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Yield is one of the most important measures of manufacturing performance in the semiconductor industry, and equipment
condition plays a critical role in determining yield. Researchers and practitioners alike have traditionally treated the problems of
equipment maintenance scheduling and production dispatching independently, ignoring how equipment condition may affect
different product types or families in different ways. This paper addresses the problem of how to schedule maintenance and
production for a multiple-product, multiple-stage production system. The problem is based on the situation found in semicon-
ductor wafer fabrication where the equipment condition deteriorates over time, and this condition affects the yield of the pro-
duction process. We extend a recently developed Markov decision process model of a single-stage system to account for the fact
that semiconductor wafers have multiple layers and thus make repeated visits to each workstation. We then propose a method-
ology by which the single-stage results can be applied in a multi-stage system. Using a simulation model of a four-station wafer fab,
we test the policies generated by the model against a variety of other maintenance and dispatching policy combinations. The results
indicate that our method provides substantial improvements over traditional methods and performs better as the diversity of the
product set increases. In the scenarios examined, the reward earned using the policies from the combined production and
maintenance scheduling method was an average of more than 70% higher than the reward earned using other policy combinations
such as a fixed-state maintenance policy and a first-come, first-serve dispatching policy.

1. Introduction searchers have explored how in-line data can be collected

and used to predict end-of-line yields (Nurani et al., 1996;

Semiconductor wafer fabrication facilities (fabs) often
manufacture a wide variety of products. Using the same
equipment set, one fab can produce memory chips, logic
devices, and microprocessors. Yield, defined as the frac-
tion of working devices that emerge from the manufac-
turing process, is the most important performance
measure for many fabs. Particulate contamination within
the process equipment is major source of yield loss
(Borden and Larson, 1989), and the level of equipment
contamination will affect the yield of different product
types differently.

In recent years, a great deal of scientific and engi-
neering effort has been invested in developing ways to
assess equipment condition in real time. Several re-
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Lee, 1997; Cunningham and MacKinnon, 1998; Nurani
et al., 1998; Segal et al., 1999). Other researchers have
studied how to use devices such as in situ particle moni-
tors, which indicate particle levels in the equipment dur-
ing production, to improve cleaning schedules and
increase yields (Borden and Larson, 1989; Peters, 1992;
Hunter and Nguyen, 1993; Takahashi and Daugherty,
1996). In all of this work, production decisions such as
the release of new work into the fab and lot dispatching
are not considered.

Another stream of research has been directed toward
linking yield information with lot-sizing decisions, i.e.,
the decision of iow many units to feed into a production
process given that some yield loss is expected. Yano and
Lee (1995) review over 120 articles related to lot-sizing
models with random yield. Much of the research in this
area has focused on multiple-stage, single-product
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systems; examples include the works by Lee and Yano
(1988), Gong and Matsuo (1990), and Wein (1992). Ex-
amples of research on multiple-stage, multiple-product
systems include the works by Akella ef al. (1992) and
Tang (1992), Gong and Matsuo (1997), Shen (1997), and
Chitchachornvanich (1998). These models account for
yield loss, but they do not explicitly link the process or
equipment condition to the yield loss.

Most research that explicitly links equipment condition
to yield is focused on single-product, single-stage systems.
The classic Economic Manufacturing Quantity (EMQ)
model has been extended in various ways to account for
changing equipment condition and inspection policies;
examples include the works by Rosenblatt and Lee
(1986), Porteus (1986, 1990), Lee and Rosenblatt (1987,
1989), Lee and Park (1991), and Makis and Fung (1998).
Since only one product is produced, the question of dis-
patching, or which product to process next, is not con-
sidered.

The first research to incorporate yield information in
dispatching decisions is the work by Cunningham (1995).
The author demonstrates how using yield information
can increase throughput, reduce flow time, and improve
yield predictability. However, the process yield is not
explicitly connected with the equipment condition. In
summary, most research related to the problem under
study does not explicitly link equipment condition to
yield loss. The models that do make this connection are
models of single-product systems, and therefore they do
not address the issue of dispatching.

Sloan and Shanthikumar (2000) develop a model that
simultaneously determines maintenance and production
schedules for a single-stage, multiple-product system.
This model is the first of a multi-product system in which
equipment condition is explicitly linked to yield loss and
in which yield information is used in dispatching deci-
sions, i.e., used proactively for decision making rather
than only for predictive purposes. While this model re-
veals some important lessons in the effort to bridge the
gap between maintenance and production scheduling, it is
not clear how the results would be implemented in a
complex, multi-stage system. Indeed, Yano and Lee
(1995) point out the difficulty in solving analytical models
of multi-product, multi-stage systems and highlight the
need for “heuristic solution procedures that are compu-
tationally inexpensive and easy to implement” (Yano and
Lee, 1995, p. 331).

With these issues in mind, the current paper extends
this earlier work in two ways. First, we extend the model
presented by Sloan and Shanthikumar (2000) to account
for the fact that semiconductor wafers have multiple
layers and thus make repeated visits to each workstation.
Second, we develop a methodology by which the single-
stage results can be applied in a multi-stage system. Using
a simulation model of a four-station wafer fab, we test the
policies generated by the new model against a variety of
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other maintenance and dispatching policy combinations.
We examine four scenarios, varying the number of
products, the number of layers per product, and the ex-
pected yields. The results indicate that the proposed
method provides substantial improvements over tradi-
tional methods and performs better as the diversity of the
product set increases. In the scenarios examined, the re-
ward earned using the policies from the combined pro-
duction and maintenance scheduling method was an
average of more than 70% higher than the reward earned
using other policy combinations such as a fixed-state
maintenance policy and a first-come, first-serve dis-
patching policy.

2. Analytical model

2.1. Problem statement

We consider the problem of determining the production
and maintenance schedules for a multiple-product, mul-
tiple-stage system. (The term “product” could potentially
include to several product types within the same tech-
nology family. For example, several 128 Megabit DRAM
products made using the same technology would be in the
same family and treated as one product in our model.) At
each stage, there is a machine whose condition deterio-
rates over time, and the condition affects the yield of
different product types differently. After observing the
machine condition, we must decide whether to stop pro-
duction and clean the machine or to continue producing.
If production is picked, we must also decide which
product to process. As mentioned above, the machine
condition could be gauged by using an in situ particle
monitor that detects the number of particles in a piece of
equipment while it is operating. This is effectively a
continuous measure, but for modeling purposes, we di-
vide the continuum into discrete segments, or states (this
is discussed in greater detail in Section 6). In addition, we
model time in terms of discrete periods.

