and EV (A1 = [1, 1, m]) >

EV (A4 = [2, 2, m]), then αi
1,2 > αi

1,2; (ii) when c ≥ 1
and EV (A1 = [1, 1, m]) ≤ EV (A4 = [2, 2, m]), then αi

1,2 ≤
αi

1,2; (iii) when 1/β12 ≤ c < 1 and EV (A1 = [1, 1, m]) >

EV (A4 = [2, 2, m]), then αi
1,2 < αi

1,2; and (iv) when 1/β12 ≤
c < 1 and EV (A1 = [1, 1, m]) ≤ EV (A4 = [2, 2, m]), then
αi

1,2 ≥ αi
1,2 for each state i = 1, 2.

The critical ratio defined by αi
1,2 provides managerial in-

sight using economic principles. Considering the reference
policy of producing the low-end technology product (i.e.,
product 2), for example, the critical ratio αi

1,2 prescribes the
reservation price for product 1; that is, the critical ratio mul-
tiplied by the reward of product 2 is the minimum amount
of money that a manager should earn in order to justify
the production of a higher-end technology (i.e., product 1).
Thus, when the actual ratio of rewards is larger than the crit-
ical ratio, the firm benefits more by manufacturing product
1. However, when the actual ratio of rewards is less than the
critical ratio αi

1,2, the firm benefits more by manufacturing
product 2.

We next introduce a unique solution approach to solv-
ing the production planning problem for multiple products
under deteriorating process conditions. The following theo-
rem prescribes the optimal policy with the use of the critical

ratio characterizing the optimal production decision in each
state.

Theorem 1. The optimal production decision in each state can
be determined independently by comparing the actual ratio
of rewards

(
RRi

1,2

)
with the critical ratio of αi

1,2.
(i) When RRi

1,2 ≥ αi
1,2, then a∗

i = 1; and (ii) when RRi
1,2 <

αi
1,2, then a∗

i = 2; and (iii) whenαi
1,2 = αi

1,2, it is never the case
that RRi

1,2 < αi
1,2 for both states i = 1, 2 at the same time;

and when αi
1,2 = αi

1,2, it is never the case that RRi
1,2 < αi

1,2
for both states i = 1, 2 at the same time.

The consequence of the above theorem is that the opti-
mal production policy can be determined easily once the
expected average rewards for the two reference policies are
computed. More importantly, despite the interdependen-
cies between the steady-state probabilities in Equation (2),
the optimal production choice for each state is indepen-
dent of the choices made in other states. Put differently,
the manufacturing choices in each state are separable de-
spite the interdependencies between the processing times,
the deterioration probabilities and the rewards earned with
production decisions.

Continuation of Example 1: The expected values of
the single-product policies are EV (A1 = [1, 1, m]) =
191.787 < EV (A4 = [2, 2, m]) = 195.476. Therefore, the
ratios of rewards are compared with the critical ratios of
αi

1,2 = αi
1,2 in each state i = 1, 2. Since RR1

1,2 = 950/500 =
1.900 < α1

1,2 = 1.939, product 2 is the optimal choice
in state 1. In state 2, RR2

1,2 = 600/301 = 1.993 > α2
1,2 =

1.965, so product 1 is the optimal choice. This confirms
that the optimal policy is [2, 1, m], as stated above. Using
the values of αi

1,2 for i = 1, 2, one can calculate how much
profit would be required for product 1 to make it the optimal
choice in a particular state. This corresponds to the reserva-
tion price of the manufacturer in order to choose product 1
over product 2. Specifically, since α1

1,2 = 1.939, one would
require a profit of 969.5 (= 500 × 1.939) to prefer product 1
over product 2 in state 1.

Theorem 1 provides further managerial insight into the
manufacturer’s production choices. It is the motivating ap-
plication of this paper that when the machine condition de-
teriorates, the production yield decreases, resulting in lower
rewards in worse states. Consider the case when the yields
of both products decrease at the same rate for a given in-
crease in equipment deterioration. Thus, the ratio of re-
wards would be constant between states for the two prod-
ucts, i.e., RRi

1,2 is constant for all states. In this scenario of
equal yield (and reward) reduction, the following proposi-
tion proves that the firm switches its manufacturing choice
at most once between products. The switch depends on the
value of c, the rate that deterioration probabilities are in-
fluenced by the ratio of expected processing times.

Proposition 4. When RRi
1,2 is constant for each i, then the

firm switches its optimal production choice at most once: (i) if
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c ≥ 1 and a∗
1 = 2, then if a∗

i = 1 for some i < N, then a∗
j = 1

for all j > i; (ii) If 1/β12 < c < 1 and a∗
1 = 1, then if a∗

i = 2
for some i < N, then a∗

j = 2 for all j > i.

The above proposition provides insight into the mono-
tonicity behavior of the optimal policy. An increasing
monotone policy is such that the production choice starts
with the manufacturing of the high-end technology prod-
uct (e.g., product 1) and switches to low-end products (e.g.,
product 2) as the machine condition worsens, but does not
switch back to high-end products. For example, a policy
such as A = [1, 1, 2, m] is an increasing monotone policy
since it features the manufacturing of product 1 in better
states (states 1 and 2), and switches to product 2 in state
3, but does not switch back to product 1 again. The above
proposition proves that when the deterioration probabili-
ties increase at a rate slower than the increase in process-
ing times, i.e., 1/β12 < c < 1, the firm’s optimal policy is
strictly an increasing monotone policy under the case of
equal yield and reward reductions. On the other hand, a
decreasing monotone policy is such that the production
choice starts with the manufacturing of the low-end tech-
nology product (e.g., product 2) and switches to high-end
products (e.g., product 1) as the machine condition worsens,
but does not switch back to low-end products. For example,
a policy such as A = [2, 1, 1, m] is a decreasing monotone
policy since it features the manufacturing of product 2 in the
best state (state 1), and switches to product 1 in states 2 and
3, but does not switch back to product 2 again. The above
proposition proves that when the deterioration probabili-
ties increase at a rate faster than the increase in processing
times, i.e., c ≥ 1, the firm’s optimal policy is strictly a de-
creasing monotone policy under the case of equal yield and
reward reductions. Thus, a non-monotone policy such as
A = [2, 1, 2, m] cannot be optimal in the case of equal yield
and reward reductions.

3.2. The solution technique for the setting with N machine
states

The analysis presented in the previous section shows that
the production decisions in each state can be made indepen-
dently of the actions taken in other states. This separable
decision-making technique is originally proven in a setting
that features only three machine states, but can be easily
extended to a setting with N machine states. In the new
setting with N machine states, the critical ratios, defined
by αi

k,l and αi
k,l , continue to be useful in determining the

optimal production decision in each state while providing
managerial insight. They can be expressed as

αi
1,2 = cβ1,2 + β1,2 (1 − c)

τ2EV (A = [1, . . . , 1, m])
ri2

for each state i = 1, . . . , N,

αi
1,2 = cβ1,2 + β1,2 (1 − c)

τ2EV (A = [2, . . . , 2, m])
ri2

for each state i = 1, . . . , N,

and

αi
1,2 =




αi
1,2 whenEV (A = [1, . . . , 1, m])

> EV (A = [2, . . . , 2, m])

αi
1,2 whenEV (A = [1, . . . , 1, m])

≤ EV (A = [2, . . . , 2, m])




for each state i = 1, . . . , N.

Using the same approach utilized to prove Theorem 1
(specifically, the proof by induction and by contradiction),
the optimal production decision in each state can be de-
termined independently by comparing the actual ratio of
rewards

(
RRi

1,2

)
with the active critical ratio αi

1,2.

Corollary 1. (i) When RRi
1,2 ≥ αi

1,2, then a∗
i = 1; and (ii)

when RRi
1,2 < αi

1,2, then a∗
i = 2.

It should also be observed that when EV (A =
[1, . . . , 1, m]) > EV (A = [2, . . . , 2, m]), the ratio of rewards
in each state cannot be smaller than the corresponding crit-
ical ratio in all states, and RRi

1,2 < αi
1,2 does not hold true

for all states i = 1, . . . , N at the same time. Similarly, when
EV (A = [1, . . . , 1, m]) ≤ EV (A = [2, . . . , 2, m]), the ratio
of rewards in each state cannot be higher than the corre-
sponding critical ratio in all states, i.e., RRi

1,2 > αi
1,2 does

not hold true for all states i = 1, . . . , N at the same time.
Once again, the optimal production decision in each state
can be made independently of the decisions made in other
states.

