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First, do no harm? A framework for evaluating new
versus reprocessed medical devices
T Sloan∗
University of Massachusetts Lowell, Lowell, MA, USA

More than ever before, health care providers are under intense pressure to control costs. Medical devices
represent a significant ‘hard’ cost, with worldwide spending exceeding USD 235 billion. A growing number
of health care providers are engaging in the practice of reprocessing—sterilizing and reusing medical devices
labelled only for a single use. The ethical and technical dimensions of this practice have received much
attention, but its economic aspects remain largely unexamined. This paper presents a Markov decision process
framework that a health care provider can use to decide whether to use new or reprocessed devices in a
given context. Two cases are studied: completely observable device condition and partially observable device
condition. After briefly discussing structural results for the two cases, several examples are presented to
illustrate how the model can be applied in practice. Useful results can be computed quickly with minimal data.
A key insight of the model is that perfect information regarding the device condition is often not required to
make a sound decision.
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1. Introduction

Managing health-sector supply chains presents unique chal-
lenges with respect to both quality of care and control of
costs. Medical devices account for a significant portion of the
‘hard goods’ cost incurred by hospitals and other health care
providers and therefore represent an important focus area for
cost reduction. Spending on medical devices exceeds USD
235 billion worldwide, and that figure is expected to grow
substantially in the coming years (Standard & Poor’s, 2007).
Over the past 30 years, changes in technology and increasing
fears of disease transmission have prompted many device
makers to shift from multi-use to single-use devices (SUDs).
One way in which health care providers are seeking to reduce
cost is through reprocessing: the practice of refurbishing, ster-
ilizing, and repackaging single-use medical devices. These
devices are typically sold back to hospitals at about half the
cost of new devices. Recent surveys suggest that this is a
significant and growing practice: 45% of medium and large
hospitals in the United States (Kerber, 2005), 86% of medium
and large hospitals in Canada (MEDEC, 2004), and more
than 90% of hospitals in Japan (Koh and Kawahara, 2005)
reuse some devices labelled for one use. Although banned in
some parts of Europe, reuse of SUDs has been described as
‘widespread’ in other parts (Hope, 2006).
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The practice of reprocessing has mainly been studied from
an ethical standpoint (ie should it be done?) or from a tech-
nical standpoint (ie how should it be done?). However, there
has been little or no research on the economic aspects of repro-
cessing. This is perhaps due to the fact that applying oper-
ational research models in the health services context is so
challenging, as observed by Harper and Pitt (2004). Consider
the case of coronary angioplasty, a procedure in which narrow
‘balloons’ are inflated in a patient’s arteries to remove block-
ages. Often, a patient has several arteries cleared during a
single procedure. Angioplasty is performed on millions of
patients each year and accounts for billions of dollars worth
of health care spending worldwide. Since a new balloon costs
up to USD 1000 and reprocessed balloons typically cost less
than half this amount, the economic benefits of reprocessing
seem obvious. But what about patient safety? How is a health
care provider to make a sound decision in this context? At
one end of the spectrum, some health care providers and/or
regulatory agencies require that a new balloon be used for
each artery, clearly placing a premium on safety. At the other
end of the spectrum, it is common practice in some areas to
sterilize and reuse balloons on other patients, clearly placing
a premium on cost.

The purpose of this paper is not to support a position for
or against reprocessing. Rather, the purpose is to develop
a model—built on well-established principles of equipment
maintenance research—that a health care provider can use
to examine the sourcing dimension of medical device reuse.
This paper makes three contributions. First, necessary and
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sufficient conditions that characterize the optimal policy are
developed. These conditions go beyond previous operational
research models by identifying the exact indifference point
between the ‘replace’ and ‘refurbish’ decisions. Second, the
model reveals situations where information about the device
condition has little impact on the optimal decision, which
greatly simplifies the health care provider’s choice. Finally,
and most importantly, the paper provides a framework with
which health care providers can evaluate reprocessing deci-
sions. Discussion of reprocessing is often cast in general
terms and is often charged with emotion. This framework
enables objective examination of specific devices, even
without perfect and complete information.

The paper proceeds as follows. The next section presents
an overview of the relevant literature. The model is presented
in Section 3, and two cases are studied: completely observ-
able device condition and partially observable device
condition. Section 4 presents several example applications,
demonstrating the use of the model for a wide variety of
device types. Conclusions and directions of future research
are discussed in Section 5.

2. Literature review

The literature related to this problem can be divided into three
main categories: medical device reprocessing, supplier selec-
tion, and equipment maintenance. The research on device
reprocessing is extensive; however, it tends to focus on very
high-level issues or on very low-level issues. For example,
there has been much attention on the ethical and legal impli-
cations of SUD reprocessing and reuse (eg Gottfried, 2000;
Wang, 2001; Dunn, 2002). On the other end of the spec-
trum, there has also been much effort devoted to exploring
the technical aspects of reprocessing, for example, testing
different sterilization procedures (Tessarolo et al, 2006, 2007)
and examining the effects of reprocessing on the device prop-
erties (Brown et al, 2002; Fedel et al, 2006). Both types
of research are important, but they do not assist health care
providers decide whether to use new or reprocessed devices
in a particular context.