Let X, denote the state of machine m in period ¢, where
t=1,2,... Each machine can be in any one of M + 1
states, indexed by i =0,1,...,M, where state 0 denotes
the best possible condition and state M denotes the worst
possible condition. (We have assumed that all machines
have the same number of states simply for notational
convenience; the model could easily address the case in
which each machine has a different number of states.) We
can produce any one of K products, indexed by
k=1,2,...,K, and each product requires n;, visits to each
workstation. We sometimes refer to products as wafers
and to visits as layers. Let !, denote the action taken in
period ¢ with respect to machine m. Possible actions in-
clude producing one of the product types and cleaning the
machine. The cleaning action is denoted as action K + 1.
Define f,,(i, k, ) as the expected yield of product &, layer /
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when machine m is in state i. We assume that the yield for
all products decreases as the machine condition deterio-
rates, i.e., that 8, (i, k, ) decreases in i for each k and /;
however, the magnitude of the change may be different
for different products. The profit earned for each unit of
product k is R;, and the cost to clean machine m is Cy,,
independent of the state. This last assumption is based on
the fact that the main cost of cleaning stems from the
disruption of production and the time that it takes to
disassemble and re-assemble the equipment rather than
from the level of contamination.

We assume that changes in the machine state depend
only on the current state and the action taken. That is, the
machine state changes according to the transition prob-
abilities
P.(jli,a)

= Pr{)(,;+1 =jlX! =i.d, = a;X;l,aZl; ces

=Pr{X,"" = j| X! =id, =a}.

' m
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Under these conditions, {X,Z,tz 1} forms a Markov
chain, and the problem can be treated as a Markov de-
cision process.

2.2. Solution procedure

We wish to extend the single-stage model developed by
Sloan and Shanthikumar (2000) to a multiple-stage envi-
ronment in which products make multiple visits to each
workstation. Even with a small number of products, visits,
and workstations, the dimensionality of such a problem is
quite large. Thus, we propose a heuristic approach,
treating each workstation in isolation and using the single-
stage model to determine the production and maintenance
schedules for each workstation. While such policies may
not be optimal in a theoretical sense, we expect them to
provide substantial benefits over policies that ignore yield
altogether. The following procedure will be used:

1. For each machine, determine a simple maintenance
policy (i.e., cleaning threshold).

2. Determine the expected yields for the entire pro-
duction process based on the simple maintenance
policy and a First-Come, First-Serve (FCFS) dis-
patching policy.

3. For each machine, determine the “‘optimal” pro-
duction and maintenance policy using the model
below, assuming that all other stations use the
simple maintenance policy and an FCFS dispatch-
ing policy.

A policy is a decision rule that prescribes an action for
each state, and our objective is to determine a policy that
maximizes the long-run expected average profit. Define
xm(i,a) as the proportion of time action «a is taken when
machine m is in state i. Possible actions include cleaning
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the machine, denoted as action K + 1, and producing one
of the products. We treat each layer of each product as a
unique action, so the “produce” action is written as k, /,
denoting layer / of product %.

As described above, we first determine a simple main-
tenance policy for each machine, ignoring the yield dif-
ferences between the products. Since all products are
treated the same way, the problem is reduced to choosing
between “‘produce” and “clean” for each state. We simply
need to find the point at which it is more profitable to
stop and clean the machine than to continue producing.
The simple maintenance policy for machine m is deter-
mined by solving the linear program below. (Some ad-
ditional technical assumptions needed to ensure the
existence of an optimal policy are included in Appen-
dix A.)

maximize Z me(i, a)rn(i,a), (1)
subject to me(i, a) :Z me(i, a)Pu(jli,a)
' o for all j, (2)
> xu(i,a)=1, and (3)
xlm(i,aa) >0 forall i,a, 4)

where 7, (i,a) is the reward for taking action a when
machine m is in state i. This type of linear program, first
proposed by Manne (1960), is a standard method for
solving Markov decision processes. Equation (2) repre-
sents the state balance equations for the Markov chain
that governs the machine state transitions. Recall that the
xm(i,a)’s refer to proportions of time, and Equation (3)
ensures that the proportions sum to one. Equation (4)
requires that all of the proportions are non-negative.

Suppose that we need to meet some production re-
quirements in the sense that we want y, to be the fraction
of total good output made up of product k, where
> w7 = 1. For this part of the solution procedure, we
assume that a First-Come, First-Serve (FCFS) scheduling
policy is used. In the long-run, an FCFS policy would be
equivalent to choosing products randomly according to
the production ratios. Since product k requires n; layers,
the “produce’ decision is equivalent to producing layer /
of product k with probability y,/n;. When the machine is
in state i, the expected reward for the “produce” decision
is > . (ye/me) Ry (i, k, ). The “clean” decision costs C,,
independent of the machine state. We solve the linear
program for each machine to determine its simple main-
tenance policy. The solution tells us the proportion of
time the machine spends producing and the proportion of
time that it is being cleaned when the simple maintenance
policy is employed.

Now we can determine the “optimal” production and
maintenance policy for one machine assuming that a
simple maintenance policy and an FCFS dispatching
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policy are used at all other machines. We do this by
solving the above linear program with a modified objec-
tive function and some additional constraints. Define
Yu(k,1) as the average yield of product k, layer / on
machine m when a simple maintenance policy is employed
(a different policy is used for each machine). The future
expected yield of a wafer is simply the product of the
average yields for all future steps (all remaining layers at
each machine). Thus, for producing layers / = 1,2,... n;
of products k = 1,2,...,K, the reward is

YY) <xm<z',k, DR ik, D) [ [ Yl [T [T %k, n)),
i=0 k=1 I=1 n#l s#Em n

and for cleaning, the reward is

M
- mme(i,K—l— 1).
i=0

We use these values in the objective function (1). In ad-
dition, constraints are needed to ensure that sufficient
quantities of the intermediate layers are produced:

S xwlik 141 =Y xu(ik, 1), 1=1,2,. 1

k=1,2,...,K.

We must also ensure that the finished products are pro-
duced in the proper proportions by including the fol-
lowing constraints.

