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Data reduction techniques and hypothesis testing for analysis of
benchmarking data

J. A. NICKERSON² and T. W. SLOAN³ *

This paper proposes a data reduction and hypothesis testing methodology that
can be used to perform hypothesis testing with data commonly collected in
benchmarking studies. A reduced-form performance vector and reduced-form
set of decision variables are constructed using the multivariate data reduction
techniques of principal component analysis and exploratory factor analysis.
Reductions in dependent and exogenous variables increase the available degrees
of freedom, thereby facilitating the use of standard regression techniques. We
demonstrate the methodology with data from a semiconductor production bench-
marking study.

1. Introduction

In less than two decades, benchmarking studies have become a mainstay for
industry. Benchmarking studies attempt to identify relevant performance metrics
and observe in great detail organizational and technological practices that lead to
superior performance. In practice, however, identifying the factors that drive high
performance, and in some instances identifying the performance metrics themselves,
is problematic.

Systematically linking performance to underlying practices is one of the greatest
challenges facing benchmarking practitioners and scholars alike. We conjecture that
although benchmarking studies often produce a wealth of microanalytic data, iden-
tifying causal linkages is problematic for two reasons. First, practitioners often rely
on inappropriate or ad hoc techniques for identifying the factors that underlie per-
formance; these techniques are prone to biases and errors of many types. Even when
relying on more systematic statistical methodologies, researchers frequently are
unable to test hypotheses because of insu� cient degrees of freedom (e.g. for hypoth-
esis testing to take place, the number of observations must exceed the sum of the
number of statistical parameters being estimated). Second, identifying an appropri-
ate set of performance metrics is often complicated by the fact that many metrics are
inter-related in complex ways. How does one usefully analyse data collected in
benchmarking e� orts? How can hypotheses about which practices are e� ciency
enhancing and which ones are e� ciency depleting be statistically examined? Or,
more generally, how can we systematically identify the organizational practices cri-
tical to high performance?
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This paper attempts to address these questions by proposing a methodology for
systematically identifying linkages between performance metrics, and organizational
and technological decision variables that describe the various practices employed by
® rms when the number of observations is small. The approach is based on the
multivariate data reduction techniques of principal component analysis and ex-
ploratory factor analysis. The methodology reduces the number of dependent (per-
formance) variables by employing principal component analysis to construct a
reduced-form performance vector. Decision variables, whether technological or
organizational, are grouped and reduced using exploratory factor analysis. Data
reduction increases the available degrees of freedom, thereby allowing the use of
standard hypothesis testing techniques, e.g. regression analysis.

After presenting the empirical methodology in more detail, we use it to analyse a
benchmarking study in the semiconductor industry. The methodology is implemen-
ted using data gathered through the Competitive Semiconductor Manufacturing
Study (CSMS) sponsored by the Alfred P. Sloan Foundation and undertaken by
researchers at the University of California, Berkeley.

The paper proceeds as follows. Section 2 brie¯ y describes the growth in bench-
marking activities and reviews some of the extant data analysis approaches. Section3
describes the proposed empirical methodology, including a description of principal
component analysis, factor analysis and hypothesis testing. Section 4 applies the
methodology to data provided by the CSMS, and section 5 discusses advantages
and limitations of the approach and plans for future work. Section 6 concludes.

2. Background

Although ® rms have long engaged in many forms of competitive analysis, bench-
marking is a relatively new phenomenon emerging only in the last 20 years.
Benchmarking is the systematic study, documentation and implementation of the
`best’ organizational practices. Driving the growth of benchmarking is the view that
the best practices can be identi® ed and, once identi® ed, managers can increase pro-
ductivity by implementing the best practice.

Benchmarking was introduced in the USA by Xerox. Faced with tremendous
competitive challenges in the late 1970s and early 1980s from Japanese photocopier
® rms, Xerox began detailed studies of operations of their competitors, as well as
® rms in related ® elds, and developed a method for identifying the best practices. By
formulating and implementing plans based on identi® ed best practices, Xerox was
able to signi® cantly improve its productivity, performance and competitive position.
Once Xerox’ s success was recognized, other large corporations quickly followed suit.
It was not until 1989, however, that the use of benchmarking greatly accelerated,
making it a mainstream business activity by ® rms of all sizes and industries. ²

A contributing factor to the explosion of benchmarking activity was the publica-
tion of The Machine that Changed the World (Womack et al. 1990). This book
reported on the International Motor Vehicle Program, a pioneering cooperative
e� ort between academia, industry and government, initiated by the Massachusetts
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Institute of Technology (M.I.T.). A multi-disciplinary and multi-institutional team
of researchers studied over 35 automobile manufacturers, component manufac-
turers, professional organizations and government agencies to identify variations
in performance, and the underlying factors that accounted for them. While the
® rst phase of the study was completed between 1985 and 1990, the program con-
tinues today with an ever-increasing number of industry participants.

Recognizing the possible productivity gains that benchmarking e� orts could
provide to American industry, the Alfred P. Sloan Foundation initiated a program
in 1990, the expenditures of which now total over $20 million, to fund studies of
industries important to the US economy. Industries currently under study include
automobiles (M.I.T.), semiconductors (U.C. Berkeley), computers (Stanford), steel
(Carnegie Mellon/University of Pittsburgh), ® nancial services (Wharton), clothing
and textiles (Harvard), and pharmaceuticals (M.I.T.). The program joins universi-
ties, which provide independent and objective research, with industry, which pro-
vides data, guidance and realism. It is hoped that these studies will reveal a deeper
understanding of those factors that lead to high manufacturing performance across a
variety of industries and, ultimately, increase industrial productivity and fuel eco-
nomic growth.

The benchmarking process employed by these studies is a variant of the standard
process outlined in popular literature. The implicit model underlying this process is
that performance is driven by a number of decision variables either implicitly or
explicitly set by management. We assume the performance metrics are endogenous
and the decision variables exogenous. The basic benchmarking process is summar-
ized by the following four steps. ²

(1) Identify the underlying factors that drive performance.
(2) Find `similar’ ® rms, measure their performance and observe their practices.
(3) Analyse the data collected, compare performance to other ® rms, and identify

and prioritize opportunities for improvement.
(4) Develop and implement plans to drive improvement.

Steps 1± 3 are especially problematic for managers and researchers alike. ³
Correlating underlying practices with performance frequently has an indeterminate
structureÐ the number of parameters to be estimated exceeds the degrees of freedom.
The number of ® rms observed is generally small; much data are qualitative in nature;
and the number of variables observed within each ® rm is large, making a statistical
analysis nearly impossible.

Popular benchmarking literature says little about resolving this empirical issue.
Instead of employing statistical analysis, practitioners reportedly rely on visual sum-
maries of the data in the form of graphs and tables. For example, the Competitive
Semiconductor Manufacturing Study (Leachman 1994, Leachman and Hodges
1996), which provides the data for the empirical analysis provided later in the
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ables) is often di� cult. De® ning g̀ood’ performance is di� cult because performance is typi-
cally multidimensional and involves tradeo� s. Is a ® rm that performs well along one
dimension and poorly along a second dimension better-performing than a ® rm with the
opposite performance characteristics? The methodology described in section 3.1 provides
some insight into the choice of performance metrics.



paper, used visual summaries of the performance metrics to both describe data and
draw inferences. The choice of which parameters to plot (which may heavily in¯ u-
ence `observed’ patterns) often relies on heuristics, intuitions and guesses. Observing
in a variety of plots the relative position of each ® rm under study presumably reveals
which practices lead to high performance. Relying on approaches that do not pro-
vide statistical inference to identify the correspondence between high performance
and critical practices can lead to incorrect characterizations and, possibly, to
decreases in productivity rather than improvements.

