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Abstract: In many manufacturing environments, equipment condition has a significant impact on product quality, or yield. This
paper presents a semi-Markov decision process model of a single-stage production system with multiple products and multiple
maintenance actions. The model simultaneously determines maintenance and production schedules, accounting for the fact that
equipment condition affects the yield of each product differently. It extends earlier work by allowing the expected time between
decision epochs to vary by both action and machine state, by allowing multiple maintenance actions, and by treating the outcome of
maintenance as less than certain. Sufficient conditions are developed that ensure the monotonicity of both the optimal production
and maintenance actions. While the maintenance conditions closely resemble previously studied conditions for this type of problem,
the production conditions represent a significant departure from earlier results. The simultaneous solution method is compared to
an approach commonly used in industry, where the maintenance and production problems are treated independently. Solving more
than one thousand test problems confirms that the combination of both features of the model—accounting for product differences
and solving the problems simultaneously—has a significant impact on performance. © 2007 Wiley Periodicals, Inc. Naval Research
Logistics 55: 116–129, 2008
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1. INTRODUCTION

Equipment condition is an important determinant of prod-
uct quality in a variety of manufacturing environments: in
machine shops tool bits wear down and cause defects; in
pharmaceutical production facilities, the ultra-clean equip-
ment becomes contaminated and causes product spoilage.
This article explores how information about equipment con-
dition can be used to improve maintenance and production
scheduling decisions and increase yield.

Consider, for example, the etch operation in semiconductor
wafer fabrication in which chemicals are used to strip materi-
als from the surface of silicon wafers. The inner chambers of
the etch equipment become more and more contaminated as
wafers are processed, and eventually one must stop produc-
tion and clean the machine, returning it to an improved state.
In recent years, the development of in situ particle monitors
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and other devices has made it possible to assess the level of
contamination while the equipment is in use. Experts have
promoted the use of such devices to improve maintenance
procedures and process control (see Hunter and Nguyen [16],
Takahashi and Daugherty [41], and Lee and Tien [27], for
example). However, little effort has been made to use such
information in production scheduling decisions, despite the
fact that the level of contamination may have a bigger impact
on some products than on others. For example, leading-edge
computer chips typically have smaller circuit sizes than more
mature chips and thus are more susceptible to damage by
particles in the equipment.

Only recently have researchers begun to explore the inter-
action between equipment condition and yield, and this
research has focused almost exclusively on single-product
systems, ignoring how equipment condition may have a dif-
ferent impact on the yield of different product types. In this
article we develop a semi-Markov decision process model
that simultaneously determines the production and mainte-
nance schedules for a single-stage, multiple-product system,
accounting for product differences. The equipment condi-
tion, which deteriorates over time, is characterized by a

© 2007 Wiley Periodicals, Inc.



Sloan: Production and Maintenance Schedules 117

discrete set of states. At each decision epoch, the decision
maker can choose to produce one of several products or to
perform one of several maintenance actions. There is uncer-
tainty associated with each action, and the expected rewards
or costs depend on the machine state. In addition, the time
between decision epochs—marked by the completion of pro-
duction or the completion of maintenance—is a random vari-
able that depends on the machine condition and the action
taken.

One goal of the article is to find conditions which are
sufficient to ensure that a monotone policy is optimal, i.e.,
the optimal action increases as the machine condition gets
worse. Products are indexed in descending order of their
expected profit and their sensitivity to the equipment con-
dition; maintenance actions are indexed in ascending order
of their cost and their effectiveness. After establishing that
the usual conditions sufficient for monotonicity of Markov
decision process (MDP) problems are not adequate in this
case, new monotonicity conditions are developed. While the
results for the maintenance actions are closely related to the
original MDP conditions, the conditions for the production
actions, which incorporate the conditional probability of the
machine deteriorating, are significantly different.