A final work on medical devices is that of Bennett et al
(2005), who develop a model to assess the risk of trans-
mitting disease via surgical instruments. Their focus is on
variant Creutzfeldt–Jakob disease, which is known to be
resistant to standard instrument decontamination procedures.
Although their model mainly deals with instruments intended
for multiple uses, several insights emerge from their study
which are relevant here. First, the risk of person-to-person
transmission of disease via medical instruments cannot be
ignored. Second, it is extremely challenging to assess the risk
of such disease transmission. Third, although patient well-
being is of primary importance, economic considerations
must be a part of the decision-making process with respect
to medical devices.

The second category of relevant research is the work on
supplier selection within a supply chain. The main ques-
tion addressed is how a firm can balance the many criteria
by which potential vendors can be judged. These criteria
include cost, quality, delivery, flexibility, etc and may be both
quantitative and qualitative in nature. This topic has received
much attention in the last few years. Many of the papers
make use of fuzzy decision models (Amid et al, 2006; Chen
et al, 2006), while others use analytic hierarchy process or
analytic network process approaches (Bayazit, 2006; Xia and
Wu, 2007), and still others combine one or more of these
approaches (Haq and Kannan, 2006; Yang and Chen, 2006).
Another approach involves the use of a capability index,
which measures the ability of a process to meet design spec-
ifications, in combination with cost measures (Chen et al,
2005; Linn et al, 2006). The existing research sheds much
light on the general issues and trade-offs involved in supplier
selection; however, sourcing decisions in the medical device
context present unique challenges. Specifically, all products
must go through extensive certifications, typically by govern-
ment agencies or their designates. Thus, health care providers
have a limited pool of vendors from which to choose. In addi-
tion, quality problems may be difficult or impossible to detect
before a patient is harmed, so the stakes are much higher in
health-care-related sourcing than in most environments.

The third relevant area of research is equipment mainte-
nance models. Wang (2002) presents an extensive survey of
this vast literature. The work which relates most closely to
the sourcing problem discussed above is research on multi-
action maintenance models. Hopp and Wu (1990) study a
scenario where the condition of a machine deteriorates over
time according to a Markov process, and after observing the
state of the equipment, the decision maker can choose to
perform one of several maintenance actions, to replace the
equipment, or to do nothing. Su et al (2000) extend this model
by including random failures and by incorporating the notion
of imperfect maintenance, that is, performing maintenance
may actually make the equipment condition worse.

Another relevant subcategory of equipment maintenance
addresses scenarios where the state of the equipment is not
completely observable. Monahan (1982) presents an overview
of partially observable Markov decision processes (POMDPs)
and related literature. Important structural results were devel-
oped by White (1979), and efforts to extend these results in
various ways continues (Fernández-Gaucherand et al, 1991;
Makis and Jiang, 2003; Ivy and Pollock, 2005; Hsu et al,
2006).

The paper by Hopp and Wu (1988) bridges the completely
and partially observable subgroups by modelling a multi-
action maintenance problem where the equipment state is only
partially observable. The key distinction between Hopp and
Wu (1988) and the model presented in the next section is
that in their model the equipment state becomes known after
maintenance is performed. In our model, however, the state is
only known with certainty after the device has been replaced.
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Otherwise, the state cannot be known with certainty, which
more accurately reflects the medical device context.

3. Model

We model the decision about new versus reprocessed medical
devices using a discrete-time, discrete-state, Markov decision
process (MDP) framework. A medical device can be in one
of several states, indexed by i . The states are strictly ordered
such that state i = 0 indicates the best possible condition
(also referred to as ‘new’ and ‘like-new’ condition), and state
i = J indicates the worst possible condition (also referred to
as ‘failed’ and ‘unusable’). At each decision epoch, the deci-
sion maker observes the condition of the device and decides
which action to take. Initially, we examine the case where
the true condition is known with certainty; later, the case
of imperfect state information is studied. Possible actions,
indexed by a, include using the device to perform the proce-
dure (a=r), refurbishing the used device (a=u), and replacing
the device with a new one (a = n). Performing the medical
procedure earns a reward of R, while refurbishing a previ-
ously used device incurs a cost of U , and replacing the
device with a new one costs N . Whether the device is new or
used, there is a possibility that a failure occurs, for example,
the device malfunctions or some other device-related harm
comes to the patient. In the event of a failure, a cost of C is
incurred.

The set of states is denoted as S = {0, 1, . . . , J }, and the
set of actions available in state i is denoted asAi ⊆ {r, u, n}.
It is assumed that the medical procedure is only performed
when the process (device) is in like-new condition; in addition,
it is unnecessary to refurbish or replace the device when it
is in the best state. Therefore, performing the procedure is
the only action available in state 0 (ie A0 = {r}). Performing
the procedure causes the device to make a transition out of
the like-new state into a worse state (ie pr00 = 0, and pr0 j > 0
for some j �= 0). When the process is in the worst state,
then replacement is the only action available, and the process
returns to state 0 with probability one (ie AJ = {n}, and
pnJ0 =1). In the intermediate states, performing the procedure
is not allowed due to the potential harm to the patient; thus, the
decision maker may choose either to replace or refurbish the
device (ieA j ={u, n} for 0< j < J ). Reprocessing improves
the condition of the device—or at least does not make it
worse (ie pui j > 0 for some j < i , and pui j = 0 for all j > i ,
where 0< i < J )—while replacing the device always returns
the process to state 0 with probability one (ie pni0=1 for all i).