Many researchers have attempted to go beyond graphical methods by exploring
statistical associations between ® rm practices and performance. For instance, Powell
(1995) used correlation analysis to shed light on the relationship between total
quality management (TQM) practices and ® rm performance in terms of quality
and competitiveness. He surveyed more than 30 manufacturing and service ® rms,
and found that the adoption of TQM was positively related to several measures of
® nancial performance. However, correlation analysis, like graphical approaches,
lacks the ability to test speci® c hypotheses regarding the relationships between prac-
tices and performance.

Regression analysis is a common method for examining relationships between
practices and performance, and for testing hypotheses. For instance, Hendricks and
Singhal (1996) employed regression analysis in their study of how TQM relates to
® nancial performance for a broad range of ® rms. The authors found strong evidence
that e� ective TQM programs (indicated by the receipt of quality awards) are
strongly associated with various ® nancial measures, e.g. sales. While this study
demonstrated the value of TQM programs in general, it did not attempt to identify
links between speci® c practices and high performance. Furthermore, all of the per-
formance measures were ® nancial: sales, operating income and operating margin. In
many benchmarking studies, the performance measures of interest are not so clear-
cut. Running simple regressions on individual performance metrics only tells part of
the story, as each metric may only be a partial measure of some underlying perform-
ance variable. In many if not most cases, individual regressions will not reveal the
relationship between practices and performance because the various performance
metrics are related to each other in complex ways.

Another systematic approach employed to understand benchmarking data is
data envelopment analysis (DEA), ® rst proposed by Charnes et al. (1978). DEA
assesses the relative e� ciency of ® rms by comparing observed inputs and outputs
to a theoretical production possibility frontier. The production possibility frontier is
constructed by solving a set of linear programs to ® nd a set of coe� cients that give
the highest possible e� ciency ratio of outputs to inputs.

DEA su� ers from several drawbacks from the perspective of studying bench-
marking data. First, DEA implicitly assumes that all the organizations studied con-
front identical production possibility frontiers and have the same goals and
objectives. Thus, for ® rms with di� erent production possibility frontiers, as in the
semiconductor industry, DEA is neither appropriate nor meaningful. Second, per-
formance is reduced to a single dimension, e� ciency, which may not capture import-
ant learning and temporal dimensions of performance. Third, DEA by itself simply
identi® es relatively ine� cient ® rms. No attempt is made to interpret performance
with respect to managerial practices.

Jayanthi et al. (1996) went a step beyond DEA in their study of the relationship
between a number of manufacturing practices and ® rm competitiveness in the food
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processing industry. They measured the competitiveness of 20 factories using DEA
and a similar method known as operational competitiveness ratings analysis
(OCRA). They also collected data on various manufacturing practices, e.g. equip-
ment and inventory policies. Based on regression analysis, they concluded that sev-
eral practices were indeed related to their measure of operational competitiveness.
While this is an important step toward linking ® rm practices and performance, they
only compared ® rms along a single performance dimension.

Canonical correlation analysis (CCA) is another method used to explore associa-
tions between ® rm practices and performance. Using this technique, one partitions a
group of variables into two sets, a predictor set and a response set. CCA creates two
new sets of variables, each a linear combination of the original set, in such a way as
to maximize the correlation between the new sets of variables. Sakakibara et al.
(1996) collected data from more than 40 plants in the transportation components,
electronics and machinery industries. They used canonical correlation to study the
e� ects of just-in-time practices (a set of six variables) on manufacturing performance
(a set of four variables). Szulanski (1996) employed CCA to examine how ® rms
internally transfer best-practice knowledge. The author collected data on more
than 100 transfers in eight large ® rms. While it is an e� ective way to measure the
strength of the relationship between two sets of variables, canonical correlation does
not provide a way to test speci® c, individual hypotheses regarding the original vari-
ables. In other words, it is impossible to `disentangle’ the new sets of variables and
draw conclusions about the original variables.

Structural equation modelling (SEM) and its relative, path analysis, are other
statistical methods that have been used to examine cause-and-e� ect relationships
among a set of variables. For example, Collier (1995) used SEM to explore the
relationships between quality measures, e.g. process errors, and performance metrics,
e.g. labour productivity, in a bank card remittance operation. The author succeeded
in linking certain practices and performance measures, but no inter-® rm compari-
sons were made. Ahire et al. (1996) examined data from 371 manufacturing ® rms.
They used SEM to examine the relationships among a set of quality management
constructs, including management commitment, employee empowerment and prod-
uct quality. Fawcett and Closs (1993) collected data from more than 900 ® rms and
used SEM to explore the relationship between several c̀auses’ , e.g. the ® rm’s globa-
lization perception and the degree to which its manufacturing and logistics opera-
tions were integrated, and a number of è� ects’ related to competitiveness and
® nancial performance. Unfortunately, SEM requires very large samples to be
valid, which is a signi® cant obstacle for most benchmarking studies.

The weaknesses of these approaches suggest that the analysis of benchmarking
data could be improved by a methodology that: (1) overcomes the obstacle of small
sample size; (2) provides the ability to test speci® c hypotheses; and (3) enables
researchers to ® nd underlying regularities in the data while maintaining a separation
between practice (cause) and performance (e� ect). None of the methods mentioned
above satis® es these needs.

3. Proposed methodology

The main statistical obstacle faced by benchmarking studies is that of insu� cient
degrees of freedom. The number of variables involved in relating practice to per-
formance typically far exceeds the number of observations. Also, identifying key
performance metrics is problematic because performance is often multifaceted.
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The approach developed herein attempts to overcome these obstacles by employing
data reduction techniques to reduce the number of endogenous performance metrics
and the number of exogenous decision variables. Reducing both endogenous and
exogenous variables increases the degrees of freedom available for regression analy-
sis, thereby allowing, in some instances, statistical hypothesis testing.

3.1. Data reduction of performance variables
What is good performance? Simple ® nancial measurements, e.g. pro® tability,

return on investment and return on assets are all ® rm-level measures that could be
used to identify good and bad performance. Unfortunately, these ® rm-level metrics
are highly aggregated and are inappropriate for benchmarking e� orts of less aggre-
gated activities, e.g. manufacturing facilities. Performance metrics will vary by the
unit of analysis chosen and by industry, and thus a universal set of metrics can not be
established for all benchmarking studies. Rather, performance metrics must be care-
fully selected for each study.

Since practitioners are capable of identifying appropriate performance metrics
(our endogenous variables), our focus turns to techniques for summarizing perform-
ance metrics used in practice. Reducing the number of endogenous variables con-
fronts several problems. First, performance changes over time and is usually
recorded in a time series which may exhibit wide ¯ uctuations. How are time series
data appropriately summarized? Second, benchmarking participants may provide
windows of observation of varying time spans. How are data of varying time
spans best summarized? Third, ® rms may provide windows of observation that are
non-contemporaneous. Firms are constantly changing their product mix, equipment
sets and production practices. If a ® rm’s performance improves over time, more
recent data would cast the ® rm’s performance in a more favourable light. How
should data be summarized to account for non-contemporaneous measurement?