After exploring these structural properties, numerical test
problems are used to study how much improvement can
be achieved using the simultaneous solution method which
uses product yield and equipment condition information. Tra-
ditionally, the maintenance and production schedules are
determined sequentially. First, a maintenance problem is
solved to determine the equipment deterioration level at
which maintenance should be undertaken. Next, the produc-
tion schedule is determined, without regard to the effect of
the equipment condition on different products. We compare
this traditional approach to three others: simultaneous solu-
tion with non-yield-based production scheduling, sequen-
tial solution with yield-based production scheduling, and
simultaneous solution of the two problems with yield-based
production scheduling. In the more than one thousand prob-
lems solved, the simultaneous, yield-based approach was an
average of roughly 42 percent better than the traditional,
sequential approach, roughly 27 percent better than the simul-
taneous, non-yield-based approach, and nearly 18 percent
better than the sequential approach with yield-based dis-
patching. These results reinforce some conclusions of Sloan
and Shanthikumar [38] but also demonstrate how the model
extensions reveal additional insights.

The rest of the article is organized as follows. Section 2
presents an overview of the literature related to the problem
described above. The details of the model and the struc-
tural results are presented in Section 3. Section 4 discusses
different solution approaches, and Section 5 reports results
of the numerical test problems. Conclusions and possible
extensions are discussed in Section 6.

2. LITERATURE REVIEW

There is a vast body of research addressing problems of
equipment maintenance, i.e., when to repair or replace equip-
ment; see Valdez-Flores and Feldman [43] and Wang [45]
for extensive reviews. The work most closely related to our
problem allows for multiple repair actions, beginning with
Kamien and Schwartz [20] and continuing with works such
as Hopp and Wu [14], Su et al. [40], Ivy and Pollack [18], and
Gilardoni and Colosimo [9]. However, these models ignore
the effect that equipment condition may have on the yield or
quality of the output.

Research on production management with equipment fail-
ures includes continuous flow control models (Lou et al. [28],
Song [39]), models of discrete part production systems (Hong
et al. [13], Taylor et al. [42]), lot-sizing models (Groenevelt
et al. [10, 11]), and models of two-stage flowlines (Van der
Duyn Schouten and Vanneste [44] Meller and Kim [30],
Filliger and Hongler [7]). In all of these models, the inter-
action between production and maintenance is reduced to
one dimension: Is the equipment working or not? Production
models with intermediate machine states—i.e., between “up”
and “down”—include single-product systems (Boukas et al.
[2]) and multi-product systems (Dedopoulos and Shah [4]).
Again, while the equipment condition may affect costs and
throughput in these models, it does not affect yield.

Yano and Lee [47] present a comprehensive review of pro-
duction models with variable yield. Most of the work in this
area has focused on single-product systems and does not treat
yield as a function of process condition. Rosenblatt and Lee
[34] and Porteus [32] made the first connections in this area
by extending the classical economic manufacturing quantity
(EMQ) framework to incorporate imperfect process condition
in the determination optimal production lot sizes. Various
extensions to these seminal works have been pursued: allow-
ing process inspections during the production cycle (Kim
et al. [23], Wang [46]), studying different cost structures
(Lee and Rosenblatt [25], Lee and Park [26]), considering the
effects of machine failures (Makis and Fung [29], Ben-Daya
[1], Sheu and Chen [36]), and allowing process improvements
to be made (Freimer et al. [8]). Other attempts to examine
the interaction between production, maintenance, and quality
have been pursued using other, non-EMQ approaches (Iravani
and Duenyas [17], Sloan [37], Kenné et al. [22]). All of these
models examine how much to produce, but do not address the
question of dispatching, or which product to process next.

In a similar vein, Nurani et al. [31] study a single-stage
system in which the process can drift out of control, resulting
in defective items. Although product quality depends on the
equipment condition, the purpose of the model is to deter-
mine issuing policies, i.e., in what order finished goods are
passed to the customer, rather than production dispatching
policies.
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Cunningham [3] does explicitly connect product yield to
dispatching by showing that using in-line yield estimates to
guide scheduling decisions can increase throughput, reduce
flow time, and improve yield predictability. However, the
process yield is not directly connected to the equipment
condition.