Z[xm(iv k7 l)ﬁm(lakv l)
Zk El Zixm(i’k) l)ﬁm(iv ka 1) I’lk’
I1=1,2,....m; k=1,2,... K,

Yk

where y, is the proportion of (final) product £ required.
We denote the optimal production and maintenance
policy for machine m as 7},(i, a). The optimal policy may
be randomized, i.e., we may choose actions according to
some probability distribution, where 7 (i,a) is the
probability that action « is taken given that machine m is
in state i. The optimal policy is determined as follows:

Step 1. Find an optimal solution, x}, = [x}(i,a)]. Define
the set S* = {i : x} (i,a) > 0,for some a}.

Step 2. For ieS*, n(i,a)=x(i,a)/> ,x;(i,a); for
i¢ S, w,(i,a) =1 for some arbitrary a.

Computationally, the proposed method is not partic-
ularly demanding. To determine a production and
maintenance policy for a particular machine, one must
first solve the linear program specified by Equations (1)
through (4) for each machine in the system. Since there
are ), n; possible production actions and one possible
maintenance action in each state, each of these initial
linear programs has M x (3, ni+ 1) variables and

Sloan and Shanthikumar

M + 1 constraints. Next, the expanded linear program
outlined above must be solved, and this problem will have
>« — K additional constraints for the intermediate
layers and ), n; additional constraints for the finished
products. In Section 5, we examine a fab that produces 10
products, each with 20 layers. Two machines, each with
five states, exhibit the deterioration pattern of interest. To
determine the optimal policy, we solve two linear pro-
grams each with 1005 variables and six constraints. The
expanded linear program has 1005 variables and 402
constraints. The solution of all of these problems takes
only a few seconds using CPLEX on a DEC 8400
workstation. Thus, computing time should not be an is-
sue even for problems involving a large number of
products and/or layers per product.

The model implicitly assumes that all products are
available at each decision epoch. We would expect this
assumption to be close to reality in high-volume, make-
to-stock fabs, but it may not be realistic for some envi-
ronments. In fact, actually implementing the optimal
policy may require high levels of Work-In-Process (WIP)
inventory which would in turn lead to long flow times. On
the other hand, Cunningham (1995) demonstrated that
the flow time for good chips could be reduced by giving
priority to wafers with high yield. In other words, while
the overall flow time may increase, the yield is higher, so
the average flow time for a working device decreases. For
some fabs, the cost of long flow times might outweigh the
benefit of increased yields.

2.3. Monotone optimal policy

Under some additional assumptions, it can be shown that
a monotone optimal policy exists. In the semiconductor
industry, leading-edge products typically have very small
minimum feature sizes or line widths. A device with a
smaller minimum feature size has more circuitry per unit
area than a device with a larger minimum feature size,
and, other factors being equal, is worth more. However,
devices with smaller minimum feature sizes are also more
sensitive to the equipment condition, and, therefore, have
lower yields than devices with larger minimum feature
sizes. To model this phenomenon, we rank the products
in descending order of sensitivity to the machine state. A
product with a lower index is more sensitive and has a
higher unit profit than a product with a higher index. We
also assume that as the condition of the machine deteri-
orates, the expected profit decreases less for less-sensitive
products than for more-sensitive products. If these as-
sumptions hold, then a monotone optimal policy will
exist; that is, we will produce more-sensitive products
when the machine condition is good, and as the machine
condition deteriorates, we will produce less-sensitive
products. Eventually, the machine condition will reach
the cleaning threshold, and we will stop and clean the
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machine. Such policies are desirable because they are
intuitive and easy to implement. The details are discussed
in Appendix A.

3. Simulation model

Semiconductor manufacturing is an extremely complex
process that involves hundreds of steps and requires re-
peated visits to the same set of workstations. (For a de-
scription of the wafer fabrication process refer to Uzsoy
et al. (1992).) Owing to the complexity and repetitive
nature of the manufacturing process, discrete-event
computer simulation models have become a popular tool
to study wafer fabrication lines. Many researchers have
employed simulations to compare the performance of
different scheduling policies (Glassey and Resende, 1988;
Wein, 1988; Cunningham, 1995; Glassey et al., 1996).
Below we describe the details of the simulation model
used to compare different combinations of maintenance
and scheduling policies.

3.1. Workstations

Our fab model consists of four workstations. Each station
represents one of the primary process steps in the fabri-
cation process: oxidation/deposition, photolithography,
etch, and ion implant/diffusion. The oxidation/deposition
and etch stations exhibit the deterioration process de-
scribed above, and we assume that all of the yield loss will
occur during these operations. While additional yield
losses will surely occur at other stations in a real fab, our
focus is on the effect of yield loss that can be avoided
through changes in the dispatching and maintenance
policies.

Both the deposition and etch stations have a finite
number of machine states. A high state number indicates
a worse condition than a low state number. As the ma-
chine is used, the condition deteriorates. The transition
from state to state is governed by a Markov chain with
known transition probabilities, as described in the pre-
vious section. In all of the experiments, we model the
machine deterioration as a five-state Markov chain. The
actual parameter values (e.g., transition probabilities and
yields) are different for each station.

As mentioned previously, the yield depends on the
product (k), layer (/), machine (m), and machine condi-
tion (i). Note that we use the term yield to refer to die
yield, i.e., the number of good chips on a wafer divided by
the total number of chips. Furthermore, we assume that
there is no line yield loss, i.e., all of the wafers started in
the fab complete the entire production process.

We model the yield at the deposition and etch stations
using a beta probability distribution. The beta distribution
is often used when actual data are not available (Law and
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Kelton, 1991). In addition, we know that the yield values
must be between zero and one, the same range as the beta
distribution. We generated different yield matrices for the
deposition and etch stations using the beta pseudo-ran-
dom number generation procedure described by Bratley
et al. (1987). We assumed that the yield was the same
for each layer of a given product, ie., f,(i,k 1) =
Ba(i,k,2)="---=p,(i k,ng) for each i and k, but different
yields for each layer could easily be incorporated. More
details on the yields are discussed in Section 4.3.

We have defined the time units in the simulation — as in
the analytical model — in terms of periods. One period is
required to process each wafer at each station. In reality,
it may take longer to process a given product type at a
particular station. Even the same product type may have
different processing times at the same workstation, de-
pending on its stage of completion. For example, many
products require “high current” and “low current” im-
plant operations, and the high current implant takes up
to eight times as long as the low current implant. While
the simulation model has the capability to incorporate
different processing times for different products and
workstations, we felt that this would add complexity
without shedding any additional light on the questions of
interest.

3.2. Dispatching mechanism

The heart of the simulation model is the dispatching
mechanism. It is the bridge between the analytical model
and the actual decision making on the shop floor. Our
goal was to find a dispatching policy that could improve
performance but would still be relatively easy to imple-
ment.