Letting Xt denote the state of the process at decision epoch
t and at denote the action taken at decision epoch t , we
define the probability of making a transition from state i
to state j when action a is taken as pai j . The state at the
next decision epoch depends only on the state and action at
the current epoch, so pai j ≡ Pr{Xt+1 = j |Xt = i, at = a} =
{Xt+1 = j |Xt = i, at = a; Xt−1, at−1; . . . ; X1, a1}. Figure 1
shows a state transition diagram for a four-state problem using

Figure 1 State transition diagram for policy [r, u, u, n].

policy [r, u, u, n], that is, performing the procedure in state
0, choosing to refurbish the device if the state is 1 or 2, and
choosing to replace the device if the state is 3.

Note that several implicit assumptions have been made in
order to formulate a tractable model. For example, we have
defined the process state so that it is not tied to a partic-
ular device. Typically, third-party reprocessing firms receive
used devices of many different types (and levels of wear)
from many different hospitals, and they also supply refur-
bished devices to many different customers. Thus, hospitals
are unlikely to get back the same devices which they sent out
to be reprocessed. Treating the state as something that is not
connected to a particular device enables the model to account
for the randomness of different ‘streams’ through the use and
reuse cycles.

In addition, the state transition probabilities are fixed and
depend only on the current action and state. In reality, the
transition from state to state may be difficult to predict due
to variables such as the type of procedure being performed,
the patient, and the clinician using the device. Additionally,
the cost of failure may not be known with certainty as we
have assumed here. However, similar assumptions regarding
costs and state transitions are needed for equipment mainte-
nance models (such as those discussed in the last section), and
valuable lessons have been gleaned from these models. Our
goal is to develop similar insights in the context of medical
device reprocessing.

3.1. Completely observable states

To begin our analysis, we assume that the condition of the
device is completely observable; that is, the true state of the
process is known at each decision epoch. If the process is in
state i and action a is taken at the current decision epoch, then
the process makes a transition to state j with probability pai j .
Since the expected rewards/costs and state transitions depend
only on the current state and action taken, the process can be
modelled as an MDP.

The objective is to find a decision rule that minimizes
the long-run expected average cost per unit time. Since all
expected costs are bounded and the number of states is finite,
an optimal stationary policy exists; furthermore, the optimal
policy is stationary, that is, it is time-independent (Heyman
and Sobel, 1984). Define A= [a0, a1, . . . , aJ ] as a stationary
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policy, that is a decision rule which specifies that action ai
be taken when the process is in state i . Any stationary policy
(based on the permissable actions identified above) will induce
a Markov chain with a unique set of steady-state probabil-
ities that are independent of the initial state of the process.
Define �i (A) as the steady-state probability of being in state
i when policy A is used. Let C(i, a) denote the expected
cost of performing action a while the process is in state i .
The minimal expected average cost per unit time while using
policy A can then be expressed as

g(A) =
J∑

i=0

C(i, ai )�i (A). (1)

Note that if action r is taken, then an expected reward of R is
earned; in this cost-minimization framework, the value of R
would be less than zero, indicating a negative ‘cost’. A policy
A∗ is average cost optimal if g(A∗)�g(A) for each stationary
policy A. The optimal action in state i is defined as a∗

i .
Previous work has focussed on the structure of the optimal

policy rather than on the solution. For example, one might be
interested in knowing conditions that ensure monotonicity of
the actions, that is, where increasingly effective (and costly)
maintenance actions are chosen as the process state deterio-
rates. However, in the context of medical devices, where the
stakes are so high, it is useful to know the exact indifference
point between new and reprocessed devices.

The key question for a health care provider in this context
is: Under what conditions is it preferable to use a refurbished
device rather than a new device? The key variable that differ-
entiates the two device types is the probability of returning
to like-new condition. Choosing a new device returns the
process to state 0 with probability one, while choosing a
reprocessed device may not. Thus, we seek to determine the
exact indifference point with respect to pui0, the probability
that reprocessing returns the device to like-new condition.
This is accomplished by employing an approach similar to
that of Kazaz and Sloan (2008): First, express the objective
function (1) for two different policies in terms of the steady-
state probabilities; next, compare two policies that differ by
only one action in one state, identifying the value of pui0 for
which one is indifferent between the two.

For ease of exposition, let us examine the case with four
possible states—labelled 0 through 3—where the states are
ordered such that state 0 is like-new and state 3 is failed.
To begin our analysis, we compare two policies which differ
only by the device type used in state 1: A1 = [r, n, n, n] and
A2 = [r, u, n, n]. Define �∗

i (Ak,Al) as the pui0 value at which
the decision maker is indifferent between policies Ak and Al .
The following expression identifies the pu10 value at which the

decision maker is indifferent between policies A1 and A2:

�∗
1(A1,A2) = 2U − N − R − Cpr03

N − R − Cpr03
. (2)

When pu10 >�∗
1(A1,A2), using a refurbished device is optimal

in state 1; when pu10 <�∗
1(A1,A2), using a new device is

optimal in state 1 (formal statements of this and other tech-
nical results appear in Appendix A). Comparing policies A1=
[r, n, n, n] and A4 = [r, n, u, n] yields the same result for
state 2.

The indifference point with respect to pu20 is determined by
comparing two policies which differ only by the device type
used in state 2: A2 = [r, u, n, n] and A3 = [r, u, u, n]. This
indifference point is written as

�∗
2(A2,A3) = (pu10 + pu21)(2U − N − R − Cpr03) − pu10 p

u
21(N − R − Cpr03) + pr01 p

u
10(N −U )

pu10(N − R − Cpr03) + pr01(N −U )
. (3)

When pu20 >�∗
2(A2,A3), using a refurbished device is optimal

in state 2; when pu20 <�∗
2(A2,A3), using a new device is

optimal in state 2. Comparing policies A3 = [r, u, u, n] and
A4 = [r, n, u, n] yields a similar result.