The model most closely related to the current paper is
that of Sloan and Shanthikumar [38], a Markov decision
process model that simultaneously determines maintenance
and production schedules for a single-stage, multiple-
product system. While the model of [38] makes important
steps towards linking the areas of equipment maintenance,
product yield, and production scheduling, the model pre-
sented in the next section extends it in three important
ways: allowing production and maintenance times to vary,
including multiple maintenance actions, and incorporating
uncertainty with respect to the maintenance action out-
come. These extensions have a profound effect on the
model’s structural properties and the insights revealed by the
model.

3. MODEL

3.1. Formulation

Using a semi-Markov decision process (SMDP) frame-
work, we consider the problem of determining production and
maintenance schedules for a single machine that produces
multiple products. The condition of the equipment deterio-
rates over time, and this condition affects the yield of different
products differently. The set of machine states is defined as
S = {0, 1, . . . , J }, where state 0 is the best possible condi-
tion, and J is the worst condition. (Note that we are implicitly
assuming that machine states can be ordered from better to
worse. Referring to the earlier example, a higher state corre-
sponds to an increased number of particles in the equipment.)
At each decision epoch, the state of the machine is observed,
and the decision maker has the option to produce one of K

products or to stop production and perform one of M main-
tenance actions. The set of production actions is defined as
AK = {1, 2, . . . , K} and is indexed by k. The set of mainte-
nance actions is defined as AM = {K+1, K+2, . . . , K+M}
and is indexed by m. The set of all possible actions is defined
as A = AK ∪ AM, and the index a refers to any action in
this set.

A new decision epoch occurs whenever the processing of
a unit is completed or a maintenance action is completed.
The time between decision epochs is a random variable that
depends on the action taken at the current epoch. Define
Fia(t) as the probability that the next decision epoch occurs
within t time units of the current decision epoch given that
action a is taken when the equipment is in state i, and define
τ(i, a) as the mean of the distribution Fia . In keeping with

the usual SMDP framework, the mean of Fia is assumed to
be non-zero and finite (i.e., 0 < τ(i, a) < ∞ for all i ∈ S
and all a ∈ A). This condition eliminates the possibility of
an infinite number of decision epochs occurring in a finite
period of time.

Define Pij (a) as the probability that the equipment will
be in state j at the next decision epoch given that the deci-
sion maker chooses action a when the equipment is in state
i at the current decision epoch. In general, producing causes
the equipment state to increase (move to a higher level of
deterioration) and performing maintenance causes the equip-
ment state to decrease (move to a lower level of deteriora-
tion). However, performing maintenance does not necessarily
return the equipment to state 0. Note that the equipment con-
dition may change between decision epochs; however, the
decision maker must wait until an action is completed to
observe the state and choose the next action. Connections
between the machine state transition probabilities and the
time between decision epochs, while not explicit, can easily
be incorporated. For example, longer expected production
times may result in a higher likelihood of equipment deteri-
oration, and the transition probabilities can reflect this type
of relationship.

Let r(i, a) denote the expected reward earned when the
machine state is i and action a is taken at the current decision
epoch. The structure of the reward will depend on whether a
production action or a maintenance action is taken. For pro-
duction actions, define Rk as the profit earned for a finished,
working unit of product k. It is assumed that a new setup
must be performed each time an item is produced, regard-
less of the product type, and any cost associated with this
setup is accounted for in the Rk values. Let βik be the prob-
ability that product k works when production begins while
the machine is in state i. Put differently, βik is the expected
yield of product k, so the expected reward for choosing
to produce product k in when the machine is in state i is
r(i, k) = Rkβik .