The analytical model implicitly assumes that all layers
of all products are available at each decision epoch. The
output of the model is a policy that indicates when to
clean the machine and when to produce, including which
product (and layer) to produce in each state. In practice,
however, the specified product may not be available or
more than one of the specified product may be available.
Thus, we interpret the output of the analytical model as a
list of candidates. If machine m is currently in state i, layer
[ of product k is a candidate if 7} (i, k, [) > 0. In principle,
one must also specify “secondary” rules, i.e., rules to use
when more than one candidate is available and rules to
use when no candidates are available. Unless otherwise
specified, FCFS is the secondary rule employed. This is
an important feature that distinguishes this model from
the single-stage model of Sloan and Shanthikumar (2000).

3.3. Release of new work

We chose to use a closed-loop release policy, i.e., we re-
lease new work into the fab once the level of work
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remaining drops below a certain threshold. This ap-
proach is commonly used in the semiconductor industry.
Define W as the total amount of work to be released each
time. The release policy is straightforward: when the total
amount of work in the system (in terms of layers) drops
below a certain threshold, release W layers of new work.
For each experiment (described in the next section), we
had to determine an appropriate value for W and an
appropriate work release threshold. We want to end up
with y, proportion of good wafers of product &, and each
wafer of product k£ requires n; layers. The proportion of
new product k wafers to release is defined as

) = e/ Y

¢ Do/ Yi ’
where Y is the observed yield of product & thus far. For
each k, release [ Wy, /n;| wafers, where [x] is the smallest
integer greater than or equal to x.

The choice of the threshold and W will have an im-
portant effect on the results. A high threshold and/or
large value of W will result in high WIP and long flow
times but give us more flexibility with the dispatching
decision, i.e., bring us closer to the policy generated by
the analytical model. Fab managers would need to con-
sider this trade-off when choosing the release threshold.

4. Experiments

4.1. Overview

The purpose of the simulation study is to explore how
production and maintenance schedules that incorporate
equipment condition and yield information can affect fab
performance. We do this by comparing the performance
of the combined production and maintenance schedules
generated using the proposed analytical model with the
performance of combinations of ““traditional” production
and maintenance policies. Sloan and Shanthikumar
(2000) demonstrated that for single-stage systems, the
policies from the analytical model have the biggest effect
when many products are produced and when the pro-
duction is spread out among the products. Thus, we
would expect benefits for fabs that:

e Produce multiple-product types.

e Produce a relatively large quantity of each product
type.

e Do not place high emphasis on due dates (e.g.,
produce-to-stock environment).

e Place high emphasis on yield (as opposed to flow
time, for example).

With these things in mind, we designed experiments to
determine which combinations of dispatching rules and
cleaning policies are the most effective and which factors
have the biggest influence on performance. We examine
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four different cases or fabs: a four-product fab in which
each product has four layers; a four-product fab in which
each product has 10 layers; a four-product fab in which the
products have 20, 15, 15, and 12 layers, respectively; and
a 10 product fab in which each product has 20 layers.

For each fab, we conduct two sets of experiments. In
Experiment 1, all of the conditions necessary to guaran-
tee a monotone optimal policy are met (refer to Sec-
tion 2.3). In Experiment 2, these conditions are not
necessarily met.

4.2. Dispatching rules and maintenance policies

Our objective is to maximize the total average long-run
profit while maintaining a certain level of output of each
product. We assume that there are no due dates and that
the setup time is independent of the product and of the
sequence of production. The main focus of this study is to
compare the performance of a variety of simple, myopic
rules. That is, we want to find rules that are relatively easy
to determine and easy to implement. We consider the
following dispatching policies, divided into categories
based on the information that they use:

Simple (non-yield)

Arrival time

e FCFS (First-Come, First-Serve): Select the lot that
arrived first at this station.

o LCFS (Last-Come, First-Serve): Select the lot that
arrived last at this station.

o FIS (first in shop): Select the lot that arrived first in
the shop.

Processing time

o SPT (Shortest Processing Time): Select the lot that
has the shortest processing time.

e LPT (Longest Processing Time): Select the lot that
has the longest processing time.

e SRPT (Shortest Remaining Processing Time): Select
the lot that has the shortest remaining processing
time.

e LRPT (Longest Remaining Processing Time): Select
the lot that has the longest remaining processing time.

Reward

e VAL (value): Select the lot that has the highest value
(i.e., unit profit).

Yield-based

e CYLD (current yield): Select the lot that has the
highest current, cumulative yield.
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e FRWD (future reward): Select the lot that has the
highest expected future reward, i.e., unit profit times
cumulative yield so far times expected yield of re-
maining steps. The expected yield of future steps is
computed based on the actual yields observed at
those stages thus far during the simulation.

We consider the following equipment maintenance poli-
cies:

o ST (fixed-state): A repair threshold (state) is deter-
mined based on the expected equipment deteriora-
tion. At the beginning of each period, the machine
state is observed. If the state is at or above the
threshold, the machine is cleaned.

o FT (fixed-time): A repair threshold (state) is deter-
mined based on the expected equipment deteriora-
tion. We then compute the expected time to reach the
threshold, say T periods, given that the machine
starts in state 0. The machine is then cleaned every T
time periods. Suppose that the repair threshold is
state 1. Since we have assumed Markov deteriora-
tion, T = 1/p;, where p; is the steady-state propor-
tion of time that the machine spends in state 7 (Wolff,
1989).

e FN (fixed-number): Similar to the fixed-time policy.
A repair threshold (state) is determined based on the
expected equipment deterioration. We then compute
the expected number of periods to reach the thresh-
old, say N time periods, given that the machine starts
in state 0. Each product requires one time period to
process, so we clean the machine after every N units
have been produced. If the machine is never idle, then
this policy will be identical to the fixed-time policy.

For each simulation run, we must specify a dispatching
rule and a maintenance policy. Our benchmark is a first-
come, first-serve dispatching rule and a simple threshold
policy. We have observed these policies being used in
several fabs. Our goal is to investigate the performance
differences between various combinations of the sched-
uling and maintenance policies described above and the
policy generated by the analytical model. We test 16
combinations of the dispatching policies and maintenance
policies described above for each scenario outlined below.