The solution approach presented for the two-product
problem can be extended to problem settings with three or
more products. For example, when there are three products,
i.e., k = 1, 2 and 3, the solution technique features two, at
most three, pairwise comparisons in order to determine the
optimal production decision in each state.

3.3. The impact of maintenance in intermediate states

Our primary interest in studying this problem is to analyze
production policies. Nevertheless, one may wish to consider
the possibilities of other maintenance policies. For exam-
ple, in the core problem we compared policies [2, 2, m] and
[2, 1, m]. But what about a policy such as [2, m, m]? Can
the optimality of a policy that calls for maintenance only
in the worst state be guaranteed unless other maintenance
policies are considered?

When maintenance is allowed to be performed in an in-
termediate state in a problem setting with K products and

N machine states, there are a total of
∑N−1

i=1
(K)i policies

that induce an EMC with a single, closed set of recurrent
states. While this increases the complexity of the problem
significantly, as detailed below, the manufacturer does not
need to enumerate them all before choosing the one that
maximizes the expected average reward. We first establish
that the maintenance policy is a control-limit policy. In other
words, there exists a threshold state, ı̂ , such that if mainte-
nance is optimal in state ı̂ , then maintenance is also optimal
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in all states i ≥ ı̂ . The following lemma, based on a re-
sult from Kao (1973), specifies sufficient conditions for a
control-limit maintenance policy.

Lemma 1. When for each l = 1, . . . , N,
∑l

i=1 pa
ij is non-

increasing in i for all actions a, there exists a threshold state
ı̂ such that if maintenance is optimal in state ı̂ , then it is
optimal in all states i, where ı̂ ≤ i ≤ N.

It should be observed here that the maintenance cost
is considered to be equal between states in deriving the
above lemma. However, one might argue that the main-
tenance cost might be increasing in the state number,
corresponding to higher maintenance costs for worse states.
Although not proven here, the above lemma can be ex-
tended easily to a problem to accommodate for an increas-
ing maintenance cost in proving the existence of a threshold
state.

The threshold state ı̂ is useful in re-establishing the crit-
ical ratios developed for the production actions. For the
machine states i < ı̂ , the optimal production decisions can
still be determined by the use of the critical ratios. How-
ever, these ratios require the information in which state ı̂
of N machine states, the maintenance actions are taken
because the reference policy needs to be adjusted for the
maintenance actions in states ı̂ through N. Therefore, we
revise the notation for these critical ratio expressions in or-
der to accommodate maintenance actions between states ı̂
through N. Let us now define αi

k,l(N, M) and αi
k,l(N, M)

as the critical ratios of the rewards in state i for products k
and l associated with an N-state problem setting when us-
ing a policy that calls for production in states 1, . . . , M − 1
and maintenance in states M, M + 1, . . . , N:

αi
k,l (N, M) = cβk,l + βk,l (1 − c)

× τlEV (A = [a1 = k, . . . , aM−1 = k, aM = m, . . . , aN = m])
ril

,

αi
k,l (N, M) = cβk,l + βk,l (1 − c)

× τlEV (A = [a1 = l, . . . , aM−1 = l, aM = m, . . . , aN = m])
ril

.

The solution techniques prescribed in this paper con-
tinue to hold even under this revision, because the follow-
ing proposition greatly reduces the effort needed to obtain
the optimal solution. It shows that the active critical ra-
tio expression can be simplified by considering information
regarding the threshold state, i.e., the first state where main-
tenance is performed.

Proposition 5. αi
k,l(N, M) = αi

k,l(N − 1, M) = · · · = αi
k,l

(M, M) for all states i = 1, . . . , M − 1.

The significance of the above proposition is that the anal-
ysis of a problem with maintenance in intermediate states
can be reduced to a setting with a smaller number of states.
By using the induction approach, the proposition shows
that the critical ratios that accommodate maintenance ac-
tions in states M through N are identical to the critical

ratios obtained for the problem setting with M machine
states and maintenance being performed only in the last
state. Alternatively, the expected value of a policy for an
N-state problem that has production actions in states 1
through M − 1, and maintenance in states M through N,

is equal to the expected value of a policy for a M-state
problem that has production actions in states 1 through
M − 1, and maintenance in state M. The consequence of
this result is that the problem that has maintenance ac-
tions in intermediate states can be reduced to the prob-
lem setting with maintenance being performed only in the
last state. This result, once again, validates the solution
technique proposed earlier for the production planning
problem for multiple products under deteriorating process
conditions.

4. The behavior of critical ratios

In Section 3, we investigated the effect of differing mean
processing times on the optimal product choice. The critical
ratios were developed under the assumption that σ 2

k = σ 2
l

and therefore the variance term εkl
ij (σ 2

k , σ 2
l ) in Equation (1)

was equal to zero. In this section, we assume that σ 2
k �= σ 2

l ,
allowing us to investigate the impact of processing time
variance on these critical ratios, and thus, on the optimal
product choice.

4.1. The impact of processing times variance

Let us consider the core problem of Section 3.1 with three
machine states, but this time with three products. Product
3 has the shortest expected processing time with the lowest
variance of processing times, and earns the smallest reward
in the best machine state. When compared with product 3,
product 2 has a higher expected processing time and equal
variance, and it earns a higher reward in the best state. The
mean processing time of product 1 is equal to that of prod-
uct 2 (no mean effect between products 1 and 2), but it has
a different variance than product 2. To summarize, we have
r11 > r12 > r13, τ1 = τ2 > τ3 and σ 2

1 �= σ 2
2 = σ 2

3 . While the
comparison of products 2 and 3 highlights the impact of the
mean of the processing times (as in Section 3.1), the com-
parison of products 1 and 2 isolates the impact of variance
on the critical ratios. The comparison of products 1 and 3
incorporates both the mean and variance effects on these
critical ratios.

The variance in processing times influences the transi-
tion probabilities. Using Equation (1), the transition prob-
abilities between products 1 and 2 can be expressed as
p1

ij = p2
ij + ε12

ij (σ 2
1 , σ 2

2 | σ 2
1 �= σ 2

2 ), where the sum of the vari-
ance terms for each initial state is equal to zero, i.e.,∑3

j≥i
ε12

ij (σ 2
1 , σ 2

2 ) = 0 for i = 1, 2. Using the same approach

detailed in Section 3, a comparison of products 1 and 2 leads
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to the following critical ratios that highlight the impact of
the variance in processing times:

α1
1,2 = 1 − ε12

12

(
σ 2

1 , σ 2
2

)
r12

(
1 − pa2

22

) (r2a2 − τ2EV [a1, a2, m])

+ ε12
11

(
σ 2

1 , σ 2
2

)
r12

(r3m − τmEV [a1, a2, m]) , (7)

α2
1,2 = 1 + ε12

11

(
σ 2

1 , σ 2
2

)
r22pa1

12

(r1a1 − τ2EV [a1, a2, m])

+ (
1 − pa1

11

)
(r3m − τmEV [a1, a2, m])], (8)

where EV [a1, a2, m] is the expected value of the refer-
ence policy with actions a1 in state 1 and a2 in state 2.
As before, αi

1,2 represents the active critical ratio; that
is, when EV [1, 1, m] > EV [2, 2, m], for example, we have
αi

1,2 = αi
1,2, and a1 = a2 = 1.