Equipped with these expressions, the decision maker can
easily determine the optimal policy for a given set of param-
eter values for the completely observable case. Next, we
examine the situation in which perfect information about the
device condition is not available.

3.2. Partially observable states

No health care provider would endanger a patient by know-
ingly using a damaged or contaminated device. However, the
true state of the device may not observable to the naked eye
or without disassembling the device, as documented by cases
reported in the popular press (Kerber, 2005; Klein, 2005)
and medical literature (Roth et al, 2002; Tessarolo et al,
2007). To account for the possibility of imperfect informa-
tion, we reframe the decision problem as a POMDP. Readers
are referred to Monahan (1982) for an overview of POMDPs.
The key difference between this model and the completely
observable Markov decision process (COMDP) in the last
section is the addition of an observation process. As before,
the state of the process at epoch t is denoted by Xt . However,
since it is not directly observed, we also define an observa-
tion process, the state of which is denoted as Yt at epoch t .
The state of the core process continues to make transitions
according to the probabilities denoted by pai j . We adopt the
standard convention that after an action is selected, the state
of the core process makes a transition, and then an observa-
tion is made. The probability of observing state k when the
state of the core process is j and action a was taken last is
defined as qa

jk ≡ Pr{Yt = k|Xt = j, at−1 = a}, where k ∈ S.
Thus, the decision maker does not know the true state of the
process but does know the probabilistic relationship between
Xt and Yt .
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Building on the notation from the last section, let
C(i, j, k, a) denote the immediate cost incurred at epoch t+1
when at epoch t the core state was i , observation k was made,
action a was taken, and the process then made a transition to
state j . The expected cost for taking action a when the core
state is i at the current epoch is simply C(i, j, k, a) weighted
by the various transition and observation probabilities and is
defined as follows:

C̄(i, a) =
∑
j∈S

∑
k∈S

C(i, j, k, a)pai j q
a
jk . (4)

With these new definitions in hand, we may now write the
POMDP average cost optimality equation using the standard
recursive form:

g(a) + h(a) = min
a

⎧⎨
⎩

J∑
i=0

�i C̄(i, a)

+
J∑

k=0

⎛
⎝∑

l∈S
qa
lk

∑
i∈S

�i pail

⎞
⎠ h[T (a|a, k)]

⎫⎬
⎭ ,

(5)

where g(·) is the expected average cost per unit time, h(·)
is a difference function, a is a belief vector, and T (·) is a
transformation function (see Sloan (2008) for details). The
theory regarding average cost POMDPs is not nearly as well
developed as that of COMDPs, particularly with respect to
the structural properties of optimal solutions. Nevertheless, it
can be shown that a stationary optimal policy exists and that
the average expected minimal cost per unit time is constant
(Fernández-Gaucherand et al, 1991). Despite the paucity of
structural results for the partially observed case, we can still
gain significant insights into the decision process, as shown
in the examples in the next section.

4. Example applications

How can a health care provider use these models to shed
light on the question of new versus refurbished devices? This
section presents several example applications to illustrate the
kinds of analyses which can be performed using the models
from the last section. Ideally, the example problems would be
based on empirical data regarding the devices studied. Unfor-
tunately, such data are not readily available for all model
parameters. Indeed, device makers and reprocessors alike have
an incentive to keep some information confidential. One moti-
vation for the development of a model is to help explore this
decision in the absence of high-quality, detailed information
about the condition of the devices. As we shall demonstrate
shortly, decision makers need not have complete information
to make sound decisions regarding medical device reuse. The
model enables health care providers to identify broad classes
of devices that probably should not be reprocessed—that
is, for which the risk of adverse effect greatly outweighs
the potential cost savings. In this way, the debate about

reprocessing can be re-framed from one of ‘yes or no’ to one
of ‘which devices’. Shifting the debate from the general to
the specific can create incentives for device makers, repro-
cessors, regulators, and health care providers to engage in a
more open discussion of the practice. This kind of discussion,
in turn, can pave the way to collecting the kind of detailed
information necessary to study these issues more fully.

The example problems below cover a wide range of device
types (similar to the examples in Sloan, 2007); however,
some parameters are fixed for all problems to conserve
space. All problems have four device states, ordered from
0 to 3, where state 0 is new (or like-new) and state 3 is
failed (or unusable). The use of a discrete state space is an
approximation—in reality the device condition is probably
a continuum. However, this approximation makes the solu-
tion much easier, while capturing sufficient detail about the
real process. The number of states can easily be changed,
depending on the level of detail desired in a given situa-
tion. Preliminary analyses revealed that using more than four
states in the examples below slows down the solution process
without producing additional insight. Using fewer than four
states oversimplifies the problem.

The exact definition of a state will depend on the specific
device being modelled and may be composed of multiple
dimensions. For example, the state of an angioplasty balloon
could refer to its sterility as well as its structural integrity.
Tessarolo et al (2006) use four measures of structural proper-
ties: crossing profile, slipperiness, compliance, and burst pres-
sure. A detailed discussion of these measures is beyond the
scope of this paper, but they are well known and easily evalu-
ated. Using these or similar measures, an angioplasty balloon
that is within the tolerances allowed for a new device would
be classified as like-new (state 0). States 1, 2, and 3 would
refer to increasing levels of variation beyond these tolerances
(where the precise levels would be defined by experts). Thus,
reaching the ‘failed’ state may not mean a device malfunction
but merely a level of wear or contamination which makes the
device unusable.