4.3. Summary of factors and levels

As mentioned above, we will examine four fabs. Below we
summarize the parameters of the simulation model and
report the values used in the simulation runs. For each
fab, we examine several different combinations of sched-
uling and maintenance policies.

o Number of products: Fabs 1 through 3 produce four
products, and Fab 4 produces 10 products.

e Layers per product: The products have four layers
each in Fab 1; 10 layers each in Fab 2; 20, 15, 15,
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and 12 layers each, respectively in Fab 3; and 20
layers each in Fab 4.

e Qutput proportions: For all scenarios, the output is
evenly distributed among all products. Thus,
7x = 0.25 for each k in Fabs 1 through 3, and
7% = 0.10 for each k in Fab 4.

e Unit profit: In Fabs 1 through 3, the profit per unit
(in dollars) is 800, 400, 200, and 100, respectively, for
products 1 through 4. For Fab 4, the profit per unit
(in dollars) for is 1000, 900, 800, 700, 600, 500, 400,
300, 200, and 100, respectively, for products 1
through 10.

o Equipment deterioration: For all scenarios, we as-
sume ‘‘slow’ deterioration for the deposition station
and “medium” deterioration for the etch station.
The transition probability matrices are reported in
Appendix B.

e Cleaning cost: For all scenarios, the cost to clean the
deposition station is $10, and the cost to clean the
etch station is $20.

e Yield: We generated 10 different yield matrices for
each station and each experiment from beta proba-
bility distributions, using a different random number
seed for each matrix. The means and variances of the
distributions used to generate the per layer yields are
reported in Table 1. The values generated for a
particular matrix were sorted to ensure that the
model assumptions discussed in Section 2 were met
(e.g., yields tend to be lower as the equipment con-
dition gets worse). We assume that for a given
product the yield is the same for each layer, but
different per layer yields could easily be incorporat-
ed. Fabs 1 through 3, which are all four-product
fabs, have the same per layer yields for a given
product and a given random number seed, but the
final yields will be different because the number of
layers per product differs for each fab. The same
procedure was used to generate yields for Fab 4.
Table 2 reports the mean and variance of final ex-
pected yields for each experiment and each fab.
Appendix B lists a representative final yield matrix
for each fab model and each experiment.

Table 1. Base means and variances of per layer yields for
simulation experiments

Exp.  Oxi./Deposition Etch Monotone
policy
Mean  Variance Mean  Variance
yield (% of yield (% of
mean) mean)
la  0.950 10 0.900 20 yes
Ib 0975 10 0.950 20 yes
2a  0.950 10 0.900 20 no
2b  0.975 10 0.950 20 no
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Table 2. Expected means and variances of final yields for
simulation experiments

Exp. la Exp.1b Exp.2a Exp.2b
Fab 1 Mean yield 0.764 0.867 0.587 0.766
Variance 0.036 0.010 0.043 0.015
Fab 2 Mean yield 0.556 0.718 0.306 0.535
Variance 0.105 0.042 0.108 0.058
Fab 3 Mean yield 0.452 0.585 0.194 0.406
Variance 0.150 0.091 0.137 0.094
Fab 4 Mean yield 0.694 0.769 0.122 0.308
Variance 0.121 0.075 0.130 0.111

Test runs were performed for each scenario to deter-
mine appropriate run lengths. For a given yield level
(matrix), we expect the average reward to converge to a
limiting value after some time, so we examined the av-
erage reward at intervals of 10000 time units and con-
cluded that the limiting value had been reached if the
change from the last inspection point was less than
0.10%. The run length for Fabs 1 and 2 was 2.5 million
time units. For Fab 3, a run length of 5 million time units
was used, and the run length for Fab 4 was 10 million
time units.

5. Results

For each fab and for each experiment, we tested 16
combinations of the dispatching policies and maintenance
policies as described in Section 4.2. Recall that the base
policy is an FCFS dispatching policy with a fixed-state
maintenance policy. Tables 3-5 report the highest per-
centage improvement (as compared to the base policy) for
each policy combination category for each fab. Detailed
results for all 16 policy combinations for each fab are
reported in Appendix C.

The results suggest a number of important lessons.
First, the performance of the fixed-time and fixed-number
maintenance policies is extremely poor compared to the
fixed-state policy. Recall that when using a fixed-state

Table 3. Summary results of simulation experiments for Fab 1

Policy Exp. 2a Exp. la Exp. 2b Exp. 1b

Dispatch Clean

Combined Combined 16.2 12.8 7.4 4.7

Simple Fixed-state 0.0 0.1 0.0 0.0

(non-yield)

Yield-based Fixed-state 0.1 0.0 0.0 0.1

FCFS Fixed- -81.5 -804 —-80.6 —80.4
number

Percent improvement over base policy.
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Table 4. Summary results of simulation experiments for Fab 2

Policy Exp.2a Exp.la Exp.2b Exp.1b

Dispatch Clean

Combined Combined 73.4 43.0 23.2 15.0

Simple Fixed-state 0.0 0.1 0.1 0.1

(non-yield)

Yield-based Fixed-state 0.3 0.7 0.1 0.2

FCFS Fixed- —140.6 —116.6 —113.4 —108.8
number

Percent improvement over base policy.

Table 5. Summary results of simulation experiments for Fab 3

Policy Exp. 2a Exp.la Exp.2b Exp.1b

Dispatch Clean

Combined Combined 477.3 168.5 48.4 38.1

Simple Fixed-state 0.4 0.4 0.1 0.2

(non-yield)

Yield-based Fixed-state 1.2 0.6 0.8 0.8

FCFS Fixed- —605.1 —-2309 —151.0 -—1399
number

Percent improvement over base policy.

Table 6. Summary results of simulation experiments for Fab 4

Policy Exp. 2a Exp. la Exp.2b Exp. 1b

Dispatch Clean

Combined Combined 64.3 57.2 83.5 35.2

Simple Fixed-state 0.1 0.3 0.0 0.1

(non-yield)

Yield-based Fixed-state 0.2 -0.2 0.1 0.7

FCFS Fixed- —659 —147.2 —1822 —-120.2
number

Percent improvement over base policy.

policy, one observes the machine state at each decision
epoch, whereas the fixed-time and fixed-number policies
are based on the expected deterioration. Lack of real-time
information about the equipment condition dramatically
reduces yields. While this may seem obvious, some fab
managers have been reluctant to invest in the equipment
and training needed to implement such cleaning policies.
Additional implementation issues are discussed in Sec-
tion 6.