For maintenance actions, the reward has a different struc-
ture. Most notably, the reward will be negative, so we will
often refer to it as a cost when discussing maintenance
actions. When the equipment is maintained, a fixed cost of
c(i, m) is incurred immediately, and a variable cost of v(i, m)

per unit time is incurred. The expected cost of performing
maintenance action m when the equipment is in state i is
expressed as r(i, m) = c(i, m) + v(i, m)τ(i, m).

Regardless of whether one chooses production or main-
tenance, the expected rewards are real-valued and bounded,
i.e., |r(i, a)| < ∞ for each i ∈ S and each a ∈ A. This prop-
erty, which follows from the fact that the state space, action
space, and the time between decision epochs are all finite,
ensures that we do not have an infinitely profitable product
nor an infinitely costly maintenance action, independent of
the time.
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Since the time between decision epochs is a random vari-
able and changes in the machine state depend only on the
current state and the action taken, a semi-Markov decision
process framework is used to model the problem. Let Xn

denote the machine state at the nth decision epoch (n ≥ 0),
and let an be the corresponding action taken. The associated
expected reward earned is r(Xn, an), and the expected time
until the next decision epoch is τ(Xn, an).

Our objective is to determine a policy, or decision rule,
that maximizes the long-run expected average reward. Let π

denote a particular policy, i.e., a prescription for which action
to take in each state. Define ḡπ (i) as the long-run expected
average reward under policy π when the process begins in
state i. The average reward ḡπ (i) is also referred to as the
gain and is expressed as

ḡπ (i) = lim inf
N→∞

Eπ

[∑N
n=0 r(Xn, an) | X0 = i

]
Eπ

[∑N
n=0 τ(Xn, an) | X0 = i

] , (1)

where Eπ denotes the expected value under policy π . An
optimal policy, denoted as π∗, is a policy (from the set of all
possible policies) for which ḡ∗(i) = supπ {ḡπ (i)} for each
i ∈ S. A stationary policy is a decision rule that is nonran-
domized and does not depend on time, i.e., depends only on
the current machine state.

The problem specified by these objects—S, A, Pij (a),
r(i, a), τ(i, a), and ḡ—is referred to as “the SMDP” through-
out the rest of the article. Some preliminary results are needed
before the existence of an optimal policy can be established
and the structure of this policy characterized.

3.2. Chain Structure of the SMDP

The chain structure of the SMDP is determined by the
machine state transition probabilities. Equipment deterio-
ration is caused by production, so the machine state will
not decrease when production is performed. Conversely, the
equipment deterioration level only decreases when mainte-
nance is performed, so the machine state will not increase
when a maintenance action is taken. To avoid any ambigu-
ity, we explicitly assume that once the equipment reaches
the worst state, it cannot leave this state unless maintenance
is performed. In addition, the machine cannot leave the best
state unless production is performed. These conditions are
summarized in the following assumption:

(A1) a. For i = 0, 1, . . . , J − 1, Pij (k) > 0, for at
least one j > i and Pij (k) = 0 for all j < i,
for each k ∈ AK; in addition, Pi,i+1(k) > 0
for at least one k ∈ AK;

b. For i = 1, 2, . . . , J , Pij (m) > 0 for at least
one j < i and Pij (m) = 0 for all j > i, for
each m ∈ AM.

By definition,
∑J

j=0 Pij (a) = 1 for all i ∈ S and all a ∈ A, so
the above assumption implies that PJJ (k) = 1 for all k ∈ AK,
and P00(m) = 1 for all m ∈ AM. Aside from these two spe-
cial cases, assumption (A1) eliminates the possibility of an
absorbing state. In addition, the requirement that Pi,i+1(k) for
at least one production action creates a potential connection
between all states. Assumption (A1) is quite mild, especially
when compared to the restrictions imposed in other models.
For example, the model of Kao [21] assumes that Pij = 0 for
j ≤ i when maintenance is not performed and the models of
Derman [6], Kao [21], and Sloan and Shanthikumar [38] all
assume Pi0(m) = 1 for all i when maintenance is performed.