We propose to resolve these issues in the following ways. First, we propose that
the time series of each performance metric for each ® rm be summarized by simple
summary statistics over a measurement window of ® xed length. For this study, we
choose to summarize performance metrics by the mean and average rate-of-change
for each time series. ² Mean values are easily calculated and, in essence, smooth
variations in the data. Average rates-of-change are useful for identifying trends.
Although rates-of-change are distorted by random ¯ uctuations in the data, they
are important indicators of learning taking place within the ® rm. ³ Indeed, in
many high technology industries, the rate-of-change (rates) may be equally if not
more important than the absolute magnitude of performance (mean).
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Second, we resolve the problem of observation windows of varying length by
choosing the maximum common window length and ignoring all but the most recent
time series data. Identifying the maximum common window length truncates the
data and thus reduces the total amount of information available for analysis.
Information loss notwithstanding, employing uniform observations windows
improves the consistency of inter-® rm comparisons and greatly facilitates more sys-
tematic analysis.

Third, we propose no adjustment for non-contemporaneous measurement when
endogenous variables are reduced. Instead, we construct a vector that indexes when
observations are made and consider the vector as an exogenous variable when testing
hypotheses. We discuss the approaches further in section 3.3.

We propose to reduce the set of endogenous variables with principal component
analysis. The purpose of principal component analysis is to transform a set of
observed variables into a smaller, more manageable set that accounts for most of
the variance of the original set of variables. Principal components are determined so
that the ® rst component accounts for the largest amount of total variation in the
data, the second component accounts for the second largest amount of variation, etc.
Also, each of the principal components is orthogonal to (i.e. uncorrelated with) the
others. We argue that principal component analysis is the most appropriate tech-
nique with which to reduce endogenous variables, because it imposes no pre-speci® ed
structure on the data and operates to maximize the amount of variance described by
a transformed, orthogonal set of parameters. The advantage of this latter condition
is that the transformed variables that account for little of the variance can be
dropped from the analysis, reducing the number of endogenous variables. We
describe this process in more detail below. ²

Each principal component is a linear combination of the observed variables.
Suppose that we have p observations, and let Xj represent an observed variable,
where j = 1, 2, , p. The ith principal component can be expressed as

PC( i) =
p

j= 1
w( i) jXj

subject to the constraints that

p

j= 1
w2

( i) j = 1 for i = 1, 2, . . . , p ( 1)

p

j= 1

w( k) jw( i) j = 0 f or all i > k ( 2)

where the ws are known as weights or loadings. Equation (1) ensures that we do not
arbitrarily increase the variance of the PCs; i.e. we choose the weights so that the sum
of the variances of all of the principal components equals the total variance of the
original set of variables. Equation (2) ensures that each principal component is
uncorrelated with all of the previously extracted principal components.
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Input to the model is either the variance-covariance matrix or the correlation
matrix of the observations. There are advantages to using each of these matrices;
however, the correlation matrix is often used because it is independent of scale,
whereas the variance-covariance matrix is not; we use the correlation matrix for
this reason. The output of the model is the set of loadings (i.e. the ws). Regardless
of the choice of inputs, each loading is a function of the eigenvalues of the variance-
covariance matrix of the observations.

A reduced-form set of endogenous variables is identi® ed by eliminating those
eigenvectors that account for little of the data’s variation. When the goal is data
reduction, it is common to retain the minimum number of eigenvectors that account
for at least 80% of the total variation. In many instances, what initially consisted of
many variables can be summarized by as few as two variables.

3.2. Data reduction for exogenous/decision variables
Firm performance is presumably driven by a number of decision variables either

implicitly or explicitly set by management. Variables might include, e.g. choice of
market position, production technology, organizational structure and organizational
practices, e.g. training, promotion policies and incentive systems. In the semicon-
ductor industry, e.g. fabrication facilities (fabs) that produce dynamic random access
memory (DRAMs) have a di� erent market focus than fabs that produce application-
speci® c integrated circuits (ASICs). Cleanliness of a fab, old production technology
versus new, hierarchical versus ¯ at organization structures, and specialized versus
generic training are all examples of measurable variables. Most variables are readily
observable through qualitative if not quantitative measurements.

For purposes of analysis, decision variables are assumed to be exogenous.
However, it is important to note that not all variables are perfectly exogenous.
Technology decisions may be more durable than some organizational decisions.
The former describe sunk investments in durable goods, whereas the latter describe
managerial decisions that might be alterable in the near term. Indeed, labelling
organization variables as exogenous may be problematic, since poor performance
may lead managers to alter organizational decisions more quickly than technological
decisions. Technology and organization variables are considered separately later in
the paper because of this potential di� erence in the durability of decisions.

The data used in our analysis, however, suggest that both technology and organ-
ization variables are relatively stationary over the period during which performance
is measured. Hence, exogenous variables tend to be represented by single observa-
tions rather than a time series. If, however, exogenous variables are represented by a
time series, we recommend adopting the data summary techniques described in
section 3.1.

How should we reduce the set of exogenous variables? Whereas principal com-
ponent analysis is recommended for dependent variables, we claim that exploratory
factor analysis is a more appropriate data reduction technique for exogenous vari-
ables. While principal component analysis maximizes data variation explained by a
combination of linear vectors, factor analysis identi® es an underlying structure of
latent variables. ² Speci® cally, factor analysis identi® es interrelationships among the
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variables in an e� ort to ® nd a new set of variables, fewer in number than the original
set, which express that which is common among the original variables. The primary
advantage of employing factor analysis comes from the development of a latent
variable structure. Products, technology and production processes used in fabs
and their organization are likely to be a result of underlying strategies. Identifying
approaches and strategies is useful not only as a basis for explaining performance
variations, but also for linking product, technology and production strategies to
performance. Factor analysis provides a means for describing underlying ® rm stra-
tegies; principal component analysis o� ers no such potential relationship.

The common factor-analytic model is usually expressed as

X = K f + e ( 3)

where X is a p-dimensional vector of observable attributes or responses, f is a q-
dimensional vector of unobservable variables called common factors, L is a p q
matrix of unknown constants called factor loadings, and e is a p-dimensional vector
of unobservable error terms. The model assumes error terms are independent and
identically distributed (iid) and are uncorrelated with the common factors. The
model generally assumes that common factors have unit variances and that the
factors themselves are uncorrelated. ²

Since the approach adopted here is exploratory in nature, a solution, should it
exist, is not unique. Any orthogonal rotation of the common factors in the relevant
q-space results in a solution that satis® es equation (3). To select one solution, we
embrace an orthogonal varimax rotation which seeks to rotate the common factors
so that the variation of the squared factor loadings for a given factor is made large.
Factor analysis generates vectors of factor loadings, one vector for each factor, and
generates a number that typically is much less than the original number of variables.
From the loadings, we can construct a ranking in continuous latent space for each
fab.

Common factors are interpreted by evaluating the magnitude of their loadings
which give the ordinary correlation between an observable attribute and a factor. We
follow a procedure suggested by Dillon and Goldstein (1984) for assigning meaning
to common factors. ³

Exploratory factor analysis su� ers from several disadvantages. First, unlike prin-
cipal component analysis, exploratory factor analysis o� ers no unique solution and
hence does not generate a set of factors that is in some sense unique or orthogonal.
The lack of a unique solution limits the procedure’ s generalizability to all situations.
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meaning to the factor based on step three.