The second lesson revealed is that dispatching decisions
have an important effect on yield and that it is important
to match products and machine states. In other words, if
different products are affected differently by equipment
contamination levels, then these differences should be
accounted for in shop-floor scheduling decisions. The



Maintenance scheduling and dispatching in semiconductor wafer fabs

results from the combined policies generated by the an-
alytical model are substantially better than the results
from the simple policies. The improvement ranges from
4.7% (Fab 1, Exp. 1b) to over 400% (Fab 3, Exp. 2a). In
most cases, yield-based policies provide a slight im-
provement over non-yield policies, but the combined
policies are still far superior. This result is particularly
interesting given that the maintenance policies paired
with the combined, simple, and yield-based dispatching
policies all have the same cleaning threshold. This result
supports the findings of the earlier study of single-stage
systems by Sloan and Shanthikumar (2000).

It is interesting to note how the magnitude of im-
provement provided by the combined policies changes
under different conditions. Referring to yield values in
Tables 1 and 2, we see that the expected yields decrease in
the order Exp. 1b > Exp. 2b > Exp. la > Exp. 2a. Re-
ferring to Tables 3 through 6, the level of improvement
provided by the combined policies increases in the oppo-
site order in all but one instance (Fab 4, Exp. 2b). The
pattern is illustrated in Fig. 1, which shows the average
improvement provided by the Comb./FCFS policies as
compared to the base policy for all experiments. This re-
sult suggests that since yields are bounded by zero and one
there is less opportunity for the combined policies to im-
prove upon the simple policies when products have high
expected yields. Put differently, the dispatching decisions
will have a smaller influence as the mean yield increases.

The differences between the Experiment 1 and 2 results
is somewhat counter-intuitive at first glance. We would
expect that the combined policies in Experiment 1, which
imposes more structure on the yield values, would pro-
vide more improvement than those in Experiment 2. But
the results indicate just the opposite. We believe that this
is an artifact of the method used to generate the experi-
mental yield values. As revealed in Table 2, the expected
yields for Experiment 2 are lower that those for Experi-

500
Exp.2a ——

450 +  Exp.la ----=-- 4
Exp.2b —o—

400 + Exp.1b -~ 4

350
300 |
250
200
150

Average Improvement (%)

Fab 4

Fig. 1. Average improvement provided by Comb./FCFS poli-
cies.
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ment 1. This fact suggests that what matters most is the
yield differences between different states for a given
product rather than yield differences between products.
Whether or not the assumptions necessary for the
monotone optimal policy are met, the combined policies
still provide sizable improvements over the simple poli-
cies, and the fixed-state maintenance policy is still far
superior to the fixed-number and fixed-time policies.

Finally, the most encouraging result is that substantial,
consistent improvements can be made by applying the
analytical model output in a heuristic fashion. For ex-
ample, using the combined policy along with an FCFS
secondary policy (Comb./FCFS in the tables) is almost
always as good as the best combined policy. In other
words, the secondary policy does not make a significant
difference in performance. Determining the optimal
combined policy is straightforward once the yields have
been characterized (see Section 6), and minimal effort is
needed to apply the policy.

6. Implementation issues

The success of the proposed methodology depends
heavily on the availability of fairly detailed information
about equipment condition and yield. How would fabs go
about gathering this information? First, one must have
the ability to observe the machine state. Many researchers
have demonstrated how in-line equipment information
can be used to assist in process control (May and Spanos,
1993; Bunkofske er al., 1996; Edgar et al., 1999). As
discussed above, we have proposed the use of in situ
particle monitors (ISPMs) to gauge the machine state.
Other researchers have demonstrated the effectiveness of
using real-time ISPM data in assessing equipment con-
tamination levels, improving equipment cleaning sched-
ules, and increasing yields (Borden and Larson, 1989;
Peters, 1992; Hunter and Nguyen, 1993; Takahashi and
Daugherty, 1996). While an ISPM provides an essentially
continuous measure of state, the particle count could be
broken down into discrete states for use in the analytical
model, as illustrated in Fig. 2.

State 4

State 3

Particle Count

State 0

Time

Fig. 2. Translating particle count into discrete states.
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Finally, and perhaps most importantly, detailed
product yield information must be acquired. The infor-
mation needed by the analytical model, namely the
p(i,k, 1) values for each product and each layer, is not
likely to be readily available in most production fabs.
However, ISPMs and the like are becoming more and
more prevalent, and tremendous efforts have been made
to link particle counts and other in-line measurements to
yield, often on a per layer level of detail (Cunningham,
1995; Nurani et al., 1996, 1998; Lee, 1997; Cunningham
and MacKinnon, 1998; Segal ef al., 1999). Initial yield
estimates could be developed using the techniques de-
scribed in these references, and the yield values would be
updated as more data are collected and analyzed. Fur-
thermore, once the relationship between yield and ma-
chine state is characterized for a few product families,
this information could be used as a starting point for
related product families, i.e., those with similar designs
and/or circuit dimensions. Thus, “perfect” information
about yield is not required initially to benefit from the
in-line measurements currently available. Even using
simple policies such as, “Do not run Product 1 when the
particle count is greater than X,” could help increase
yields.

The current study demonstrates the value of using in-
line process and yield information proactively to improve
yield rather than simply for predictive purposes. It is our
hope that this lesson will provide added incentive to de-
velop the required technologies and expertise to collect
and analyze more detailed data. Clearly, the implemen-
tation details need to be adapted to the specific needs and
data-collecting capabilities of particular fabs.

7. Conclusions

The purpose of this paper was to examine the effects of
using in-line equipment condition and yield information
for equipment maintenance scheduling and dispatching.
The problem was motivated by an application is semi-
conductor manufacturing where particulate contamina-
tion has a substantial effect on yield, and different
products types or families are affected to different degrees
by such contamination. We extended a recently devel-
oped Markov decision process model to simultaneously
determine the equipment maintenance and production
schedules for each stage of a multiple-stage, multiple-
product production system with the objective of maxi-
mizing the long-run expected average profit. A simulation
model of a four-station semiconductor wafer fab was
used to compare the performance of policies generated by
the model with that of other policies commonly used in
practice. We examined many different scenarios, varying
factors such as the number of products, the number of
layers per product, and the expected yields.