For all problems, replacement returns the process to state
0, that is, pni0 = 1 for all i . With respect to observation proba-
bilities, perfect information quality for a given action a means
that qa

j j = 1, and very high quality means that qa
j j = 0.99 for

all j . Unless otherwise noted, new and reprocessed device
cost estimates come from Klein (2005) and Landro (2008).
All cost figures are reported in US dollars. Complete data for
each example problem are reported in Appendix B.

4.1. Angioplasty balloon

Percutaneous transluminal coronary angioplasty is a proce-
dure used to clear a blocked artery by inserting a catheter into
the artery and then inflating a ‘balloon’ that is mounted on the
tip of the catheter. New angioplasty balloons range in cost,
depending on the type. Suppose that a new balloon costs 515,
while a reprocessed balloon costs only about 250—clearly
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a very substantial cost reduction. On the other hand, studies
have shown that reusing balloons is associated with longer
procedure times, which in turn is associated with an increase
in the rates of adverse effects such as death, myocardial
infarction, and the need for further revascularization (Mak
et al, 1996). Therefore, reusing the balloons also comes with
a cost.

Suppose that the probability of an adverse effect is one
in a million and that the cost of such an effect is 1 000 000.
Note that the ‘adverse effect’ may not be outright failure but
rather any of the unfavourable outcomes listed above, which
could be attributed to the device. The charges for this type
of procedure are substantial—an average of 16 000 in the US
(Mak et al, 1996).

The most conservative policy calls for replacement of the
device after each procedure, which is policy A1 =[r, n, n, n].
Perhaps the health care provider could reduce costs by
performing the procedure when the device state is 0 (like-
new) and refurbishing the device when it reaches state 1.
Beyond state 1, the device is replaced. This policy—still
rather conservative—is expressed as A2 = [r, u, n, n]. How
effective does refurbishing need to be in order to make a
used device preferable to a new device? In other words, what
value of pu10 is sufficient to make policy A2 = [r, u, n, n]
optimal? The parameter values given above are sufficient to
answer this question. Plugging the numbers into Equation
(2) reveals that �∗

1(A1,A2) ≈ 0.9679. This result tells us that
there must be nearly a 97% chance of returning the device
to like-new condition for reprocessing to be optimal in state
1. Otherwise, it will be optimal to replace the device with a
new one before each procedure.

Suppose that reprocessing in state 1 has a 98% success
rate (ie pu10 = 0.98). For the completely observable case,
policy A2=[r, u, n, n] is optimal since pu10=0.98> 0.9679=
�∗
1(A1,A2). However, when the device state is only partially

observable after performing a procedure, then the POMDP
never calls for reprocessing—even with a very high prob-
ability of knowing the true state of the device after repro-
cessing. That is, policy A1=[r, n, n, n] is optimal for all cases
tested such that the information quality is less than perfect.
Table 1 reports the complete results.

This example supports the intuitive idea that when the cost
of failure is very high, then one must have great confidence
in the outcome of reprocessing. In the absence of such confi-
dence, the health care provider is probably better off simply
using new devices for this procedure. Resources can be better
allocated to assessing risk and improving processes for other
device types.

Since the numbers used in this example are approximate,
performing some sensitivity analysis is wise. Figure 2 illus-
trates how the indifference point (�∗) changes as a function
of the device failure probability (pr03). The figure suggests
that greater device reliability is associated with higher repro-
cessing standards; that is, as the pr03 value decreases, the
�∗ value increases, indicating a need for a higher repair

Figure 2 �∗ as a function of pr03.

probability. Similar analyses can easily be performed with
respect to other parameters.

4.2. Pulse oximetry sensor

Pulse oximetry is a technique used to measure the amount of
oxygen in a patient’s blood. This is accomplished by placing
a small, plastic sensor on the patient’s fingertip, which is
attached to a piece of equipment that measures waves of
infrared light. The sensors themselves are quite inexpensive:
10 for a new one and six for a reprocessed one. Suppose that
the probability of failure is 1e − 09, the cost of failure is
10 000, and the reward for the procedure is 15.

Suppose that success rate for reprocessing is 99%
in state 1 and 85.65% in state 1 (ie pu10 = 0.99 and
pu20 = 0.8565). Entering the above values into Equation (2)
yields �∗

1(A1,A2) = 0.68. Thus, only a 68% success rate is
required in this instance to make reprocessing the optimal
choice in state 1. Similarly, Equation (3) yields �∗

2(A2,A3) ≈
0.68. Since pu10 >�∗

1(A1,A2) and pu20 >�∗
2(A2,A3), policy

A3=[r, u, u, n] is optimal for the completely observable case.
Not surprisingly, reprocessing is also the optimal choice in

state 1 in the partially observable case even when the infor-
mation quality after performing the procedure is very low.
The optimal choice in state 2 varies as the observation prob-
abilities change. Complete results are reported in Table 1.
Clearly, two factors are at work here: the high probability of
returning the device to an acceptable state and the relatively
low cost of adverse effect. Sensitivity analyses with respect to
these and other parameters could easily be performed. Even
without such analyses, however, the results clearly suggest
that reprocessing is a viable choice for this scenario, which
makes sense given the nature of the device.