Second, any latent structure identi® ed by the procedure may not be readily inter-
pretable. Factor loadings may display magnitudes and signs that do not make sense
to informed observers and, as a result, may not be easily interpretable in every case.

These caveats notwithstanding, exploratory factor analysis may still prove to be
the most appropriate tool for data reduction of at least some of the exogenous
variables, depending on the researcher’ s goals. For example, perhaps a researcher’ s
principal interest is in the organizational parameters, yet he or she desires to control
for variations in technology. If so, then factor analysis can be applied to the tech-
nology parameters with the absence of a unique solution or di� culty in interpreting
the factor having little impact on the ® nal analysis of the organizational parameters.

3.3. Hypothesis testing
Reductions in both endogenous and exogenous variables in many instances will

provide a su� cient number of degrees of freedom to undertake hypothesis testing. ²
Regression analysis can be used to examine hypotheses about practices that lead to
high (or low) performance. ³ Employing regression analysis requires, at a minimum,
that the number of observations exceeds the number of variables in the model.§ We
proceed to describe one possible model for testing hypotheses assuming data reduc-
tion techniques have provided su� cient degrees of freedom.

Equation (4) describes one possible hypothesis-testing model. In this model, a
vector of dependent performance variables is expressed as a function of exogenous
variables which we have divided into two classes: technology and organization.
Speci® cally,

D = T b 1 + H b 2 + e ( 4)

where D is the reduced-form vector of dependent performance variables, T is the
reduced-form vector of technology variables, H is a reduced-form set of organization
variables and e is a vector of iid error terms. Ordinary least squares estimates the
matrices of coe� cients, b 1 and b 2, by minimizing the squared error term. The model
seeks to explain the variation in the reduced-form dependent variables by correlating
them with the reduced-form exogenous variables. In this formulation, coe� cients are
evaluated against the null hypothesis using a student t distribution (t-statistics).

Regression analysis also provides an opportunity to consider the implications of
non-contemporaneous measurement problems alluded to in section 3.1. Evaluating
the e� ects of non-contemporaneous measurement is accomplished by augmenting
the vector of exogenous variables, either T or H or both, with a variable that indexes
when observations are made. For example, a ® rm which o� ers the oldest observation
window is indexed to 0. A ® rm whose observation window begins one quarter later is
indexed to 1. A ® rm whose observation window begins two quarters after the ® rst
® rm’s window is indexed to 2, etc. The estimated parameter representing non-con-

1726 J. A. Nickerson and T. W. Sloan

² Of course, even after data reduction, some studies will not yield su� cient degrees of
freedom to allow hypothesis testing. Even when the proposed methodology fails to support
hypothesis testing, both principal component and factor analysis are useful for revealing
empirical regularities in the data. Structural revelations may be central to undertaking an
improved and more focused benchmarking study.

³ For a more detailed discussion of these and other techniques, see, e.g. Judge et al. (1988).
§The minimum number of degress of freedom will depend on the statistical technique
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temporaneous measurement can then be used to evaluate whether or not perform-
ance is in¯ uenced by non-contemporaneous measurement.

4. Application of the methodology

4.1. Competitive semiconductor manufacturing study
Under sponsorship of the Alfred P. Sloan Foundation, the College of

Engineering, the Walter A. Haas School of Business, and the Berkeley
Roundtable on the International Economy at the University of California,
Berkeley have undertaken a multi-year research program to study semiconductor
manufacturing worldwide. ² The main goal of the study is to measure manufacturing
performance and to investigate the underlying determinants of performance.

The main phase of the project involves a 50-page mail-out questionnaire com-
pleted by each participant followed up by a 2-day site visit by a team of researchers.
The questionnaire quantitatively documents performance metrics and product, tech-
nology and production process attributes, e.g. clean room size and class, head
counts, equipment counts, wafer starts, die yields, line yields, cycle times and com-
puter systems. During site visits, researchers attempt to identify and understand
those practices that account for performance variations by talking with a cross-
section of fab personnel.

4.2. Performance metrics
The Competitive Semiconductor Manufacturing Study (CSMS) identi® es seven

key performance metrics described brie¯ y below. Variable names used in our analy-
sis appear in parentheses.

� Cycle time per layer (CTPL) is de® ned for each process ¯ ow and measures the
average duration, expressed in fractional working days, consumed by produc-
tion lots of wafers from time of release into the fab until time of exit from the
fab, divided by the number of circuitry layers in the process ¯ ow.

� Direct labour productivity (DLP) measures the average number of wafer layers
completed per working day divided by the total number of operators employed
by the fab.

� Engineering labour productivity (ENG) measures the average number of wafer
layers completed per working day divided by the total number of engineers
employed by the fab.

� Total labour productivity (TLP) measures the average number of wafer layers
completed per working day divided by the total number of employees.

� L ine yield (LYD) reports the average fraction of wafers started that emerge
from the fab process ¯ ow as completed wafers.

� Stepper throughput (STTP) reports the average number of wafer operations
performed per stepper (a type of photolithography machine) per calendar day.
This is an indicator of overall fab throughput as the photolithography area
typically has the highest concentration of capital expense and is most com-
monly the long-run bottleneck.
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² See Leachman (1994) or Leachman and Hodges (1996) for a complete description of the
study.



� Defect density (YDD) is the number of fatal defects per square centimeter of
wafer surface area. A model, in this case the Murphy defect density model, is
used to convert actual die yield into an equivalent defect density.

This paper contains benchmarking data from fabs producing a variety of semi-
conductor products, including DRAMs, ASICs, microprocessors and logic. For this
paper, we obtained a complete set of observations for 12 fabs. Prior to employing
principal component analysis, data are normalized and averaged to report a single
mean and single average rate-of-change for each metric for each fab. When fabs run
multiple processes, we calculate the average metric across all processes weighted by
wafer starts per process. Means for each metric are calculated across the most recent
12-month period for which data exist. Average quarterly rates-of-change (rates) are
calculated by averaging rates of improvement over the most recent four quarters.
For some fabs, defect density is reported for a selection of die types. A single average
defect density and rate-of-change of defect density is reported by averaging across all
reported die types. The above process yields a total of 14 metrics, seven means and
seven average rates-of-change. Note that rate of change for variables is designated by
the pre® x R.

Mean performance metrics for each fab along with summary statistics are
reported in table 1A. Table 2A reports average rates-of-change for performance
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Fab CTPL DLP ENG LYD TLP STTP YDD

1 3.596 16.894 81.164 92.863 10.326 232.101 0.970
2 1.583 29.357 253.688 91.001 16.190 318.373 15.194
3 3.150 32.708 121.690 95.952 19.276 319.322 0.754
4 3.311 15.642 167.355 86.766 11.592 328.249 0.419
5 2.611 32.310 87.993 90.152 20.177 491.632 0.491
6 2.489 5.734 24.815 80.402 3.404 143.912 0.431
7 3.205 7.924 27.645 88.438 2.613 221.676 0.846
8 2.724 9.612 25.107 90.501 4.253 13.825 0.990
9 2.901 22.621 95.331 98.267 13.408 379.470 0.290

10 2.002 63.551 205.459 98.460 37.759 606.147 0.313
11 2.291 25.465 100.685 94.543 13.701 259.585 1.895
12 2.711 18.324 91.268 93.484 10.299 203.731 2.476

Mean 2.720 23.350 115.090 91.820 13.580 293.170 2.090
Std. dev. 0.570 15.630 92.620 5.100 9.550 155.390 4.180

Table 1 (A). Means of performance metrics.