Sloan and Shanthikumar

Several conclusions may be drawn from this study.
First, substantial gains can be made simply by obtaining
accurate information about the equipment condition.
Fixed-state maintenance policies that use real-time in-
formation about equipment condition are much better
than fixed-time and fixed-number policies that rely only
on expected deterioration patterns. Second, incorporat-
ing yield information into the simple policies — e.g.,
processing the product with the highest attained yield
first — provides only a slight improvement over a simple
first-come, first-serve policy. Third, we found that the
combined policies generated by the analytical model were
consistently superior to any simple policy, even when the
same maintenance policy was used. In other words, the
dispatching policy can have a big impact on final yields
and profits. The degree of improvement increases as the
mean yield decreases and as the number of layers per
product increases. A greater diversity of products gives
the combined policies more opportunities to match the
products to the appropriate machine states, resulting in
higher yields than the simple dispatching policies. In the
scenarios studied, the improvement provided by the
combined policies ranged from 4.7% to more than 400%,
with an average of more than 70%. In an industry as
competitive as semiconductor manufacturing, even small
improvements in yield can mean the difference between
long-term success and failure.

The results of the simulation study are encouraging.
We have seen that the benefits achieved in the single-stage
environment can be extended to a multiple-stage system.
Furthermore, the policies are easy to implement once the
analytical model has been solved. More work needs to be
done on expanding the simulation model to include more
“real world” complexities such as batch operations,
equipment failures (which would allow for so-called
“opportunistic” maintenance) and sequence-dependent
setups. In addition, including multiple machines at each
station and allowing multiple repair actions would also be
of interest. Future research will be directed toward
studying these issues.

Appendices
Appendix A: Optimal policies (from Section 2)

A.1. Existence of an optimal policy

Several assumptions are needed to ensure the existence of
an optimal solution to the optimization problem in Sec-
tion 2. We assume that rewards are bounded and that the
cost to clean the machine m, denoted as C,,, does not
depend on the machine condition. The primary cost of
cleaning is due to the disruption of production caused by
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taking the equipment apart and putting it back together,
so the level of contamination will not significantly change
the cost to clean the equipment. Therefore, it seems that a
constant cleaning cost is appropriate in this context, but a
variable cleaning cost could easily be incorporated. We
assume that as the machine condition deteriorates, the
yield decreases, and the yield for all products is zero when
the machine is in the worst state. (The terms decreasing
and increasing are used in the non-strict sense.) Cleaning
can be initiated from any state, and this action is suc-
cessful with probability one. These assumptions are
summarized as follows:

Assumption I: |R,| < oo for all a.
Assumption 2: f3,,(i,a) decreases in i for all a.
Assumption 3: ,,(M,a) =0 for a # K + 1.
Assumption 4: ,,(i,K + 1) =1 for all i.

We assume that once in state M, the machine cannot
leave this state unless it is cleaned. If production is cho-
sen, the state transition is not affected by the choice of
which product to produce. This assumption reflects the
operations under consideration where we do not expect
the deterioration to be influenced by product type, be-
cause processing one product type does generate more
particles than any other. In other contexts, this assump-
tion may not hold, and the formulation would have to be
modified accordingly. We also assume that cleaning the
machine returns it to state 0 with probability one. These
conditions are expressed as

Table Al. Final yields for Fab 1
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Assumption 5:

Pu(jli),  fora=1,2,...,K,
Pu(jlisa) =14 1, fora=K+1,j=0,
0, fora=K+1,j#0.

We assume that as the machine condition deteriorates,
it is more likely that the machine will go to a worse state
than a better state. We can express this as

Assumption 6:
For each /, Z?ﬁ, P,(j|i) increase in i.

If these assumptions hold, a stationary, average-reward
optimal policy will exist (Sloan and Shanthikumar,
2000).

A.2. Existence of an monotone policy

Additional assumptions are needed to prove the existence
of a monotone optimal policy. Specifically, we assume
that a product with a lower index is more sensitive and is
worth more than a product with a higher index. This can
be written as

Assumption 7: R, decreases in a.
Assumption 8: f,,(i,a) increases in a for all i.

Exp. Oxi./Dep. Etch
la [0.9606 0.9801 0.9900 1.0000 ] [0.9224 0.9606 0.9801 1.0000 ]
0.8295 0.8877 0.9327 0.9494 0.6022 0.8110 0.8779 0.9610
0.8122 0.8619 0.9132 0.9143 0.5677 0.7472 0.7936 0.9315
| 0.7938  0.8284 0.8896 0.9103 | | 0.4935 0.5837 0.7274 0.8824 |
tb [0.9606 0.9801 0.9900 1.0000 ] [0.9224 0.9606 0.9801 1.0000 ]
0.9338 0.9374 0.9516 0.9735 0.8508 0.9533 0.9754 0.9998
0.8780 0.9151 0.9339 0.9675 0.7911 0.9114 0.9707 0.9944
| 0.8443  0.8861 0.9200 0.9646 | | 0.7596  0.8463 0.9583 0.9849 |
22 [0.9336  0.8406 0.8253 0.8724] [0.9160 0.7412 0.6911 0.8381]
0.9050 0.8277 0.8036 0.7979 0.5984 0.6989 0.6217 0.4730
0.7958 0.7575 0.7618 0.7192 0.5237 0.5012 0.6046 0.4413
| 0.7677 0.7173 0.7263  0.6997 | 1 0.4392  0.4496 0.5104 0.4239 |
2b [0.9739 0.9230 0.9120 0.9767 ] [0.9573 0.8633 0.8349 0.9164]
0.9605 0.9138 0.8947 0.9430 0.7799 0.8394 0.7941 0.6999
0.8880 0.8488 0.8898 0.8301 0.7332 0.7186 0.7837 0.6783
| 0.8603 0.8078 0.8538 0.7970 | 10.6769 0.6840 0.7246 0.6662 |
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Table A2. Final yields for Fab 2

Exp. Oxi./Dep. Etch
la [0.9044 0.9511 0.9753 1.0000] [0.8171 0.9044 0.9511 1.0000]
0.6266 0.7424 0.8402 0.8783 0.2815 0.5923 0.7222 0.9053
0.5944 0.6897 0.7970 0.7993 0.2428 0.4826 0.5611 0.8374
1 0.5614 0.6246 0.7464 0.7906 | 10.1711 0.2603 0.4512 0.7315 |
tb [0.9044 0.9511 0.9753 1.0000] [0.8171 0.9044 0.9511 1.0000 ]
0.8427 0.8508 0.8833 0.9352 0.6677 0.8872 0.9397 0.9996
0.7223 0.8010 0.8428 0.9208 0.5566 0.7930 0.9284 0.9860
| 0.6550 0.7391 0.8119 0.9137 | | 0.5029 0.6589 0.8991 0.9627 |
2 [0.8421 0.6479 0.6187 0.7109] [0.8030 0.4730 0.3970 0.6430]
0.7791 0.6233 0.5789 0.5688 0.2770 0.4084 0.3048 0.1539
0.5650 0.4993 0.5065 0.4387 0.1985 0.1778 0.2842 0.1294
| 0.5164 0.4357 0.4495 0.4095 | [0.1278 0.1356 0.1861 0.1170 |
2b [0.9360 0.8184 0.7943 0.9427] [0.8967 0.6926 0.6368 0.8038]
0.9042 0.7982 0.7572 0.8636 0.5372 0.6455 0.5619 0.4098
0.7430 0.6638 0.7469 0.6279 0.4603 0.4377 0.5438 0.3790
| 0.6866 0.5865 0.6736 0.5671 | 10.3769 0.3870 0.4469 0.3623 |