Understanding the sign of the variance terms in Equa-
tion (1) sheds more light on the behavior of the critical ratios
in Equations (7) and (8). For convenience, we consider the
case with increasing variance in processing times, and study
the above example when product 1 has a higher variance
than product 2, i.e., σ 2

1 > σ 2
2 (and τ1 = τ2). It is generally

expected that the probability of remaining in a state when
product 1 is manufactured is less than when product 2 is pro-
duced; thus, let us assume p1

ii < p2
ii for i = 1, 2. In this case,

the variance term ε12
ii (σ 2

1 , σ 2
2 | σ 2

1 > σ 2
2 ) becomes negative

for each state i = 1, 2. Similarly, increasing variance gener-
ally implies that the probability of reaching the worst state
is expected to be higher when product 1 is manufactured
than when product 2 is produced; therefore, we assume that
p1

iN ≥ p2
iN for i = 1, 2. This means ε12

i3 (σ 2
1 , σ 2

2 | σ 2
1 > σ 2

2 ) ≥ 0
for i = 1, 2. Note that the variance term for the deteriora-
tion probability ε12

12(σ 2
1 , σ 2

2 | σ 2
1 > σ 2

2 ) < −ε12
11(σ 2

1 , σ 2
2 ) can

still be positive or negative. Under these assumptions, we
can now provide more insight into the increasing (or de-
creasing) behavior of Equations (7) and (8). Note that when
Equations (7) and (8) are greater than one, the firm re-
quires a higher reward in order to justify the production
of the product with a different processing time variance.
It is already known that r3m − τmEV [a1, a2, m] < 0, and
ε12

11(σ 2
1 , σ 2

2 )(r3m − τmEV [a1, a2, m]) > 0. Consider the case
when the variance of product 1 is slightly higher than that
of product 2, such that ε12

13(σ 2
1 , σ 2

2 ) = 0 and ε12
12(σ 2

1 , σ 2
2 ) =

−ε12
11(σ 2

1 , σ 2
2 ) > 0. In this case, both critical ratios are strictly

increasing in each state when riai − τ2EV [a1, a2, m] < 0;
thus, the firm needs a higher reward in each state to justify
the manufacture of the product with a higher variance. On
the other hand, when riai − τ2EV [a1, a2, m] > 0 for each
action in each state, the increasing (or decreasing) behavior
of the critical ratios depends on the relative values of (riai −
τ2EV [a1, a2, m]) and (1 − pai

ii )(r3m − τmEV [a1, a2, m]) < 0.
The behavior is determined by the reward that can be
earned in the deteriorated state relative to the further de-
terioration probability times the maintenance cost, where

the latter can be interpreted as a simplified expected main-
tenance expense. A similar observation can be made when
the variance of product 1 is significantly higher, such that
ε12

12(σ 2
1 , σ 2

2 ) = 0 and ε12
13(σ 2

1 , σ 2
2 ) = −ε12

11(σ 2
1 , σ 2

2 ) > 0. In this
case, the critical ratio for state 1 is strictly increasing be-
cause its value is greater than one. The critical ratio for
state 2 is strictly increasing when r1a1 − τ2EV [a1, a2, m] <

0; and is decreasing if r1a1 − τ2EV [a1, a2, m] > (1 −
pa1

11) |r3m − τmEV [a1, a2, m]|. In sum, managers typically
need to earn a higher reward in the best state in order to
justify the manufacture of a product with higher processing
time variance. In deteriorated machine states, however, the
necessary reward to justify the manufacture of a product
with high variance depends on the relative value of the re-
ward earned and the (expected) maintenance expense. The
following proposition summarizes the necessary and suf-
ficient conditions for the behavior of these critical ratios
when p1

ii ≤ p2
ii and p1

i3 ≥ p2
i3 for i = 1, 2.

Proposition 6. Increasing variance in processing times im-
plies: (i) α1

1,2 is increasing if ε12
11(σ 2

1 , σ 2
2 ) (1 − pa2

22)(r3m − τm

EV [a1, a2, m]) > ε12
12(σ 2

1 , σ 2
2 )(r2a2 − τ2 EV [a1, a2, m]), oth-

erwise it is decreasing; (ii) α2
1,2 is increasing if r1a1 −

τ2EV [a1, a2, m] < −(1 − pa1
11)(r3m − τmEV [a1, a2, m]), oth-

erwise it is decreasing.

The combined effect of mean and variance on the critical
ratios integrates the above results with those presented in
Section 3.1. The critical ratios obtained through the com-
parison of products 1 and 3 are

α1
1,3 = α1

2,3 − ε12
11

(
σ 2

1 , σ 2
2

)
r13

(
1 − p2

11

) [cβ2,3(r13 − τ2EV [2, 2, m])

+ (
1 − p2

11

)
(r3m − τmEV [2, 2, m])], (9)

α2
1,3 = α2

2,3 + ε12
12

(
σ 2

1 , σ 2
2

)
r23p2

12

cβ2,3 (r23 − τ2EV [2, 2, m])

− ε12
11

(
σ 2

1 , σ 2
2

) (
1 − p2

11

)
r23p3

12

(r3m − τmEV [2, 2, m]) ,

(10)

α1
1,3 = α1

2,3 − ε12
12

(
σ 2

1 , σ 2
2

)
r13

(
1 − p3

22

) (r23 − τ3EV [3, 3, m])

+ ε12
11

(
σ 2

1 , σ 2
2

)
r13

(r3m − τmEV [3, 3, m]) , (11)

α2
1,3 = α2

2,3 + ε12
11

(
σ 2

1 , σ 2
2

)
r23p3

12

[(r13 − τ3EV [3, 3, m])

+ (
1 − p3

11

)
(r3m − τmEV [3, 3, m])]. (12)

Similar observations can be made regarding the behavior
of the critical ratios. The combined effect of the mean and
variance can be easily seen in the values of αi

1,3 when prod-
uct 2 is the reference product. It should be observed that
the variance terms in Equations (11) and (12) developed
for αi

1,3 follow the same behavioral pattern as the terms in
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Equations (7) and (8), except that they consider the rewards
and transition probabilities of product 3 rather than prod-
uct 2. The following proposition provides the necessary and
sufficient conditions for the behavior of the critical ratios
relative to the mean and variance of processing times when
p1

ii ≤ p2
ii and p1

i3 ≥ p2
i3 for i = 1, 2.

Proposition 7. (i) In state 1, the firm needs to earn a
higher reward to switch from product 3 to product 1 than
from product 3 to product 2 when ε12

11(σ 2
1 , σ 2

2 )(1 − p3
22)

(r3m − τmEV [3, 3, m]) >ε12
12(σ 2

1 , σ 2
2 )(r23 − τ3EV [3, 3, m]);

(ii) in state 2, the firm needs to earn a higher re-
ward to switch from product 3 to product 1 than from
product 3 to product 2 when r13 − τ3EV [3, 3, m] <

−(1 − p3
11)(r3m − τmEV [3, 3, m]); (iii) in state 1, the firm

needs to earn a higher reward to switch from product 1
to product 3 than from product 2 to 3 when cβ2,3(r13 −
τ2EV [2, 2, m]) >−(1 − p2

22)(r3m − τmEV [2, 2, m]); (iv) in
state 2, the firm needs to earn a higher reward to
switch from product 1 to product 3 than from prod-
uct 2 to 3 when ε12

12(σ 2
1 , σ 2

2 )cβ2,3(r23 − τ2EV [2, 2, m]) >

ε12
11(σ 2

1 , σ 2
2 )(r3m − τmEV [2, 2, m]).

4.2. The most general form of critical ratios

Until now, the relationship between the processing times
and the deterioration probabilities has been defined as in
Equation (1). In this section, we develop the critical ra-
tio expressions in the absence of a specific relationship
as in Equation (1), corresponding to the analysis under
the presence of arbitrary state transition probabilities. In
this case, the deterioration probability for a product with
a longer expected processing time can be smaller than
that of a product with a shorter expected processing time.
Thus, the new expressions developed here correspond to
the most general form of the critical ratios. To facilitate
the expression and explanation of the critical ratios for
the setting with N machine states, we define the follow-
ing three parameters: θk,l(i) = (1 − pk

ii)/(1 − pl
ii) is the ra-

tio of exit probabilities from state i for products k and l;
this can also be perceived as the ratio of the sum of dete-
rioration probabilities for products k and l when the ma-
chine is in state i, for all products 1 ≤ k < l ≤ K and N − 1;
δk,l (i, i + j) = pk

i,i+j/(1 − pl
i+j,i+j) is the ratio of the j-step de-

terioration (transition) probability of product k when the
machine is in state i to the sum of the deterioration proba-
bilities for product l when the machine goes to state i + j,
for all products 1 ≤ k < l ≤ K and states 1 ≤ j ≤ N−1 −i
and 1 ≤ i ≤ N−1; and, ηk (i, i + j) = pk

i,i+j/(1 − pk
i+j,i+j) is

the ratio of the j-step deterioration probability when the
machine is in state i for product k with respect to the
sum of deterioration probabilities when the machine goes
to state i + j, for all 1 ≤ k ≤ K and 1 ≤ j ≤ N − 1 − i and
1 ≤ i ≤ N−1. Using these new parameters one can develop
the most general form of the critical ratio expressions for
the case when the deterioration probability of a product is

not defined as a function of the processing time. The criti-
cal ratios that help the firm determine whether to produce
product k or l in state i = N − j where j ≤ N − 1 are ex-
pressed as follows:

α
(N−j)
k,l = θk,l (N − j) + (βk,l − θk,l (N − j))

τlEV (A = [k, . . . , k, m])
r(N−j),l

+
j−1∑
i=1




i∑
s=1




(θk,l(N − j)δl,k(N − j, N − j + s)
−ηk(N − j, N − j + s))

×
(
1s=i +

j−1−s∑
u=1

(
N−1−u∏

x=N−j+s

ηk (x, x + u)

))



×
(

rN−j+i,l −τl EV (A=[k,...,k,m])
rN−j,l

)




,

(13)

α
(N−j)
k,l = θk,l (N − j) + (βk,l − θk,l (N − j))

τlEV (A = [l, . . . , l, m])
r(N−j),l

+
j−1∑
i=1




i∑
s=1




(θk,l (N − j) ηl (N − j, N − j + s)
−δk,l (N − j, N − j + s))

×
(

1s=i +
j−1−s∑

u=1

(
N−1−u∏

x=N−j+s

ηl (x, x + u)

))



×
(

rN−j+i,l −τl EV (A=[l,...,l,m])
rN−j,l

)




,

(14)

where

1s=1 =
{

1 if s = i,
0 if s �= i,

is the indicator operator.

Corollary 2. There exists a set of critical ratios, αi
k,l and αi

k,l
as expressed in Equations (13) and (14), respectively, that
determines the firm’s preference between products k and l in
each state i = 1, . . . , N − 1. (i) In the case that EV (A =
[k, . . . , k, m]) > EV (A = [l, . . . , l, m]), when RRi

k,l > αi
k,l,

the firm prefers to manufacture product k, otherwise (when
RRi

k,l ≤ αi
k,l), the firm prefers to manufacture product l

in state i; (ii) in the case that EV (A = [k, . . . , k, m]) ≤
EV (A = [l, . . . , l, m]), when RRi

k,l > αi
k,l, the firm prefers

to manufacture product k, otherwise (when RRi
k,l ≤ αi

k,l),
the firm prefers to manufacture product l in state i.

The most general form of the critical ratios expressed in
Equations (13) and (14) are not restricted by a functional
relationship between the deterioration probabilities and the
processing times. Although the above corollary establishes
the preference relationships similar to those in Proposi-
tion 1, the relative values of the two critical ratios cannot
be described uniformly as in Proposition 3 due to the lack
of a functional relationship between processing times and
deterioration probabilities. Thus, structural properties re-
garding the optimal solution similar to those presented in
Theorem 1 cannot be characterized in this case. However,
the firm can still make use of these critical ratios in order to
determine its production preferences (and reduce the feasi-
ble set of potentially optimal policies) as they continue to
pertain to the reservation prices.
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5. Conclusions

This paper studies optimal production decisions for a
single-stage manufacturing system where the system condi-
tion deteriorates over time, thus influencing the yield. The
machine condition is characterized by a discrete number of
states, and the goal of the decision-maker is to determine
the optimal production choices in each state. We consider
multiple products, and therefore the production decision
corresponds to which product is optimal to be produced
in each state. The decision to produce one product over
the other impacts the machine condition, because expected
processing times of these products are different, resulting in
altered transition probabilities between states. The manu-
facturer performs maintenance when the machine worsens,
and returns the equipment to its best state. As a result, a
SMDP describes the process, and the steady-state proba-
bility for each state can be determined by using EMCs.

The set of decisions made in this paper and the corre-
sponding analysis depart from earlier research on several
levels. While traditional studies investigate the optimal pro-
duction quantity (i.e., how much), our paper considers a
multiple product environment, and thus, the decision cor-
responds to the choice of the product to be produced in
each state. Owing to the complexity of the problem, ear-
lier research commonly focuses on a smaller set of policies,
such as monotone policies, and develops the sufficient con-
ditions that make them optimal. In contrast, our technique
is unique because it considers the entire set of potentially
optimal policies, characterizes each one and develops the
necessary and sufficient conditions to determine which one
is optimal.

The paper makes three sets of contributions. The first set
of contributions introduces the concept of critical ratios for
the firm’s decision at each state regarding which product to
manufacture. These critical ratios, when multiplied by the
reward of the reference product, provide the managerially
insightful reservation price between two products. Put dif-
ferently, it can be thought of as the least amount of money
that a manager should be willing to earn in order to switch
from producing one product to another.

The second set of contributions corresponds to the dis-
covery that the optimal decision as to which product to
produce in a state can be determined independently of the
production decisions made in other states. This is a sur-
prising and counter-intuitive result because the stationary
probability corresponding to one state changes with the de-
cisions made in all other states. Thus, one would not expect
to develop a method that allows separable optimal decisions
in each state. We prove that the optimal production decision
in a particular state can be determined by comparing the ra-
tio of rewards for two products with the critical ratio. These
critical ratios are closed-form expressions that integrate the
transition probabilities and the ratio of rewards with the
varying processing time requirements of each product, in-
cluding the mean and the variance.

The third set of contributions corresponds to the gen-
eralizations of these analytical results to more complex
settings. When the problem is extended in the number of
states that describe the machine condition, the firm has to
compute only one additional set of critical ratios in order
to determine the optimal production decision, rather than
enumerating all of the potentially optimal policies in the
new problem setting. In the next generalization, it is shown
that when it is optimal to perform maintenance in an in-
termediate state, then it is optimal to maintain in all of the
following worse (or higher) states. Thus, the problem can
be reduced to a setting that includes only the states where
production is preferred and the first state where mainte-
nance is performed. The final generalization incorporates
the impact of the variance in processing times on transition
probabilities and shows how the critical ratios change with
increasing variance. The solution approach prescribed in
this paper is beneficial for further generalizations, includ-
ing the case when the manufacturer has demand constraints.
If the optimal solution obtained through our approach is
feasible under demand constraints, then it is also optimal
for the new problem setting. However, the optimal solution
can be a single-product policy, and can be infeasible under
demand constraints. When the optimal policy is infeasible
under demand constraints, it can be assigned as the refer-
ence policy to determine a new set of critical ratios. In a
two-product setting, only one of the demand constraints
will be violated, and the new critical ratios can be used to
obtain the least costly switches in order to determine the
constrained optimal policy.

In sum, we show: (i) how a rich modeling framework
(with a series of problem variants) can be developed for the
important problem of production planning under deterio-
rating equipment condition; and (ii) the robustness of the
critical ratios in the optimal solution algorithm.
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Appendix

Proof of Proposition 1. We provide the proof for the case when EV (A4 = [2, 2, m]) ≥ EV (A1 = [1, 1, m]), and thus,
αi

1,2 = αi
1,2 for each state i = 1, 2 (the proof for the case when EV (A4 = [2, 2, m]) < EV (A1 = [1, 1, m]) is similar). The

critical ratio for state 2 can be obtained by equating EV (A3 = [2, 1, m]) = EV (A4 = [2, 2, m]):

r12
(
1 − p1

22

) + r21p2
12 + r3m

(
1 − p2

11

) (
1 − p1

22

)
τ2

(
1 − p1

22

) + τ1p2
12 + τm

(
1 − p2

11

) (
1 − p1

22

) =
(

r12
(
1 − p2

22

) + r22p2
12 + r3m

(
1 − p2

11

) (
1 − p2

22

)
τ2

(
1 − p2

22

) + τ2p2
12 + τm

(
1 − p2

11

) (
1 − p2

22

)
cβ1,2r12

(
1 − p2

22

) + α2
1,2r22p2

12 + cβ1,2r3m
(
1 − p2

11

) (
1 − p2

22

)
cβ1,2τ2

(
1 − p2

22

) + β1,2τ2p2
12 + cβ1,2τm

(
1 − p2

11

) (
1 − p1

22

)
)

=
(

r12
(
1 − p2

22

) + r22p2
12 + r3m

(
1 − p2

11

) (
1 − p2

22

)
τ2

(
1 − p2

22

) + τ2p2
12 + τm

(
1 − p2

11

) (
1 − p2

22

)
cβ1,2r12

(
1 − p2

22

) + α2
1,2r22p2

12 + cβ1,2r3m
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1 − p2

11
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1 − p2

22
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cβ1,2τ2
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1 − p2

22

) + cβ1,2τ2p2
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1 − p2

11

) (
1 − p1

22
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= r12
(
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) (
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1 − p2

22
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12 + τm

(
1 − p2

11

) (
1 − p2

22

) ,

α2
1,2r22p2

12 = cβ1,2r22p2
12 + (β1,2 − cβ1,2) τ2p2

12EV (A4 = [2, 2, m]) .