CTPL DLP ENG LYD TLP STTP

DLP - 0.481
ENG - 0.595 0.564
LYD - 0.128 0.671 0.319
TLP - 0.427 0.992 0.562 0.634
STTP - 0.275 0.852 0.498 0.488 0.882
YDD - 0.624 0.088 0.781 0.035 0.045 - 0.015

Table 1 (B). Pearson correctional for means of performance variables. Correlations whose
absolute values are greater than 0.172 are signi® cant at the 0.05 level: N = 12.



metrics for each fab and summary statistics. Tables 1B and 2B provide correlation
matrices for performance metrics and average rates of change, respectively. ²

4.3. Product, technology, and production variables
The CSMS reports several product, technology and production variables. We

adopt these variables as our set of exogenous variables. The 11 exogenous variables
are described below. The variable names in parentheses correspond to the names that
appear in the data tables at the end of the paper.

� Wafer starts (STARTS) reports the average number of wafers started in the fab
per week.

Data reduction and hypothesis testing in benchmark studies 1729

Fab R CTPL R DLP R ENG R LYD R TLP R STTP R YDD

1 0.016 0.066 0.067 0.004 0.059 0.108 0.012
2 - 0.087 0.095 0.059 - 0.001 0.079 0.138 0.020
3 0.005 - 0.047 - 0.113 0.002 - 0.053 - 0.030 - 0.031
4 - 0.018 0.021 0.178 - 0.003 0.060 0.047 - 0.086
5 0.083 0.704 0.723 0.008 0.697 0.580 - 0.047
6 0.040 0.012 0.030 0.091 0.012 0.017 - 0.065
7 - 0.135 0.173 0.222 0.022 0.227 0.115 - 0.440
8 0.032 0.038 0.076 0.005 0.064 0.271 - 0.159
9 - 0.004 0.036 0.093 0.004 0.063 0.054 - 0.038

10 - 0.039 0.045 0.055 0.001 0.042 - 0.002 - 0.021
11 - 0.097 0.018 - 0.023 0.005 0.016 - 0.015 - 0.094
12 0.002 0.016 - 0.042 0.007 0.002 - 0.004 - 0.090

Mean - 0.031 0.098 0.110 0.012 0.106 0.107 - 0.087
Std. dev. 0.057 0.198 0.213 0.026 0.198 0.172 0.122

Table 2 (A). Average rates-of-change of performance metrics.

R CTPL R DLP R ENG R LYD R TLP R STTP

R DLP - 0.448
R ENG - 0.406 0.958
R LYD 0.264 - 0.050 - 0.042
R TLP - 0.468 0.993 0.977 - 0.050
R STTP - 0.233 0.903 0.889 - 0.102 0.905
R YDD 0.439 - 0.065 - 0.139 - 0.156 - 0.151 - 0.045

Table 2 (B). Pearson correlation analysis for rates-of-change of performance variables.
Correlations whose absolute value are greater than 0.172 are signi® cant at the 0.05
level: N = 12.

² Note that several of the variables in tables 1B and 2B are highly correlated. For instance,
TLP with DLP, and STTP with TLP in table 1B, and R_DLP with R_ENG, R_TLP, and
R_STTP and R_ENG with R_TLP and R_STTP in table 2B. The high correlation is expected
because all of these metrics have in their numerator the average number of wafer layers
completed per day. Unlike regression analysis, highly correlated variables are not problematic
for the principal component procedure and, instead, are desirable because high correlation
leads to a smaller number of transformed variables needed to describe the data.
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� Wafer size (W_SIZE) reports the diameter in inches (1 inch 0.0254 m) of
wafers processed in the fab.

� Number of process ¯ ows (FLOWS) counts the number of di� erent sequences of
processing steps, as identi® ed by the manufacturer that implemented in the fab.

� Product type (P_TYPE) identi® es broad categories of products produced at a
fab, and is coded as 1 for memory, 0 for logic and 0.5 for both.

� Number of active die types (D_TYPE) counts the number of di� erent die types
produced by a fab.

� Technology (TECH) refers to the minimum feature size of die produced by the
most advanced process ¯ ow run in the fab. This is measured in microns
(1 micron = 10 6m).

� Process age (P_AGE) refers to the age, in months, of the process technology
listed above.

� Die size (D_SIZE) is the area of a representative die type, measured in cm2

(1 cm2 = 10 4m).
� Facility size (F_SIZE) is the physical size of the fab’ s clean room. Small fabs

with less than 20 000 ft2 are coded as  1, medium size fabs with between
20 000 and 60 000 ft2 are coded as 0, and large fabs with more than
60 000 ft2 are coded as 1 (1 Çf t2 0.093 m2).

� Facility class (CLASS) identi® es the clean room cleanliness class. A class x
facility has no more than 10x particles of size 0.5 microns or larger per cubic
foot of clean room space (1 Çf t3 0.028 m2).

� Facility age (F_AGE) identi® es the vintage of the fab with pre-1985 fabs coded
as  1, fabs constructed between 1985 and 1990 coded as 0, and fabs con-
structed after 1990 coded as 1.

Parameter values for the 11 exogenous technology variables along with summary
statistics are reported in table 3A. Table 3B reports the correlation matrix. ²

4.4. Principal component analysis
We performed principal component analysis separately on the metric means and

rates. ³ We ® rst summarize the principal components of the means (shown in table
4A), then summarize principal components of the rates (shown in table 4B).

Principal component analysis of the performance metric means shows that 83%
of variation is described by two eigenvectors which we label M_PRIN1 and
M_PRIN2. The third largest eigenvalue and its corresponding eigenvector describes
less than 9% additional variation, thus we conclude that the seven metrics describing
mean performance levels over a 1-year time period can be reduced to two dimen-
sions. Component loadings and eigenvalues for the seven metrics are given in
table 4A.
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² Note that table 3B shows that TECH and W_SIZE are highly correlated, which suggests
that small circuit feature size corresponds to large wafer size. While the relationship is
expected, it indicates that the variance in one variable is not perfectly accounted for by the
other variable. Thus, it is appropriate for variables to remain in the factor analysis.

³ Separate principal component analyses allow for closer inspection of performance rates-
of-change as distinct from means. Both data sets were merged and collectively analysed via
principal component analysis with no change in the total number of principal components
( ® ve) and little variation in vector directions and magnitudes. For economy, the joint analysis
is not reported.



We can describe the two eigenvectors by looking at the magnitude and sign of the
loadings given in table 4A. The loadings for eigenvector M_PRIN1, except for the
one associated with defect density, are similar in magnitude. The loading suggests
that fabs that rank highly along this dimension display low cycle time (note the
negative coe� cient), high labour productivity of all types, high line yields and
high stepper throughput. Low cycle time allows fabs to respond quickly to custo-
mers, and high labour productivity of all types, high line yields and high stepper
throughput corresponds to fabs that are economically e� cient. We label component
M_PRIN1 as a measure of e� cient responsiveness.