4.3. Orthopaedic blade

Blades are commonly used to cut bone and tissue during
orthopaedic surgery. A new orthopaedic blade costs about
30, while a refurbished blade costs about 15. Suppose that
the chance of adverse effect (attributable to the device itself)
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Table 1 Example Problems—optimal policies for different information quality levels

melborpelpmaxEnoitcaretfaytilauqnoitamrofnI

Procedure Reprocessing 1 2 3 4

Perfect Perfect [r, u, n, n] [r, u, u, n] [r, u, n, n] [r, u, u, n]
Perfect Very high [r, n, n, n] [r, u, u, n] [r, u, n, n] [r, u, u, n]
Very high Very high [r, n, n, n] [r, u, u, n] [r, n, n, n] [r, u, u, n]
High Very high [r, n, n, n] [r, u, u, n] [r, n, n, n] [r, n, n, n]
Medium Very high [r, n, n, n] [r, n, n, n] [r, n, n, n] [r, n, n, n]
Low Very high [r, n, n, n] [r, n, n, n] [r, n, n, n] [r, n, n, n]

Note: All example problems have four device states, ordered from 0 to 3, where 0 is like-new and 3 is failed. The policies indicate the optimal action
for each state, [a0, a1, a2, a3], where ai is the action specified for state i . A policy for the completely observable case (perfect information) specifies
the action taken for the actual state. A policy for a partially observable case specifies the action taken for the observed state. The shaded cell for each
example indicates the information quality level at which reprocessing is no longer optimal for any state.

is only one in 100 million and that the cost of a failure is
100 000. In addition, suppose that a modest reward of 650 is
earned for performing the procedure.

Using the above values in Equation (2), we can determine
that �∗

1(A1,A2) ≈ 0.9559. This result means that repro-
cessing must have approximately a 96% chance of returning
the device to state 0 for that to be the optimal choice in state
1. Otherwise, it will be optimal to replace the device with
a new one before each procedure. Suppose that pu10 = 0.98;
since pu10 >�∗

1(A1,A2), reprocessing in state 1 is optimal for
the completely observable case. In the partially observable
case, reprocessing is also optimal in state 1 when there is
perfect information about the device state after the proce-
dure and very high-quality information about the device
state after reprocessing (ie when qu

j j = 0.99). However, if
there is even slight uncertainty about the device condition
after the procedure, then reprocessing is no longer optimal.
Table 1 reports the results for all information quality levels
tested.

This example illustrates that the decision about repro-
cessing cannot be driven by device cost nor by failure cost
alone. It is difficult to determine the best choice without
understanding the connections between various parameters.

4.4. Laparoscopic surgery

Laparoscopic surgery is a minimally invasive technique used
for a wide range of procedures. Here we focus on cholecystec-
tomy (removal of the gall bladder). Surgery is performed by
first making several small incisions in a patient’s abdomen and
then inserting special instruments—including graspers, scis-
sors, and a telescopic lens (laparoscope) which is connected
to a video camera. After insufflating the patient’s abdomen
with carbon dioxide, the surgeon is able to use the video to
guide the surgery. New instruments for laparoscopic cholecys-
tectomy cost about 1200, while reprocessed devices cost only
about 250 (Jacobs and Noorani, 2008)—obviously a major
cost savings.

Suppose that the device failure probability is one in
10 million, the cost of adverse effect is 1 000 000, and

the reward for performing the procedure is 8000. The
indifference point for state 1 is �∗

1(A1,A2) ≈ 0.7935, which
is computed using Equation (2). Similarly, Equation (3) tells
us that �∗

2(A2,A3) ≈ 0.792. Thus, reprocessing must have
a success probability greater than approximately 79% for
that to be the optimal choice in states 1 and 2; otherwise,
replacement is optimal.

Suppose that reprocessing has the following success rates:
pu10 = 0.8609 and pu20 = 0.8354. Both pu10 and pu20 are high
enough to warrant reprocessing in the completely observable
case, and therefore policy A3 = [r, u, u, n] is optimal. In
the partially observable case, however, the policy depends
heavily on the information quality. When the information
quality level after the procedure is very high, then [r, u, u, n]
remains optimal. However, when the information quality
level is less than very high, then [r, n, n, n] becomes the
optimal policy—a dramatic shift from the completely observ-
able case. The results for all information quality levels tested
are reported in Table 1.

4.5. Managerial insights

These examples illustrate how the model works for a wide
variety of device types. Two main conclusions can be drawn.
First, the quality of information about devices has an impor-
tant impact on the optimal choice. Thus, the results from
the COMDP model are an excellent indicator of when repro-
cessing should not be pursued. In short, if it is not optimal
to reprocess in the completely observable case, then it will
not be optimal in the partially observable case either. The
completely observable problem requires minimal data and
is easily solved using MS Excel or other readily available
software. Therefore, a health care provider could examine a
number of devices/cases with minimal effort.

The second main conclusion that can be drawn is that no
obvious patterns exist to tell when reprocessing is warranted.
For example, one might expect common-sense rules of
thumb to emerge, such as ‘If the device failure probability
is low, then reprocessing is advisable’. However, the blade
(Example 3) has a lower probability of adverse effect than
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the laparoscope (Example 4)—yet the results show that
reprocessing is optimal in more cases for the laparoscope than
for the blade. One might expect the difference between new
and reprocessed device costs to determine the desirability
of reprocessing. However, the percentage discount for the
reprocessed angioplasty balloon (Example 1) is greater than
the discount for the oximetry sensor (Example 2), showing
that this rule of thumb does not hold either. These results
illustrate the challenges of making broad generalizations and
demonstrate the need for rigorous study of different device
types and scenarios.