The fact that S is finite, combined with assumption (A1),
ensures that the underlying Markov chain is communicat-
ing, which means that every state can eventually reach every
other state in a finite number of transitions under some policy,
even if this is not true for every policy. The following lemma
summarizes this point:

LEMMA 3.1: If assumption (A1) is met, then the SMDP
is communicating.

PROOF: The proof relies on Proposition 8.3.1a from
[33, p. 350], which states that the (embedded) Markov deci-
sion process “is communicating if and only if there exists
a randomized stationary policy which induces a recurrent
Markov chain,” i.e., a chain with a single closed irreducible
class of states. Let m be a fixed maintenance action, and
choose this action with probability one in state J and with
probability 0.5 in all states i < J . Choose a production
action ki with Pi,i+1(ki) > 0 with probability 0.5 in all
states i < J . This randomized stationary policy results
in a recurrent Markov chain, and therefore, the SMDP is
communicating. �

3.3. Existence of a Stationary Optimal Policy

In this section, the existence of a policy that optimizes the
long-run average reward (1) is established. Furthermore, we
show that the optimal policy is stationary and deterministic.
Following the approach of Sennott [35] and others, the aver-
age reward results are built on properties of the associated
discounted reward problem. For a discount factor α > 0, the
discounted reward optimality equation is

Vα(i) = max
a∈A


r(i, a) +

J∑
j=0

Pij (a)

∫ ∞

0
e−αtdFia(t)Vα(j)


,

i ∈ S. (2)

The following lemma shows that the discounted reward
problem has an optimal solution.
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LEMMA 3.2: The optimality equation (2) has a unique
solution. Furthermore, a stationary deterministic optimal
policy exists.

PROOF: Since the rewards are bounded, the distribution of
time between decision epochs is proper, and the state space
is finite, the result follows immediately from Theorem 11.3.2
of Puterman [33]. �

Note that the above lemma makes no assumptions regard-
ing the recurrence properties of the embedded Markov chain.
Using this result, we may now show that a solution exists for
the average reward model.

PROPOSITION 3.1: If assumption (A1) is met, then there
exists a stationary deterministic optimal policy that satisfies
the optimality equation

h(i) = max
a∈A


r(i, a) − g∗τ(i, a) +

J∑
j=0

Pij (a)h(j)


 ,

i ∈ S, (3)

where g∗ is a constant such that g∗ = limα↓0 αVα(i) for all
i ∈ S. Furthermore, ḡ∗(i) = g∗ for all i ∈ S.

The details of the proof appear in the Appendix. With this
fundamental result in hand, we can begin exploration of the
structural properties of the optimal solution.

3.4. Structural Properties

Insight into the structural properties can have important
implications for both the solution of the problem and imple-
mentation of the results. Under what conditions will the
optimal policy be monotone? That is, under what conditions
will the optimal action be nondecreasing with respect to the
equipment condition?

First, define a(i) as the optimal action; to avoid ambi-
guity, let it denote the smallest action that optimizes a
given problem. The following proposition identifies sufficient
conditions for monotonicity.

PROPOSITION 3.2: Suppose that assumption (A1) holds
and that the following conditions are met:

(C1) r(i, a) is nonincreasing in i for all a ∈ A;

(C2)
∑J

j=l Pij (a) is nondecreasing in i for all l ∈ S
and for all a ∈ A;

(C3) r(i, a) is superadditive; that is, r(i, â) − r(i, ā) is
nondecreasing in i for â, ā ∈ A such that â > ā;

(C4) For all l ∈ S,
∑J

j=l Pij (a) is subadditive; that is,∑J
j=l[Pij (â) − Pij (ā)] is nonincreasing in i for

all l ∈ S and all â, ā ∈ A such that â > ā;

(C5) τ(i, a) is subadditive; that is, τ(i, â) − τ(i, ā) is
nonincreasing in i for â, ā ∈ A such that â > ā.