We label eigenvector M_PRIN2 as a measure of mass production. This dimen-
sion is dominated by a negative correlation with defect density, i.e. low defect density
yields a high score. Both cycle time, which has a positive coe� cient, and engineering
labour productivity, which has a negative coe� cient, also strongly correlate with this
dimension. Thus, eigenvector M_PRIN2 will yield a high score for fabs that have
low defect densities, long cycle times and low engineering productivity (i.e. more
engineering e� ort). Fabs corresponding to these parameters are typically engaged in
single-product mass production. For example, competitive intensity in the memory
market leads DRAM fabs to focus on lowering defect density, which requires high
levels of engineering e� ort even to produce a small reduction in defect density, and
maximizing capacity utilization, which requires bu� er inventories for each bottle-
neck piece of equipment and leads to long cycle time.
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M PRI M PRI M PRI M PRI M PRI M PRI M PRI
N1 N2 N3 N4 N5 N6 N7

CTPL - 0.309 0.421 0.356 0.697 0.206 0.267 - 0.026
DLP 0.472 0.203 - 0.107 - 0.127 0.355 0.359 - 0.674
ENG 0.388 - 0.382 0.128 0.477 0.290 - 0.600 - 0.121
LYD 0.327 0.270 0.807 - 0.304 - 0.230 - 0.148 0.040
TLP 0.466 0.231 - 0.160 - 0.006 0.399 0.164 0.720
STTP 0.415 0.267 - 0.311 0.390 - 0.712 0.003 - 0.026
YDD 0.187 - 0.662 0.267 0.161 - 0.169 0.625 0.103
Eigenvalue 4.007 1.797 0.603 0.441 0.112 0.037 0.002
Proportion 0.572 0.257 0.086 0.063 0.016 0.005 0.000
Cumulative 0.572 0.829 0.915 0.978 0.994 1.000 1.000

Table 4 (A). Principal component loadings for means of performance variables.

R PRIN R PRIN R PRIN R PRIN R PRIN R PRIN R PRIN
1 2 3 4 5 6 7

R CTPL - 0.264 0.585 0.305 - 0.632 0.258 0.169 - 0.003
R DLP 0.487 0.116 0.041 0.126 0.085 0.616 - 0.587
R ENG 0.482 0.087 0.077 - 0.036 0.541 - 0.651 - 0.191
R LYD 0.056 - 0.002 0.908 0.389 - 0.131 - 0.068 0.011
R TLP 0.493 0.058 0.058 0.034 0.195 0.310 0.785
R STTP 0.453 0.225 0.044 - 0.332 - 0.758 - 0.238 - 0.008
R YDD - 0.098 0.763 - 0.264 0.566 - 0.064 - 0.103 0.056
Eigenvalue 4.057 1.286 1.120 0.414 0.090 0.032 0.000
Proportion 0.580 0.184 0.160 0.059 0.013 0.005 0.000
Cumulative 0.580 0.763 0.923 0.982 0.995 1.000 1.000

Table 4 (B). Principal component loadings for rates of performance variables.



Principal component analysis of the rate metrics shows that 92% of variation is
described by the ® rst three eigenvectors, with the ® rst eigenvector accounting for the
lion’ s share (58% ), and the second and third eigenvectors accounting for 18 and 16%
of the variation, respectively. The fourth largest eigenvalue (and its corresponding
eigenvector) describes less than 6% additional variation, thus we conclude that the
data are appropriately reduced to three dimensions, which we label R_PRIN1,
R_PRIN2 and R_PRIN3.

We label eigenvector R_PRIN1 as a measure of throughput improvement or
capacity-learning-per-day. The weights for all three labour productivity rates are
large and positive, as is that for the rate-of-change of stepper throughput, which
means wafer layers processed per day are increasing and labour productivity is
improving. The weight for rate-of-change for cycle time is large and negative,
which means fabs receiving a high scoring are reducing cycle time.

We label eigenvector R_PRIN2 as a negative measure of defect density improve-
ment or j̀ust-in-time’ learning. Positive and large coe� cients for defect density and
cycle time per layer suggest that increases in defect density go hand-in-hand with
increases in cycle time. Or, viewed in the opposite way, decreases in defect density
come with decreases in cycle time per layer at the cost of a small decrease in stepper
throughput, as is suggested by its small and negative coe� cient. Note that high-
performing fabs (high reductions in defect density and cycle time) receive low scores
along this dimension, while poorly performing fabs receive high scores.

We label eigenvector R_PRIN3 as the line yield improvement or line yield learn-
ing. Large improvements in line yield, and to a lesser extent increases in cycle time
and decreases in defect density, contribute to high scores on this component.

4.5. Factor analysis
Using factor analysis, we are able to reduce the 11 exogenous variables to four

common factors. Table 5A reports the 11 eigenvalues for the technology metrics. The
® rst four eigenvalues combine to account for 79% of the variation. With the ® fth
eigenvalue accounting for less 10% of the variation, the factor analysis is chosen to
be based on four factors. Table 5B reports factor loadings and the variance explained
by each factor. After rotation, the four common factors combine to describe
approximately 79% of the total variation, with the ® rst factor describing approxi-
mately 25% , the second describing 23% , the third describing 17% , and the fourth
describing 15% .

Each of the four factors can be interpreted by looking at the magnitude and sign
of the loadings that correspond to each observable variable, as described in
section 3.2. Referring to the loadings of the rotated factor pattern in table 5B,
factor 1 is dominated by three variables: wafer size, technology (minimum feature
size) and die size. A negative sign on the technology variable suggests that larger line
widths decrease the factor score. Fabs that process large wafers, small circuit geo-
metries and large dies will have high values for factor 1. In practice, as the semi-
conductor industry has evolved, new generations of process technology are typi® ed
by larger wafers, smaller line widths and larger dice. Thus, we label factor 1 as a
measure of process technology generation with new process technology generations
receiving high factor 1 scores and old generations receiving low scores.

Factor 2 is strongly in¯ uenced by wafer starts and facility size and, to a lesser
degree, by the number of process ¯ ows and type of product. Speci® cally, large fabs
that produce high volumes have many di� erent process ¯ ows and emphasize
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memory products will receive high factor 2 scores. Conversely, small fabs that pro-
duce low volumes, have few process ¯ ows and emphasize logic (including ASICs) will
receive a low factor 2 score. We label factor 2 as a measure of process scale and
scope.

Factor 3 is dominated by process age, facility age, and, to a lesser degree, product
type. The older the process and facility, the higher the factor 3 score. Also, a negative
sign on the product type loading suggests that logic producers will have high scores
for this factor. Old logic fabs will score highly in factor 3, which we label as process
and facility age.

Factor 4 is dominated by one factor: number of active die types. Thus, we label
factor 4 as product scope. Firms with many die types, e.g. ASIC manufacturers, will
receive high factor 4 scores.

4.6. What drives performance?
In order to illustrate the proposed methodology, we investigate the relationship

between the reduced-form exogenous factors and the reduced-form performance
metrics. Speci® cally, we evaluate the degree to which the reduced-form technology
metrics of product, technology and production process in¯ uence a fabrication facil-
ity’s reduced-form performance metrics by performing a series of regressions. In each
regression, a reduced-form performance metric is treated as the dependent variable,
and the reduced-form exogenous factors are treated as the independent variables.
Organization variables are not included in our analysis. Also, we investigate the
e� ects of non-contemporaneous measurement by constructing a vector that indexes
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1 2 3 4 5 6 7 8 9 10 11

Eigenvalues 3.109 2.470 1.620 1.484 0.946 0.500 0.412 0.212 0.131 0.089 0.028
Proportion 0.283 0.225 0.147 0.135 0.086 0.045 0.037 0.019 0.012 0.008 0.003
Cumulative 0.283 0.507 0.655 0.789 0.875 0.921 0.958 0.978 0.989 0.997 1.000

Table 5 (A). Eigenvalues for technology metrics.