α2
1,2 = cβ1,2 + (β1,2 − cβ1,2)

τ2EV (A4 = [2, 2, m])
r22

.

Similarly, the critical ratio for state 1 can be found by equating EV (A2 = [1, 2, m]) = EV (A4 = [2, 2, m]):
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α1
1,2 = cβ1,2 + (β1,2 − cβ1,2)

τ2EV (A4 = [2, 2, m])
r12
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(i) State 1: The case when RR1
1,2 > α1

1,2 is proven by substituting RR1
1,2r12 for r11 in EV (A2 = [1, 2, m]):

EV (A2 = [1, 2, m]) = RR1
1,2r12

(
1 − p2

22

) + r22p1
12 + r3m

(
1 − p1

11

) (
1 − p2
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)
τ1

(
1 − p2

22
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1 − p1
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1,2r12

(
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12 + r3m

(
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11
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1 − p2
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)
τ1

(
1 − p2

22

) + τ2p1
12 + τm

(
1 − p1

11

) (
1 − p2

22

)
= EV (A4 = [2, 2, m]) .

(i) State 2: The case when RR2
1,2 > α2

1,2 is proven by substituting RR2
1,2r22 for r21 in EV (A3 = [2, 1, m]) :

EV (A3 = [2, 1, m]) = r12
(
1 − p1

22

) + RR2
1,2r22p2

12 + r3m
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1 − p2
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12 + τm
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)
= EV (A4 = [2, 2, m]) .

(ii) State 1: The case when RR1
1,2 < α1

1,2 is proven by substituting RR1
1,2r12 for r11 in EV (A2 = [1, 2, m]):

EV (A2 = [1, 2, m]) = RR1
1,2r12
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(
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)
= EV (A4 = [2, 2, m]) .

(ii) State 2: The case when RR2
1,2 < α2

1,2 is proven by substituting RR2
1,2r22 for r21 in EV (A3 = [2, 1, m]):
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(iii) State 1: The case when RR1
1,2 = α1

1,2 is proven by substituting RR1
1,2r12 for r11 in EV (A2 = [1, 2, m]):
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Proof of Proposition 2. In both of the critical ratio expres-
sions, the first term cβ1,2 is constant.

(i) When c ≥ 1, the second term in both critical ratio ex-
pressions, that is

β1,2(1 − c)
τ2EV (A4 = [2, 2, m])

ri2

and

β1,2(1 − c)
τ2EV (A1 = [1, 1, m])

ri2
,

are negative. Because ri2 ≥ rj2, where i < j, we get:

β1,2(1 − c)
τ2EV (A4 = [2, 2, m])

ri2

≤ β1,2(1 − c)
τ2EV (A4 = [2, 2, m])

rj2
,

and

β1,2(1 − c)
τ2EV (A1 = [1, 1, m])

ri2

≤ β1,2(1 − c)
τ2EV (A1 = [1, 1, m])

rj2
.

Therefore, αi
1,2 ≥α

j
1,2, and αi

1,2 ≥ α
j
1,2. Thus, αi

1,2 and
αi

1,2 are non-increasing in i, and therefore, αi
1,2 is non-

increasing in i.
(ii) When 1

β1,2
≤ c < 1, the second term in both critical ratio

expressions, that is

β1,2(1 − c)
τ2EV (A4 = [2, 2, m])

ri2
,

and

β1,2(1 − c)
τ2EV (A1 = [1, 1, m])

ri2
,

are positive. Because ri2 ≥ rj2, where i < j, we get:

β1,2 (1 − c)
τ2EV (A4 = [2, 2, m])

ri2

≥ β1,2(1 − c)
τ2EV (A4 = [2, 2, m])

rj2
,

and

β1,2(1 − c)
τ2EV (A1 = [1, 1, m])

ri2

≥ β1,2(1 − c)
τ2EV (A1 = [1, 1, m])

rj2
.

Therefore, αi
1,2 ≤α

j
1,2, and αi

1,2 ≤ α
j
1,2. Thus, αi

1,2 and αi
1,2

are non-decreasing in i, and therefore, αi
1,2 is non-decreasing

in i. �

Proof of Proposition 3.

(i) When c ≥ 1, we get β1,2(1 − c) < 0. Then, when
EV (A1 = [1, 1, m]) > EV (A4 = [2, 2, m]), αi

1,2 − αi
1,2

= β1,2(1 − c)τ2/ri2[EV (A4 = [2, 2, m]) − EV (A1 =
[1, 1, m])] > 0. Thus, αi

1,2 > αi
1,2 for each state i = 1, 2.

(ii) When c ≥ 1, we get β1,2(1 − c) < 0. Then,
when EV (A1 = [1, 1, m]) ≤ EV (A4 = [2, 2, m]),
αi

1,2 − αi
1,2 = β1,2(1 − c)τ2/ri2[EV (A4 = [2, 2, m]) −

EV (A1 = [1, 1, m])] ≤ 0. Thus, αi
1,2 ≤ αi

1,2 for each
state i = 1, 2.

(iii) When 1/β1,2 ≤ c < 1, we get β1,2(1 − c) > 0. Then,
when EV (A1 = [1, 1, m]) > EV (A4 = [2, 2, m]), αi

1,2 −
αi

1,2 = β1,2(1 − c)τ2/ri2[EV (A4 = [2, 2, m])− EV (A1 =
[1, 1, m])] < 0. Thus, αi

1,2 < αi
1,2 for each state i = 1, 2.

(iv) When 1/β1,2 ≤ c < 1, we get β1,2(1 − c) > 0. Then,
when EV (A1 = [1, 1, m]) ≤ EV (A4 = [2, 2, m]), αi

1,2−
αi

1,2 =β1,2(1 − c)τ2/ri2[EV (A4 = [2, 2, m])−EV (A1 =
[1, 1, m])] ≥ 0. Thus, αi

1,2 ≥ αi
1,2 for each state i = 1, 2.

�

Proof of Theorem 1. We provide the proof for the case
when c ≥ 1, and the proof for the case when 1/β1,2 ≤ c < 1
is similar.

1. The case when EV (A1 = [1, 1, m]) ≥ EV (A4 = [2, 2, m])
and thus αi

12 = αi
12 for each i = 1, 2.

Under these conditions, we already know from Proposi-
tion 3(i) that αi

1,2 ≥ αi
12 for each i = 1, 2. The value of the

ratio of rewards can be in one of four possible scenarios.

Scenario 1: α1
12 ≤ RR1

1,2 and α2
12 ≤ RR2

1,2.
From Proposition 1, we know that α1

12 ≤ RR1
1,2

implies that EV (A1 = [1, 1, m]) ≥ EV (A3 = [2, 1, m])
and α2

12 ≤ RR2
1,2 implies that EV (A1 = [1, 1, m]) ≥

EV (A2 = [1, 2, m]). By the definition of this case, we
already have EV (A1 = [1, 1, m]) ≥ EV (A4 = [2, 2, m]).
Therefore, EV (A1 = [1, 1, m]) is the highest expected re-
ward collectively, and producing product 1 is optimal in
both states, i = 1, 2 (i.e., a∗

1 = 1, a∗
2 = 1).

Scenario 2: α1
12 ≤ RR1

1,2 and α2
12 > RR2

1,2.
From Proposition 1, we know that α1

12 ≤ RR1
1,2

implies that EV (A1 = [1, 1, m]) ≥ EV (A3 = [2, 1, m]),
and α2

12 > RR2
1,2 implies that EV (A1 = [1, 1, m]) <

EV (A2 = [1, 2, m]). By the definition of this case, we
already have EV (A1 = [1, 1, m]) ≥ EV (A4 = [2, 2, m]).
Therefore, the expected values are in the following
order:

EV (A2 = [1, 2, m]) > EV (A1 = [1, 1, m])

≥
{

EV (A3 = [2, 1, m])
EV (A4 = [2, 2, m])

}
.