Table A3. Final yields for Fab 3

Exp. Oxi./Dep. Etch
1 - - - -
a 0.8179 0.9276 0.9631 1.0000 0.6676 0.8601 0.9276 1.0000

0.3926 0.6397 0.7701 0.8558 0.3728 0.6984 0.7813 0.9783
0.3533 0.5728 0.7115 0.7643 0.3309 0.6169 0.7277 0.9300
| 0.3151 0.4936 0.6448 0.7543 | 1 0.2018 0.4024 0.6760 0.8508 |

b [0.8179 0.9276 0.9631 1.0000 ] [0.6676 0.8601 0.9276 1.0000 ]
0.7102 0.7848 0.8301 0.9227 0.4459 0.8357 0.9110 0.9995
0.5217 0.7169 0.7737 0.9057 0.3098 0.7062 0.8946 0.9832
10.4290 0.6354 0.7316 0.8974 | 10.2529 0.5349 0.8525 0.9554 |

2 [0.7091 0.5215 0.4867 0.6640] [0.6449 0.3253 0.2501 0.5886 ]
0.6070 0.4921 0.4404 0.5081 0.0767 0.2610 0.1682 0.1058
0.3193 0.3528 0.3605 0.3721 0.0394 0.0750 0.1515 0.0860
| 0.2667 0.2876 0.3014 0.3425 | 10.0163 0.0499 0.0803 0.0762 |

2b - - - -
0.8762 0.7404 0.7079 0.9317 0.8040 0.5764 0.5082 0.7695
0.8176 0.7131 0.6589 0.8386 0.2886 0.5186 0.4212 0.3428
0.5520 0.5409 0.6455 0.5721 0.2119 0.2896 0.4010 0.3121
10.4714  0.4491 0.5529 0.5062 | 10.1421 0.2408 0.2988 0.2957 |

We also assume that as the condition of the machine Assumption 9:

deteriorates, the expected profit decreases less for less- Rif,(i—1l,a—1)—R,1f,(i,a—1)

sensitive products than for more-sensitive products. This > R,p,(i—1,a) — R,p,,(i,a) >0,

can be expressed as
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for a=2,3,...,K and i =1,2,...,M — 1. If these as-
sumptions hold, it can be shown that a monotone optimal
policy exists (Sloan and Shanthikumar, 2000).

Appendix B: Data for simulation experiments

The machine state transition probabilities for ““slow” and
“med” deterioration are

(09 0.1 0.0 0.0 0.0]
0.0 09 0.1 0.0 00
Pow = {00 00 09 0.1 0.0
0.0 00 00 09 0.1
100 0.0 00 00 1.0]

(0.5 0.5 00 0.0 0.0]
0.0 0.5 05 00 0.0
Poea= [00 00 05 0.5 0.0
0.0 00 0.0 0.5 0.5
0.0 00 0.0 0.0 1.0]

The yield matrices were generated from beta distribu-
tions with (per layer) means and variances listed in Table 1.
The beta distribution is useful in this case because we do
not have actual yield data, but clearly the values must be
between zero and one. For Experiment 1, we fixed base
yields for each product (i.e., state 0 yield) and then gener-
ated the yields for other states, discarding those that were
larger than the base yield. We then tested to see if the as-
sumptions needed to ensure a monotone policy had been
met. If not, we discarded the entire matrix and started over.

For Fabs 1 through 3, we generated 10 yield matrices
for Experiment 1 and 10 yield matrices for Experiment 2.
For Fab 4, which has 10 products, we generated 10 more
yield matrices for each experiment. Tables A1-A4 report
the final yield values for a representative yield matrix for
the oxi./dep. and etch stations of each fab for Experi-
ments 1 and 2 (each column represents one product).
Both the oxi./dep. and etch stations have five states, and
the yield is zero in the worst state for all products and
layers. That is, f3,,(M,k, 1) = 0 for each k and each [, so it
is not necessary to report the final yields for state M.

Appendix C: Detailed results of simulation experiments

For each fab, we tested 16 combinations of dispatching
and maintenance policies. The policies are divided into
four categories: combined policies generated using the
analytical model, simple (non-yield) dispatching policies
with a fixed-state threshold maintenance policy, yield-
based dispatching policies with a fixed-state threshold
maintenance policy, and FCFS dispatching with a fixed-
number or fixed-time maintenance policy. The base policy

Table A4. Final yields for Fab 4
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is an FCFS dispatching policy with a fixed-state main-
tenance policy. The Tables A5-AS8 on the preceding pages
report the percentage improvement for each combination
(as compared to the base policy) for each fab and each
experiment.

The abbreviation Comb. is used to refer to the com-
bined production and maintenance policies generated by
the analytical model. When implementing the combined
policies, secondary rules are needed when no candidates
are available and when more than one candidate is
available. The secondary policy used is listed for each of
the Comb. policies. For example, Comb./FRW D indicates
that an FRWD secondary policy is used.

The notation ST(i) refers to a fixed-state maintenance
policy with threshold i. The threshold is determined using
the method described in Section 2.2. The notation FT(7)
refers to a fixed-time maintenance policy that calls for
repair every T time units, and FN(V) refers to a policy
that cleans after N units are produced. The fixed-time and
number policies are determined based on the fixed-state
threshold. If i is the threshold, then on average it will take
1/p; periods to reach state 7, where p; is the steady-state
proportion of time that the machine spends in state 7. In
each case, we round down so that T = |[1/p; — 1|, where
|x] is the largest integer less than or equal to x. Rounding
down means that we are, on average, cleaning earlier than
needed. The same procedure is used to determine the
value of N for the fixed-number policies.
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