Up to now, health care providers have not approached
reprocessing decisions in a systematic way. Decisions have
generally been made by an external government agency or
on an ad hoc basis by individuals within the health care
system, such as hospital administrators or physicians. In some
cases health care providers have made a ‘global’ choice,
accepting all reprocessed devices or accepting none. As one
might expect, economic factors point one way and safety
concerns point the other. As our model and examples illus-
trate, however, no single factor can adequately capture the
different dimensions of this complex problem. Equipped with
this model, a decision maker can undertake more sophisti-
cated analyses.

The lessons of the model, however, extend beyond the
boundaries of a single health care provider. The insights
revealed by the model can be used by the provider to negotiate
prices with the device makers and/or reprocessors. The device
makers can use the model to guide improvements in current
devices, perhaps changing designs to improve a device’s re-
usability.

The model can be used to help design a supplier quali-
fication programme, requiring reprocessors to provide more
information about their processes and results. The example
problems illustrate that the post-procedure information quality
can have a significant impact on the results. This finding can
serve as the impetus for the health care provider and repro-
cessor to improve the collection of used devices. Clearly there
is a difference between a device that has only been removed
from its package and one that has actually been used on a
patient. Currently, however, many providers do not sort ‘used’
devices, meaning that valuable information is lost.

Regulators can also benefit from the model’s insights.
Currently, there are few distinctions between device types
with respect to reprocessing regulations. In some countries,
reprocessing is banned outright; in others, the decision is
left up to the health care providers and reprocessors. As the
examples above suggest, perhaps some device classes should
not be reprocessed; however, banning all reprocessing may
not be the best choice either. A government agency may be
the only entity with the necessary perspective and authority
to make such judgements. This type of high-level analysis
can have implications for research and development, both
in terms of the devices and their sterilization/reprocessing
protocols.

In summary, the model provides a flexible, easy-to-use
framework for examining reprocessing decisions. Its main
utility is not in identifying the optimal policy for a partic-
ular device; rather, it is best suited to provide rough-cut anal-
ysis for different device classes. Ruling out reprocessing as a
viable alternative for some device types can free up resources
for the design, regulation, and reprocessing of other device
types.

5. Conclusions

Medical devices represent a significant, and growing, ‘hard
good’ expenditure for health care providers. These providers
are under increasing pressure to contain costs in an industry
that faces unique financial challenges. One approach to cutting
costs has been to sterilize and refurbish devices that are
labelled for a single use. This practice, known as repro-
cessing, has been studied from ethical and technical perspec-
tives, but relatively little effort has been expended to examine
the economic and operational aspects of this important issue.

An MDP model was formulated to apply the time-tested
principles of equipment maintenance research to the deci-
sion about whether a health care provider should use new
or refurbished devices. The optimal policy was characterized
by finding the exact point of indifference between ‘replace’
and ‘refurbish’ decisions. The model was then extended to
a POMDP, accounting for the fact that the true state of the
device may not be easily observed.

Example applications covering a wide range of device types
were presented. These examples explain how device states
can be defined, illustrate the kinds of analyses possible with
the model, and demonstrate how the model could be put into
practice. The examples show that if the MDP model indicates
that reprocessing is not optimal, then it is not warranted in
the POMDP scenario either. Not surprisingly, even when very
high-quality information about the true state is available, the
optimal POMDP policy is quite conservative. Thus, health
care providers need not worry about obtaining optimal solu-
tions to the POMDP for all devices—the high-level results
provided by the completely observable MDP can be used to
identify classes or families of products for which reprocessing
is not viable. This finding represents the main managerial
insight of the model: Perfect information about the device
state and/or infection risk is generally not necessary to make
a sound decision regarding reprocessed devices.

Assessment of infection risk is challenging and costly
(Bennett et al, 2005), so eliminating some device types from
consideration can save substantial resources. Creating a flex-
ible framework with which health care providers can perform
these kinds of assessments for specific device types is the
main contribution of the paper. Until now, most discussion
of this important health care issue has been in very general
terms and has primarily been based on appeals to emotion.

Future research in several areas would be useful. First,
a more extensive experimental study—perhaps focusing on



AUTHOR C
OPY

T Sloan—Framework for evaluating new versus reprocessed medical devices 199

a particular class of devices—would be of value. Second,
examining more than two ‘maintenance’ actions would be of
interest. Finally, it would be of great interest to collect data
on the failure and observation probabilities for actual devices.
These data are not readily available at present, and collecting
such data would undoubtedly require the cooperation of orig-
inal equipment manufacturers and device reprocessors—two
groups that are not inclined to work together. Nevertheless, it
is hoped that the insights revealed by this paper will provide
an incentive for health care providers to find ways to ascer-
tain the relevant data and use the framework to make better
decisions.
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Appendix A. Main technical results

The main technical results of the model are summarized here.
For more details and for proofs, please refer to Sloan (2008).

A.1. COMDP: indifference points

Proposition A.1 With respect to the repair probability of a
used device (pu10), comparing policies A1 = [r, n, n, n] and
A2 = [r, u, n, n] yields the following indifference point:

�∗
1(A1,A2) = 2U − N − R − Cpr03

N − R − Cpr03
. (A.1)

When pu10 >�∗
1(A1,A2), using a refurbished device is optimal

in state 1; when pu10 <�∗
1(A1,A2), using a new device is

optimal in state 1.