Thus, policy A2 = [1, 2, m] is optimal. This leads to the
optimal choices of product 1 in state 1 and product 2 in
state 2, i.e., a∗

1 = 1, a∗
2 = 2.

Scenario 3: α1
12 > RR1

1,2 and α2
12 ≤ RR2

1,2.
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From Proposition 1, we know that α1
12 > RR1

1,2
implies that EV (A1 = [1, 1, m]) < EV (A3 = [2, 1, m])
and α2

12 ≤ RR2
1,2 implies that EV (A1 = [1, 1, m]) ≥

EV (A2 = [1, 2, m]). By the definition of this case, we
already have EV (A1 = [1, 1, m]) ≥ EV (A4 = [2, 2, m]).
Therefore, the expected values are in the following
order:

EV (A3 = [2, 1, m]) > EV (A1 = [1, 1, m])

≥
{

EV (A2 = [1, 2, m])
EV (A4 = [2, 2, m])

}
.

Thus, policy EV (A3 = [2, 1, m]) is optimal. This leads to
the optimal choices of product 2 in state 1 and product
1 in state 2, i.e., a∗

1 = 2, a∗
2 = 1.

Scenario 4: α1
12 > RR1

1,2 and α2
12 > RR2

1,2.
From Proposition 1, we know that α1

12 > RR1
1,2

implies that EV (A1 = [1, 1, m]) < EV (A3 = [2, 1, m])
and α2

12 > RR2
1,2 implies that EV (A1 = [1, 1, m]) <

EV (A2 = [1, 2, m]). Thus,{
EV (A2 = [1, 2, m])
EV (A3 = [2, 1, m])

}
> EV (A1 = [1, 1, m]).

However, we already know from Proposition 3(i)
that αi

1,2 ≥ αi
12 for each i = 1, 2. Therefore in this sce-

nario, we have α1
1,2 ≥ α1

12 > RR1
1,2 and α2

1,2 ≥ α2
12 >

RR2
1,2. From Proposition 1, we know that α1

1,2 >

RR1
1,2 implies EV (A4 = [2, 2, m]) > EV (A2 = [1, 2, m])

and that α2
1,2 > RR2

1,2 implies EV (A4 = [2, 2, m]) >

EV (A3 = [2, 1, m]). Collectively, we get:

EV (A4 = [2, 2, m]) >

{
EV (A2 = [1, 2, m])
EV (A3 = [2, 1, m])

}
.

When these are combined with the earlier comparisons,
we get:

EV (A4 = [2, 2, m]) >

{
EV (A2 = [1, 2, m])
EV (A3 = [2, 1, m])

}
> EV (A1 = [1, 1, m]),

contradicting the motivating case of EV (A1 =
[1, 1, m]) ≥ EV (A4 = [2, 2, m]). As a result, this sce-
nario is never encountered when EV (A1 = [1, 1, m]) ≥
EV (A4 = [2, 2, m]), proving part (iii) of the theorem.
Scenarios 1, 2 and 3 collectively prove that when αi

12 ≤
RRi

1,2, then the optimal production decision is a∗
i = 1,

and when αi
12 > RRi

1,2, then the optimal production de-
cision is a∗

i = 2. This completes parts (i) and (ii) of the
proof of the theorem.

2. The case when EV (A1 = [1, 1, m]) < EV (A4 =
[2, 2, m]).
Under these conditions, we already know from Propo-
sition 3(ii) that αi

1,2 < αi
12 for each i = 1, 2. The value

of the ratio of rewards can be in one of four possible
scenarios.

Scenario 1: α1
12 > RR1

1,2 and α2
12 > RR2

1,2.

From Proposition 1, we know that α1
12 > RR1

1,2
implies that EV (A2 = [1, 2, m]) < EV (A4 = [2, 2, m])
and α2

12 > RR2
1,2 implies that EV (A3 = [2, 1, m]) <

EV (A4 = [2, 2, m]). As a result, we have:

EV (A4 = [2, 2, m]) >




EV (A1 = [1, 1, m])
EV (A2 = [1, 2, m])
EV (A3 = [2, 1, m])


 .

Thus, the optimal policy is A4 = [2, 2, m] and the opti-
mal production choice is product 2 in both states, i.e.,
a∗

1 = 2, a∗
2 = 2.

Scenario 2: α1
12 > RR1

1,2 and α2
12 ≤ RR2

1,2.
From Proposition 1, we know that α1

12 > RR1
1,2

implies that EV (A2 = [1, 2, m]) < EV (A4 = [2, 2, m])
and α2

12 ≤ RR2
1,2 implies that EV (A3 = [2, 1, m]) ≥

EV (A4 = [2, 2, m]). By the definition of this case, we
already have EV (A1 = [1, 1, m]) < EV (A4 = [2, 2, m]).
Therefore, the expected values are in the following
order:

EV (A3 = [2, 1, m]) ≥ EV (A4 = [2, 2, m])

>

{
EV (A1 = [1, 1, m])
EV (A2 = [1, 2, m])

}
.

Thus, policy A3 = [2, 1, m] is optimal. This leads to the
optimal choices of product 2 in state 1 and product 1 in
state 2, i.e., a∗

1 = 2, a∗
2 = 1.

Scenario 3: α1
12 ≤ RR1

1,2 and α2
12 > RR2

1,2:
From Proposition 1, we know that α1

12 ≤ RR1
1,2

implies that EV (A2 = [1, 2, m]) ≥ EV (A4 = [2, 2, m])
and α2

12 > RR2
1,2 implies that EV (A3 = [2, 1, m]) <

EV (A4 = [2, 2, m]). By the definition of this case, we
already have EV (A1 = [1, 1, m]) < EV (A4 = [2, 2, m]).
Therefore, the expected values are in the following
order:

EV (A2 = [1, 2, m]) ≥ EV (A4 = [2, 2, m])

>

{
EV (A1 = [1, 1, m])
EV (A3 = [2, 1, m])

}
.

Thus, policy A2 = [1, 2, m] is optimal. This leads to the
optimal choices of product 1 in state 1 and product 2 in
state 2, i.e., a∗

1 = 1, a∗
2 = 2.

Scenario 4: α1
12 > RR1

1,2 and α2
12 > RR2

1,2.
It can easily be seen that when both α1

12 > RR1
1,2 and

α2
12 > RR2

1,2, we get EV (A1 = [1, 1, m]) > EV (A4 =
[2, 2, m]), and this contradicts the original case, proving
part (iii) of the theorem.
Scenarios 1, 2 and 3 collectively prove that when αi

12 ≤
RRi

1,2, then the optimal production decision is a∗
i = 1,

and when αi
12 > RRi

1,2, then the optimal production de-
cision is a∗

i = 2. This completes parts (i) and (ii) of the
proof of the theorem. �

Proof of Proposition 4.
The proof follows from Propositions 2 and 3.
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(i) When c > 1, both critical ratios are non-increasing in i.
Therefore, in the case of constant ratio of rewards, i.e.,
RR1

1,2 = RR2
1,2 = RRi

1,2 = RR1,2 for all i = 1, . . . , N,

we get RR1,2−αi
1,2 ≤ RR1,2−α

j
1,2 for all states i < j as

well as RR1,2 − αi
1,2 ≤ RR1,2 − α

j
1,2 for all states i < j;

and, their signs can switch from negative to positive
only once.