Then there exists a deterministic stationary optimal policy
such that the optimal action a(i) is nondecreasing in i.

The proof appears in the Appendix. Conditions (C1)
through (C4) are analogous to the well-known monotonic-
ity conditions for MDPs (see, for example, Theorem 8.11.4
of [33] or Corollary 8.5a of Heyman and Sobel [12]), and
(C5) is new. The interpretation of the conditions will be dis-
cussed briefly with respect to a maintenance control limit,
the monotonicity of maintenance actions, and the monot-
onicity of production actions. Throughout the remainder
of the article, the terms “increasing” and “nondecreasing”
are used interchangeably, as are the terms “decreasing” and
“nonincreasing.”

3.4.1. Maintenance Control Limit

Building on the discounted-reward MDP results of Hopp
and Wu [14], we first we establish the existence of a main-
tenance control limit, i.e., a threshold machine state at (or
above) which it is optimal to perform maintenance:

COROLLARY 3.1: If conditions (C1) through (C5) are
met for â ∈ AM and ā ∈ AK, and assumption (A1) holds,
then there exists a threshold state, ı̂, such that the optimal
action a(i) > K for i ≥ ı̂, and a(i) ≤ K for i < ı̂.

The result follows immediately from Proposition 3.2. For
production actions, Condition (C1) means that the expected
yield for each product, βik , decreases as the machine state gets
worse. Similarly, the expected maintenance costs increase as
the equipment condition deteriorates. Condition (C2) means
that for production actions, as the equipment condition gets
closer to state J , it becomes increasingly likely that state J

will be reached. Condition (C2) also means that performing
maintenance is more challenging in a worse state than in a
better state, so for a given maintenance action, transitions to
“good” states become less likely as the equipment condition
gets worse.

Condition (C3) means that for a given increase in equip-
ment deterioration, the decrease in expected profit for produc-
tion is greater than the increase in expected cost for mainte-
nance. Condition (C4) requires that the difference between
failure rates for maintenance actions and production actions
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decreases as the machine state gets worse. If performing
maintenance does not provide an increasing improvement
compared to non-maintenance, then (C4) will not be met,
and there is possibility that it will be optimal to switch
from production to maintenance and then back to production.
Condition (C5) means that for a given increase in machine
state, the difference between the expected time to perform
maintenance and the expected time to produce a product
decreases.

3.4.2. Monotonicity of Maintenance Actions

Now we identify conditions sufficient to ensure that the
optimal maintenance action is nondecreasing in the machine
state. First, the maintenance actions are arranged in increas-
ing order of effectiveness and cost; that is, a maintenance
action with a higher index is more likely to move the equip-
ment condition to a better state but also costs more to apply.
For maintenance actions m ∈ AM, we have

(A2) r(i, m) is nonincreasing in m for all i ∈ S.

(A3)
∑l

j=0 Pij (m) is nondecreasing in m for all i,
l ∈ S.

We can now state the following corollary:

COROLLARY 3.2: If conditions (C1) through (C5) are
met for â, ā ∈ AM, and assumptions (A1) through (A3) hold,
then the optimal action, a(i), is nondecreasing in i for
a(i) > K .

This result, which follows immediately from Proposition
3.2, means that once the maintenance threshold is reached,
progressively more effective (and more costly) maintenance
actions will be applied as the equipment condition gets worse.