Factor 1 Factor 2 Factor 3 Factor 4

STARTS - 0.148 0.891 - 0.036 0.140
W SIZE 0.885 0.042 - 0.319 - 0.171
FLOWS 0.057 0.721 0.095 0.398
P TYPE 0.061 0.580 - 0.558 - 0.118
D TYPE 0.087 0.090 0.005 0.916
TECH - 0.930 - 0.156 0.240 0.031
P AGE - 0.124 0.294 0.868 - 0.125
D SIZE 0.754 - 0.106 0.221 0.218
F SIZE 0.165 0.807 0.098 - 0.223
CLASS - 0.489 0.102 - 0.455 0.503
F AGE 0.405 0.230 - 0.582 - 0.470
Variance explained

by each factor 2.700 2.500 1.838 1.648

Table 5 (B). Loadings for rotated technology factors.



when the observations were made, and treat this as an independent variable. ² In
each regression, the null hypothesis is that the reduced-form performance metric is
not associated with the reduced-form exogenous factors (including the time index).

Evaluation of these hypotheses provides insight into the degree to which product,
technology and production process decisions in¯ uence fab performance. Or, put
di� erently, we evaluate the degree to which these factors do not explain perform-
ance. Two sets of regressions are undertaken. Columns (1) and (2) in table 6 report
regression results for the two principal components describing reduced-form mean
performance metrics. Columns (3)± (5) in table 6 report regression results for the
three principal components describing reduced-form rate-of-change of performance
metrics.

4.6.1. Analysis of reduced-form mean performance metrics
Column (1) reports coe� cient estimates for M_PRIN1 (e� cient responsiveness).

Only one variable, factor 2 (process scale and scope), is statistically signi® cant. This
® nding supports the proposition that ® rms that score high on process scale and scope
display high degrees of e� cient responsiveness. Note that this ® nding is generally
consistent with the view that fabs making a variety of chips using a variety of pro-
cesses compete on turn-around time, which is consistent with e� cient responsive-
ness, instead of on low cost achieved through mass production. The model produces
an adjusted R2 of 0.47, but the F statistic is insigni® cant, which suggests the inde-
pendent variables may not have much explanatory power.

Regression analysis of the M_PRIN2 (mass production) shown in column (2)
suggests that the independent variables provide a high degree of explanatory power.
The model has an adjusted R2 of 0.71 and an F value that is statistically signi® cant.
Two parameters, factor 1 (process technology generation) and factor 3 (process and
facility age), have coe� cients that are statistically su� cient. We can interpret the
coe� cients as suggesting that new generations of process technology, and young
processes and facilities are used for mass production. Indeed, this result supports
the commonly held view that high-volume chips, e.g. DRAMS, are technology dri-
vers, which drive both the introduction of new technology and the construction of
new facilities. In both regressions, we note that non-contemporaneous measurement
has no signi® cant e� ect.

These two regressions suggest that the mean performance metrics are related to
technology metrics, i.e. the choice of technology predicts mean performance levels.
Importantly, if the choice of technology re¯ ects a ® rm’s strategic position (e.g. a
DRAM producer focused on mass production of a single product compared to an
ASIC producer focused on quick turn-around of a wide variety of chips produced
with a variety of processes), then benchmarking studies must control for the fact that
® rms may pursue di� erent strategies by adopting di� erent technologies.
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² The most recent quarter of data collected from the 12 fabrication facilities falls within a
2-year window between the beginning of 1992 and the end of 1993. The data selected for
analysis are the last complete year of observations; the maximum temporal measurement
di� erence is seven quarters. Since di� erences are measured in quarters after the ® rst quarter
of 1992, the measurement interval vector contains elements that vary between zero and seven
in whole number increments.
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4.6.2. Analysis of reduced-form rate-of-change performance metrics
The regression analysis for R_PRIN1 (throughput improvement) is shown in

column (3). The analysis shows that none of the independent variables is statistically
signi® cant. Moreover, neither the adjusted R2 nor the F statistic suggest a relation-
ship between the reduced-form technology factors and throughput improvement.
This result suggests that factors other than technology, perhaps organizational fac-
tors, are the source of throughput improvements.

Similarly, regression analysis of R_PRIN2 [column (4)]provides little support for
a relationship between technology and defect density improvement. Only factor 3,
process and facility age, is signi® cant, but at the 90% con® dence interval. The
relationship suggests that new processes and facilities correspond to high rates of
defect density improvement. The low adjusted R2 and insigni® cant F statistics sug-
gest that other factors are responsible for improvements in defect density.

Unlike the prior two models, the regression model for R_PRIN3 (line yield
improvement), shown in column (5), does indicate a relationship between technology
and performance improvement. Line yields improve with: (1) new process tech-
nology (although only weakly); (2) small fabs that employ few process ¯ ows (process
scale and scope); and (3) greater product variety (product scope). The model yields
an adjusted R2 of 0.65 and an F value that is statistically signi® cant. The result can be
interpreted with respect to the type of fab. Custom ASIC fabs (because they produce
many products with few processes) with relatively new process technology experience
the greatest line yield improvements. ² Note that from a strategic standpoint, improv-
ing line yield is more important to ASIC fabs than other fabs, because wafers broken
during processing impose not only high opportunity costs (because of customer
needs for quick turn-around), but also could potentially damage their reputation
for quick turn-around.

In summary, the three regression models predicting rates of improvements pro-
vide an insight into performance not revealed by the regressions involving the
reduced-form mean performance metrics. Except for factor 3 in the second equation,
none of the independent variables in¯ uences the rate-of-change for R_PRIN1 and
R_PRIN2. Variations in the rate-of-change for these two components appear to be a
result of other factors not included in the model. Variations in the rate-of-change for
the third component, R_PRIN3, are explained to a high degree by factors 1, 2 and 4.

5. Discussion

The Competitive Semiconductor Manufacturing Study provides an interesting
opportunity for evaluating the proposed methodology. Without employing data
reduction techniques, the study must grapple with 12 complete observations, seven
performance metrics and at least 11 exogenous variables describing variations in
products, technologies and production processes. ³ The unreduced data o� er no
degrees of freedom for testing hypotheses relating practices to performance. The
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² Interestingly, this ® nding is consistent with the observation that some of the older ASIC
fabs studied introduced a new production technology for handling wafers, which greatly
reduced wafer breakage.

³ Additionally, the study has recorded responses to literally hundreds of questions ranging
from human resource policies to information processing policies with the intent of identifying
practices leading to high performance.



methodology developed in this paper and applied to the CSMS data shows promise
for resolving the data analysis challenges of benchmarking studies in general.

Application of principal component analysis reduced seven performance metrics
(14 after time series data are summarized by means and rates-of-change) to ® ve
reduced-form variables. Factor analysis reduced technology variables from 11 to
four. Whereas regression analysis initially was impossible, data reduction allowed
our six-variable model to be analysed with six degrees of freedom (12 observations
less six degrees of freedom for the model).

Regression analysis indicates that while reduced-form technology variables
greatly in¯ uence the mean level of performance, they have a limited impact in
explaining variations in the rate-of-change of performance variables. Clearly,
other factors, e.g. organizational practices, are likely to be driving performance
improvements. Indeed, analysis of the reduced-form data provides a baseline
model for evaluating alternative hypotheses, since it provides a mechanism for
accounting for variations in products, technologies and production processes.