(ii) When 1/β1,2 ≤ c < 1, both critical ratios are non-
decreasing in i. Therefore, in the case of constant ratio of
rewards, i.e., RR1

1,2 = RR2
1,2 = RRi

1,2 = RR1,2, we get

RR1,2−αi
1,2 ≥ RR1,2− α

j
1,2 for all states i < j as well

as RRi
1,2 − α1

1,2 ≥ RRi
1,2 − α2

1,2for all states i < j; and,
their signs can switch from positive to negative only
once. �

Proof of Corollary 1. The proof follows directly from
Theorem 1. �

Proof of Lemma 1. The proof follows from Theorem 3 of
Kao (1973) and the fact that the reward structure is non-
increasing in the machine state, i.e., ria ≥ rja for each action
a and for all states 1 ≤ i < j ≤ N. �

Proof of Proposition 5. When maintenance is per-
formed, the machine returns to its best state with
probability pm

i1 = 1 for all i = 2, . . . , N. First, con-
sider the problem setting with N states. The steady-
state probability for states where production takes
place, i.e., i = 1, . . . , M − 1, using any policy AN =
[a1, . . . , aM−1, aM = m, . . . , aN−1 = m, aN = m] generates
πi(AN = [a1, . . . , aM−1, aM = m, . . . , aN−1 = m, aN = m]).
Now, consider the problem setting with N − 1 states,
and a policy that uses the same sequence of actions in
all states from i = 1 to i = N − 1, denoted by AN−1.
The steady-state probability for this policy in the states
that production takes place, i.e., i = 1, . . . , M − 1,
is denoted by πi(AN−1 = [a1, . . . , aM−1, aM = m, . . .,
aN−1 = m]). It should be observed that πi(AN =
[a1, . . . , aM−1, aM = m, . . ., aN−1 = m, aN = m]) =
πi(AN−1 = [a1, . . . , aM−1, aM = m, . . ., aN−1=m]) × pm

N1.
Because pm

N1 = 1, we get πi(AN = [a1, . . . , aM−1, aM =
m, . . . , aN−1 = m, aN = m]) = πi (AN−1 = [a1, . . . ,

aM−1, aM = m, . . . , aN−1 = m]). Therefore, the ex-
pected values of these two policies, despite the fact
that they are in two different settings, are equal. Thus,
EV (AN) = EV (AN−1). By induction, we get πi(AN =
[a1, . . . , aM−1, aM = m, . . . , aN−1 = m, aN = m]) = πi
(AN−1 = [a1, . . . , aM−1, aM = m, . . . , aN−1 = m]) = . . . =
πi(AM = [a1, . . . , aM−1, aM = m]). Moreover, we get
EV (AN) = EV (AN−1) = . . . = EV (AM). Let us denote
AN (1) and AN (2) as the single-product policies of man-
ufacturing products 1 and 2, respectively, in a problem
setting that features N machine states. We next show that
the critical ratios for problem settings that have production
actions in the first M − 1 states and maintenance in

the following (worse) states are equal for all problem
settings that feature M or more machine states. Thus,
αi

k,l (N, M) = cβ1,2 + β1,2 (1 − c) (τ2EV (AN (2))/ri2 =
αi

k,l (N − 1, M) = cβ1,2 + β1,2(1 − c)(τ2EV (AN−1(2))/ri2)
= . . . =αi

k,l (M, M) = cβ1,2 + β1,2(1 − c)(τ2EV (AM(2))/ri2

for all i = 1, . . . , M − 1, and αi
k,l (N, M) = cβ1,2+

β1,2 (1 − c) (τ2EV (AN (1))/ri2) = αi
k,l (N − 1, M) = cβ1,2

+ β1,2 (1 − c) (τ2EV (AN−1 (1))/ri2 = . . . = αi
k,l (M, M) =

cβ1,2 + β1,2 (1 − c) (τ2EV (AM (1))/ri2) for all i = 1, . . . ,

M − 1. As a result, we have αi
k,l(N, M) = αi

k,l(N − 1, M) =
. . . = αi

k,l(M, M) for all states i = 1, . . . , M − 1. �

Proof of Proposition 6. Products 1 and 2 have the same
mean processing time, however, the variance of processing
time is higher for product 1 than for product 2. Therefore,
we have τ1 = τ2, and σ 2

1 > σ 2
2 . We provide the proof for the

case when αi
1,2 = αi

1,2, and the proof for the case when αi
1,2

= αi
1,2 is similar. Let us determine the critical ratios defined

by αi
1,2 for each state i = 1, 2.

(i) For state 1, we have EV [1, 1, m] = EV [2, 1, m]:

r11
(
1 − p1

22

) + r21p1
12 + r3m

(
1 − p1

11

)(
1 − p1

22

)
τ2

(
1 − p1

22

) + τ2p1
12 + τm

(
1 − p1

11

)(
1 − p1

22

)
= r12

(
1 − p1

22

) + r21p2
12 + r3m

(
1 − p2

11

)(
1 − p1

22

)
τ2

(
1 − p1

22

) + τ2p2
12 + τm

(
1 − p2

11

)(
1 − p1

22

) .

Substituting p1
12 = p2

12 + ε12
12(σ 2

1 , σ 2
2 ) and (1 − p1

11) = (1 −
p2

11) − ε12
11(σ 2

1 , σ 2
2 ) into EV [2, 1, m] provides r11(1 − p1

22)
= r12(1 − p1

22) − ε12
12(σ 2

1 , σ 2
2 )(r21 − τ2EV [1, 1, m]) + ε12

11
(σ 2

1 , σ 2
2 )(1 − p1

22)(r3m − τmEV [1, 1, m]). Thus,

r11

r12
= α1

1,2

= 1 − ε12
12

(
σ 2

1 , σ 2
2

)
r12(1 − p1

22)
(r21 − τ2EV [1, 1, m])

+ ε12
11

(
σ 2

1 , σ 2
2

)
r12

(r3m − τmEV [1, 1, m]) .

The critical ratio is greater than one when ε12
11(σ 2

1 , σ 2
2 )

(1 − p1
22) (r3m − τm EV [1, 1, m]) > ε12

12(σ 2
1 , σ 2

2 ) (r21 −
τ2EV [1, 1, m]). Therefore when this condition is satisfied,
α1

1,2 is increasing in variance; otherwise, it is decreasing in
the variance of processing times.
(ii) Similarly, for state 2, we have EV [1, 1, m] = EV [1, 2, m]:

r11
(
1 − p1

22

) + r21p1
12 + r3m

(
1 − p1

11

)(
1 − p1

22

)
τ2

(
1 − p1

22

) + τ2p1
12 + τm

(
1 − p1

11

)(
1 − p1

22

)
= r11

(
1 − p2

22

) + r22p1
12 + r3m

(
1 − p1

11

)(
1 − p2

22

)
τ2

(
1 − p2

22

) + τ2p1
12 + τm

(
1 − p1

11

)(
1 − p2

22

) .

Substituting (1 − p1
11) = (1 − p2

11) − ε12
11(σ 2

1 , σ 2
2 ) into EV

[1, 2, m] provides r21p1
12 = r22p1

12 +ε12
11(σ 2

1 , σ 2
2 )(r21 − τ2EV

[1, 1, m]) + ε12
11(σ 2

1 , σ 2
2 )(1 − p1

11)(r3m − τmEV [1, 1, m]).
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Thus,
r21

r22
= α2

1,2

= 1 + ε12
11

(
σ 2

1 , σ 2
2

)
r22p1

12

(r11 − τ2EV [1, 1, m])

+ ε12
11

(
σ 2

1 , σ 2
2

)
r22p1

12

(
1 − p1

11

)
(r3m − τmEV [1, 1, m]) .

The critical ratio is greater than one when r11 − τ2
EV [1, 1, m] < − (

1 − p1
11

)
(r3m − τmEV [1, 1, m]) . There-

fore, when this condition is satisfied, α2
1,2 is increasing in

variance; otherwise, it is decreasing in the variance of pro-
cessing times. �

Proof of Proposition 7. The critical ratios for the compar-
ison of products 2 and 3 were developed in Proposition 1.
The comparison of products 1 and 3 captures the combined
effect of mean and variance in processing times. Product
1 has a higher mean and variance in its processing time
than product 3. Thus, τ1 = τ2 > τ3 and σ 2

1 > σ 2
2 = σ 2

3 . We
first develop the critical ratios defined by αi

1,3 for each state
i = 1, 2.

(i) We can determine the critical ratio for state 1 by equat-
ing EV [1, 3, m] = EV [3, 3, m]:

r11
(
1 − p3

22

) + r23p1
12 + r3m

(
1 − p1

11

)(
1 − p3

22

)
τ2

(
1 − p3

22

) + τ3p1
12 + τm

(
1 − p1

11

)(
1 − p3

22

)
= r13

(
1 − p3

22

) + r23p3
12 + r3m

(
1 − p3

11

)(
1 − p3

22

)
τ3

(
1 − p3

22

) + τ3p3
12 + τm

(
1 − p3

11

)(
1 − p3

22

) .