Proposition A.2 With respect to the repair probability of a
used device (pu20), comparing policies A2 = [r, u, n, n] and
A3 = [r, u, u, n] yields the following indifference point:

�∗
2(A2,A3) = (pu10 + pu21)(2U − N − R − Cpr03) − pu10 p

u
21(N − R − Cpr03) + pr01 p

u
10(N −U )

pu10(N − R − Cpr03) + pr01(N −U )
. (A.2)

When pu20 >�∗
2(A2,A3), using a refurbished device is optimal

in state 2; when pu20 <�∗
2(A2,A3), using a new device is

optimal in state 2.

A.2. COMDP: monotonicity conditions

In this context, one condition is sufficient to ensure the
monotonicity of the optimal policy: as the condition of a used
device gets worse, the likelihood of returning it to like-new
condition is non-increasing. In other words, as long as the
repair probability does not increase as the state gets worse,
the optimal policy will call for increasingly effective (and
costly) maintenance actions. The next proposition formalizes
this intuitive result.

Proposition A.3 If pui0� puj0 for each j > i , then the optimal
policy will be monotone with respect to the process state.

A.3. POMDP: existence of an optimal policy

Proposition A.4 A bounded solution to Equation (5) exists,
and a unique, stationary policy exists that minimizes the
average expected cost. Furthermore, the average cost per unit
time is constant; that is, g(a) = g∗, independent of the initial
belief vector.

The result follows direction from Theorem 4.2 of
Fernández-Gaucherand et al (1991).

Appendix B. Data for example problems

Most of the data used for the example problems are reported
in Section 4. This section reports all of the remaining data
necessary to solve the problem variants discussed. Cost data
are based on numbers from Klein (2005) and Landro (2008)
unless otherwise noted.

B.1. Post-procedure observation probabilities

Table B1 reports the post-procedure observation probabilities,
qrjk , used for in the example problems. By definition, a device
cannot be in state 0 (perfect condition) after a procedure is
performed, so corresponding observation probabilities are not
relevant. In addition, the probability of observing state 0 after
a procedure is performed is 0.

B.2. Post-reprocessing observation probabilities

For all example problems, a Very High information quality
level refers to the following observation probabilities:

[qu
jk] =

⎡
⎢⎣
0.99 0.01 0 0
0.005 0.99 0.005 0
0 0.005 0.99 0.005
0 0 0.01 0.99

⎤
⎥⎦ ,

where j (row) is the observed state and k (column) is the
actual state.

B.3. Parameters for example 1: angioplasty balloon

Costs and rewards: N = 515, U = 250, C = 1 000 000,
R = −16 000.
Transition probabilities:

[pri j ] =
⎡
⎢⎣
0 0.4999995 0.4999995 1e − 6
0 0 0.5 0.5
0 0 1 1
0 0 1 1

⎤
⎥⎦ ,

[pui j ] =
⎡
⎢⎣
1 0 0 0
0.98 0.02 0 0
0.5 0.3 0.2 0
0.05 0.5 0.3 0.15

⎤
⎥⎦ .

Table B1 Information matrices for example problems

Information quality level Observation probability matrix

Very high
⎡
⎢⎣
1 0 0 0
0 0.99 0.01 0
0 0.005 0.99 0.005
0 0 0.01 0.99

⎤
⎥⎦

High
⎡
⎢⎣
1 0 0 0
0 0.9 0.1 0
0 0.05 0.9 0.05
0 0 0.1 0.9

⎤
⎥⎦

Medium
⎡
⎢⎣
1 0 0 0
0 0.55 0.45 0
0 0.225 0.55 0.225
0 0 0.45 0.55

⎤
⎥⎦

Low
⎡
⎢⎣
1 0 0 0
0 0.333 0.333 0.334
0 0.333 0.333 0.334
0 0.333 0.333 0.334

⎤
⎥⎦
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B.4. Parameters for example 2: pulse oximetry sensor

Costs and rewards: N = 10, U = 6, C = 10 000, R = −15.
Transition probabilities:

[pri j ] =
⎡
⎢⎣
0 0.6 0.399999999 1e − 9
0 0 0.5 0.5
0 0 0.25 0.75
0 0 0 1

⎤
⎥⎦ ,

[pui j ] =
⎡
⎢⎣
1 0 0 0
0.99 0.01 0 0
0.8565 0.0935 0.05 0
0.05 0.75 0.15 0.05

⎤
⎥⎦ .

B.5. Parameters for example 3: orthopaedic blade

Costs and rewards: N =30, U =15, C =100 000, R=−650.
Transition probabilities:

[pri j ] =
⎡
⎢⎣
0 0.499999995 0.499999995 1e − 8
0 0 0.5 0.5
0 0 0 1
0 0 0 1

⎤
⎥⎦ ,

[pui j ] =
⎡
⎢⎣
1 0 0 0
0.98 0.02 0 0
0.75 0.2 0.05 0
0.05 0.75 0.15 0.05

⎤
⎥⎦ .

B.6. Parameters for example 4: laparoscopic surgery

Costs and rewards: N = 1200, U = 250, C = 1 000 000,
R = −8000.
Transition probabilities:

[pri j ] =

⎡
⎢⎢⎢⎣

0 0.6 0.3999999 1e − 7

0 0 0.6 0.4

0 0 0 1

0 0 0 1

⎤
⎥⎥⎥⎦ ,

[pui j ] =

⎡
⎢⎢⎢⎣

1 0 0 0

0.8609 0.1391 0 0

0.8354 0.0823 0.0823 0

0.05 0.75 0.1 0.1

⎤
⎥⎥⎥⎦ .
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