Even if a larger number of observations was available, employing data reduction
techniques has many bene® ts. First, reduced-form analysis will always increase the
number of degrees of freedom available for hypothesis testing. Second, principal
component and factor analyses provide new insights into the underlying regularities
of the data. For instance, results from both principal component analysis and factor
analysis suggest components and factors that are intuitively appealing, and resonate
with important aspects of competition within the semiconductor industry. While
interpreting principal components and factors in general can be di� cult, the tech-
niques o� er advantages over less rigorous approaches. Simple plots and charts of
performance metrics, e.g. were ® rst used to compare the fabs, but drawing conclu-
sion from these charts was not only di� cult but may have lead to incorrect assess-
ments.

The empirical results of the semiconductor data provide a case in point. Principal
component analysis reveals that low cycle time co-varies with high labour produc-
tivity, high line yields and high stepper throughput resulting in eigenvector
M_PRIN1 (e� cient responsiveness). Also, low defect densities co-vary with high
cycle times and low engineering e� ort resulting in eigenvector M_PRIN2 (mass
production). These orthogonal vectors were not apparent in individual plots and
charts of the variables. Indeed, the principal components for both means and rates-
of-change seem intuitively sensible to an informed observer once the underlying
relationships are revealed. A similar assertion can be made for the reduced-form
factors.

Third, regression analyses which identify the relationship between reduced-form
exogenous variables and reduced-form performance metrics identify correlations
that otherwise might not be so easily discernible. The correlation between latent
technology structure and ® rm performance will not necessarily be revealed by alter-
native formulations. For instance, the lack of observations prohibits regressing the
11 exogenous variables onto each of the 14 summary performance statistics.
Furthermore, interpreting and summarizing the relationship between right-hand
and left-hand variables is more di� cult for 11 variables than for ® ve.

When employing the proposed methodology, several caveats must be kept in
mind. Many researchers reject the use of exploratory factor analysis because of its
atheoretical nature (principal component analysis is less problematic because it pro-
duces an orthogonal transformation). We note, however, that factor analysis is used,
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in essence, to generate proxies instead of directly testing hypotheses. Nevertheless,
the fact that factors are not unique suggests that any particular latent structure may
not have a relevant physical interpretation and thus may not be suitable for hypoth-
esis testing. Correspondingly, interpreting the physical signi® cance of particular
principal components and factors poses a challenge. While a precise understanding
of components and factors is available by studying the loadings, applying a label to a
component or factor is subjective, and researchers may di� er in the labels they use.
Yet ® nding an appropriate label is useful because it facilitates interpretation of
regression results and limits the need to work backwards from regression results
to component and factor loadings. Nonetheless, the subjectiveness of labels is pro-
blematic. Because interpretation of factor loadings is subjective, we recommend that
the results of factor analysis be evaluated for relevancy by industry experts before
using it in a regression analysis. Also, the robustness of our methodology has yet to
be determined. As discussed in § 3.2, exploratory factor analysis may lack su� cient
robustness to be applied in situations when data are non-normally distributed.

Another criticism is that data reduction techniques reduce the richness and qual-
ity of the data, and thus reduce and confound the data’s information content. Data
reduction is accomplished by throwing away some data. While throwing away data
seems anathema to most practitioners and researchers (especially after the cost
incurred for collecting data), principal component analysis and factor analysis
retain data that explain much of the variance and omit data that explain little of
the variance. Thus, it is unlikely that the application of data reduction techniques
will lead to the omission of key information. Obviously, collecting more data and
improving survey design is one way to obviate the need for data reduction.
Unfortunately, data collection involving large numbers of observations often is
impossible either because of a small number of ® rms or because of the proprietary
nature of much of the data. Theoretically, improving survey design could mitigate
the need for some data reduction by improving the nature of the data collected. The
authors have found, however, that the multidisciplinary nature of the groups
engaged in benchmarking e� orts coupled with budget and time constraints for
designing and implementing surveys invariably leads to tradeo� s that preclude
design and implementation of a perfect study. As with all empirical studies, our
methodology attempts to make the most of the data available.

Accounting for non-contemporaneous measurements in the regression analysis
rather than in the data reduction step may lead to biases. Analysis of industries with
high rates-of-change, e.g. in semiconductor fabrication, or where time between
observations is large, should proceed with caution. A further problem with the
method is that even though the degrees of freedom are more likely to be positive
after data reduction techniques are applied, six degrees of freedom as in the case of
this preliminary study o� ers a very small number with which to test hypotheses and,
thus, is problematic.

The methodology also poses problems for practitioners. The methodology is data
intensive, which poses data collection problems. Also, the observation is omitted if
any data are missing. If data collection hurdles can be overcome, many practitioners
may not be familiar with the statistical concepts employed or have access to the
necessary software tools. Both problems can be overcome by collaborative e� orts
between practitioners (who have access to data) and researchers (who are familiar
with statistical techniques and have access to the necessary software tools). Indeed,
these reasons resonate with the motivation behind the Alfred P. Sloan Foundation’ s
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series of industry studies. These caveats notwithstanding, the proposed methodology
o� ers an exciting opportunity to introduce more systematic analysis and hypothesis
testing into benchmarking studies.

Our approach also o� ers several opportunities for future research. One oppor-
tunity is to collect data on additional fabs and expand our analysis. At present, we
have incomplete data on several fabs. Filling in the incomplete data would expand
our sample and allow us to test our hypotheses with greater precision. Moreover, the
data set is likely to grow because CSMS continues to collect data in fabs not in our
data set. Perhaps the greatest opportunity to use this methodology is in conjunction
with exploring the in¯ uence of organizational practices on performance.
Organizational hypotheses concerning what forms of organization lead to perform-
ance improvement can be developed and tested. CSMS collected data on a large
number of variables. These data can be reduced and analysed in much the same way
as the technology metrics. For example, the latent structure of a group of variables
describing certain employment practices, e.g. teams and training, could be identi® ed
via factor analysis and included in the regression analysis.

6. Conclusion

Systematically linking performance to underlying practices is one of the greatest
challenges facing benchmarking e� orts. With the number of observed variables often
reaching the hundreds, data analysis has proven problematic. Systematic data analy-
sis that facilitates the application of hypothesis testing has also been elusive.

This paper proposed a new methodology for resolving these data analysis issues.
The methodology is based on the multivariate data reduction techniques of principal
component analysis and exploratory factor analysis. The methodology proposed
undertaking principal component analysis of performance metrics’ summary statis-
tics to construct a reduced-form performance vector. Similarly, the methodology
proposed undertaking exploratory factor analysis of independent variables to
create a reduced-form set of decision variables. Data reduction increases the degrees
of freedom available for regression analysis.

By empirically testing the methodology with data collected by the Competitive
Semiconductor Manufacturing Study, we showed that the methodology not only
reveals underlying empirical regularities, but also facilitates hypothesis testing.
Regression analysis showed that while product, technology and production process
variables greatly in¯ uence the reduced-form mean performance metrics, they had
little impact on the reduced-form rate-of-change performance metrics. Importantly,
the proposed model presents a baseline for jointly examining other hypotheses about
practices that lead to high performance. Perhaps with the application of the pro-
posed model, practitioners and researchers can employ more systematic analysis to
test hypotheses about what really drives high performance.
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