Note that p1
12 = cβ2,3p3

12 + ε12
12(σ 2

1 , σ 2
2 ) and (1 − p1

11)
(1 − p3

22) = cβ2,3(1 − p3
11)(1 − p3

22) − ε12
11(σ 2

1 , σ 2
2 )(1 −

p3
11). Substituting these two expressions in EV [1, 3, m]

provides.

r11

r13
= α1

1,3 = cβ2,3 − (cβ2,3 − β2,3)
τ3EV [3, 3, m]

r13

− ε12
12

(
σ 2

1 , σ 2
2

)
r13

(
1 − p3

22

) (r23 − τ3EV [3, 3, m])

+ ε12
11

(
σ 2

1 , σ 2
2

)
r13

(r3m − τmEV [3, 3, m]).

Thus

α1
1,3 = α1

2,3 − ε12
12

(
σ 2

1 , σ 2
2

)
r13

(
1 − p3

22

) (r23 − τ3EV [3, 3, m])

+ ε12
11

(
σ 2

1 , σ 2
2

)
r13

(r3m − τmEV [3, 3, m]).

The critical ratio α1
1,3 is greater than α1

2,3 when
ε12

11

(
σ 2

1 , σ 2
2

)(
1 − p3

22

)
(r3m − τmEV [3, 3, m]) >

ε12
12

(
σ 2

1 , σ 2
2

)
(r23 − τ3EV [3, 3, m]). Therefore, when

this condition is satisfied, the firm needs to earn a
higher reward to switch from product 3 to product 1
than from product 3 to product 2 in state 1.

(ii) Similarly, we can obtain the critical ratio for state 2 by
equating EV [3, 1, m] = EV [3, 3, m]:

r13
(
1 − p1

22

) + r21p3
12 + r3m

(
1 − p3

11

)(
1 − p1

22

)
τ3

(
1 − p1

22

) + τ2p3
12 + τm

(
1 − p3

11

)(
1 − p1

22

)
= r13

(
1 − p3

22

) + r23p3
12 + r3m

(
1 − p3

11

)(
1 − p3

22

)
τ3

(
1 − p3

22

) + τ3p3
12 + τm

(
1 − p3

11

)(
1 − p3

22

) .

Note that (1 − p1
22) = cβ2,3(1 − p3

22) − ε12
11(σ 2

1 , σ 2
2 ) and

(1 − p1
11)(1 − p3

22) = cβ2,3(1 − p3
11)(1 − p3

22) − ε12
11 (σ 2

1 ,
σ 2

2 ) (1 − p3
11). Substituting these two expressions in

EV [3, 1, m] provides:
r21

r23
= α2

1,3 = cβ2,3 − (cβ2,3 − β2,3)
τ3EV [3, 3, m]

r23

+ ε12
11

(
σ 2

1 , σ 2
2

)
r23p3

12

(r13 − τ3EV [3, 3, m])

+ ε12
11

(
σ 2

1 , σ 2
2

)
r23p3

12

(
1 − p3

11

)
(r3m − τmEV [3, 3, m]).

Thus,

α2
1,3 = α2

2,3 + ε12
11

(
σ 2

1 , σ 2
2 )

r23p3
12

[(r13 − τ3EV [3, 3, m])

+ (
1 − p3

11

)
(r3m − τmEV [3, 3, m])].

The critical ratio α2
1,3 is greater than α2

2,3 when r13 − τ3

EV [3, 3, m] < −(1 − p3
11)(r3m − τmEV [3, 3, m]). The-

refore, when this condition is satisfied, the firm needs
to earn a higher reward to switch from product 3 to
product 1 than from product 3 to product 2 in state 2.

Using EV [2, 2, m] as the calibrating reference policy,
we next develop the critical ratios αi

1,3 for each state
i = 1, 2.

(iii) For state 1, EV [3, 1, m] = EV [2, 2, m]:

r13
(
1 − p1

22

) + r21p3
12 + r3m

(
1 − p3

11

)(
1 − p1

22

)
τ3

(
1 − p1

22

) + τ2p3
12 + τm

(
1 − p3

11

)(
1 − p1

22

)
= r12

(
1 − p2

22

) + r22p2
12 + r3m

(
1 − p2

11

)(
1 − p2

22

)
τ2

(
1 − p2

22

) + τ2p2
12 + τm

(
1 − p2

11

)(
1 − p2

22

) .

Note that (1 − p1
22) = (1 − p2

22) − ε12
11(σ 2

1 , σ 2
2 ), and

p3
12 = (1/cβ2,3p2

12), and(
1 − p3

11

)(
1 − p1

22

) = 1
cβ2,3

(
1 − p2

11

)(
1 − p2

22

)
− ε12

11

(
σ 2

1 , σ 2
2

)(
1 − p2

11

)
cβ2,3

.

Substituting these three expressions in EV [3, 1, m]
provides:

α1
1,3 = cβ2,3 − (cβ2,3 − β2,3)

τ2EV [2, 2, m]
r13

− ε12
11

(
σ 2

1 , σ 2
2

)
r13

(
1 − p2

11

)cβ23(r13 − τ2EV [2, 2, m])

− ε12
11

(
σ 2

1 , σ 2
2

)
r13

(r3m − τmEV [2, 2, m]).
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Thus,

α1
13 = α1

23 − ε12
11

(
σ 2

1 , σ 2
2

)
r13

(
1 − p2

11

) [cβ23(r13 − τ2EV [2, 2, m])

+ (
1 − p2

11

)
(r3m − τmEV [2, 2, m])].

Because ε12
11(σ 2

1 , σ 2
2 ) < 0, the critical ratio α1

1,3 is
greater than α1

2,3 when cβ23(r13 − τ2EV [2, 2, m]) >

−(1 − p2
22)(r3m − τmEV [2, 2, m]). Therefore, when this

condition is satisfied, the firm needs to earn a higher
reward to switch from product 1 to product 3 than from
product 2 to 3 in state 1.

(iv) For state 2, EV [1, 3, m] = EV [2, 2, m]:

r11
(
1 − p3

22

) + r23p1
12 + r3m

(
1 − p1

11

)(
1 − p3

22

)
τ2(1 − p3

22) + τ3p1
12 + τm(1 − p1

11)(1 − p3
22)

= r12(1 − p2
22) + r22p2

12 + r3m(1 − p2
11)(1 − p2

22)

τ2(1 − p2
22) + τ2p2

12 + τm(1 − p2
11)(1 − p2

22)
.

Note that (1 − p3
22) = (1/cβ2,3)(1 − p2

22) and p1
12 =

p2
12 + ε12

12(σ 2
1 , σ 2

2 ) and

(
1 − p1

11

)(
1 − p3

22

) = 1
cβ2,3

(
1 − p2

11

)(
1 − p2

22

)
− ε12

11

(
σ 2

1 , σ 2
2

)(
1 − p2

22

)
cβ2,3

.

Substituting these three expressions in EV [1, 3, m]
provides:

α2
1,3 = cβ2,3 − (cβ2,3 − β2,3)

τ2EV [2, 2, m]
r23

+ ε12
12

(
σ 2

1 , σ 2
2

)
r23p2

12

cβ23(r23 − τ2EV [2, 2, m])

− ε12
11

(
σ 2

1 , σ 2
2

)(
1 − p2

11

)
r23p3

12

(r3m − τmEV [2, 2, m]).

Thus,

α2
13 = α2

23 + ε12
12

(
σ 2

1 , σ 2
2

)
r23p2

12

cβ23(r23 − τ2EV [2, 2, m])

− ε12
11(σ 2

1 , σ 2
2 )

(
1 − p2

11

)
r23p3

12

(r3m − τmEV [2, 2, m]).

The critical ratio α2
1,3 is greater than α2

2,3 when
ε12

12(σ 2
1 , σ 2

2 )cβ23(r23 − τ2EV [2, 2, m]) > ε12
11 (σ 2

1 , σ 2
2 )

(r3m − τmEV [2, 2, m]). Therefore, when this condition
is satisfied, the firm needs to earn a higher reward to
switch from product 1 to product 3 than from product
2 to 3 in state 2. �

Proof of Corollary 2. The proof follows directly from
Corollary 1. �
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