Conditions (C1) and (C2) are discussed above. In this
context, Condition (C3) means that the difference between
expected rewards for more- and less-effective maintenance
actions increases as the equipment condition gets worse—
for a given increase in equipment deterioration, the expected
cost of a higher-index maintenance action increases less than
the cost of a lower-index maintenance action. Condition (C4)
can be reframed as:

∑l
j=0[Pij (m̂) − Pij (m̄)] is nondecreas-

ing in i, where m̂, m̄ ∈ AM such that m̂ > m̄. This means
that for a given increase in the machine state, the likelihood
of a high-index maintenance action moving the equipment
to an improved state decreases less than the likelihood of a
low-index maintenance action moving the equipment to an
improved state. Condition (C5) means that as the equipment
deterioration level increases, the difference in the expected
time required for high-index and low-index maintenance
actions decreases.

3.4.3. Monotonicity of Production Actions

Now we address the issue of production policies for
which the optimal production action is nondecreasing in the
machine state. To do so, production actions are arranged in
descending order of profit. In addition, the yield for each
product decreases as the machine condition gets worse, and
for a given machine state, the yield is higher for lower-profit
products than for higher-profit products. These assumptions,
which are in keeping with the semiconductor manufacturing
scenario discussed earlier, are expressed as

(A4) Rk is nonincreasing in k for all k ∈ AK, and

(A5) βik is nonincreasing in i for any fixed k ∈ AK and
nondecreasing in k for any fixed i ∈ S.

These assumptions require that products with lower indices
are more sensitive to the machine condition but earn higher
profits; however, they do not imply that r(i, k) decreases
in k.

Given that Sloan and Shanthikumar [38] showed that (C1)
through (C4) are sufficient to ensure a monotone produc-
tion policy in an MDP model when all products induce the
same machine state transition probabilities and have the same
mean production times, one might expect that conditions (C1)
through (C5) would be sufficient for the SMDP case. How-
ever, this is not so. Indeed, condition (C4) is unlikely to be met
by any transition probability matrices that also meet assump-
tion (A1). The following proposition, which represents the
main analytical result of the article, identifies new conditions
sufficient to ensure the monotonicity of production actions:

PROPOSITION 3.3: Suppose that assumptions (A1),
(A4), and (A5) hold, conditions (C1) and (C2) are met, and
the following conditions are met:

(C3 ′)
r(i, k̂)

[1 − Pii(k̂)] − r(i, k̄)

[1 − Pii(k̄)] is nondecreasing

in i,

(C4 ′)
∑l

j=i+1 Pij (k̂)

[1 − Pii(k̂)] −
∑l

j=i+1 Pij (k̄)

[1 − Pii(k̄)] ≤ 0 and is

nondecreasing in i, where i < l ≤ J , and

(C5 ′)
τ(i, k̂)

[1 − Pii(k̂)] − τ(i, k̄)

[1 − Pii(k̄)] is nonincreasing

in i,

where i = 0, 1, . . . , J − 1 and k̂, k̄ ∈ AK such that k̂ > k̄.
Then the optimal action, a(i), is nondecreasing in i for
a(i) ≤ K .

The proof appears in the Appendix. The new conditions
clearly bear a strong resemblance to (C3) through (C5). The
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expression [1 − Pii(k)] is the probability that the machine
condition leaves state i when production action k is taken,
and it is a key feature of the new conditions. For a particular
state i, we can think of the decision process as either being
in state i or outside of state i. The underlying machine state
may make several “virtual” transitions from state i back to
itself before it makes a “real” transition to another state, and
this pattern may be repeated several times between decision
epochs. The expression 1/[1−Pii(k)] is equal to the number
of virtual transitions before the process makes a real transi-
tion to a state outside of i when production action k is taken
(see Howard [15, p. 632]). So r(i, k)/[1 − Pii(k)] can be
thought of as the reward rate earned for choosing to produce
product k in state i. Condition (C3′) therefore means the dif-
ference between more-sensitive and less-sensitive products
with respect to the reward rate increases as the equipment
condition gets worse.

Similarly, Pij (k)/[1 − Pii(k)] is the conditional machine
state transition probability, and condition (C4′) requires that
the difference between high-index and low-index products
with respect to the conditional failure rate increases as the
machine condition gets worse. In addition, the conditional
failure rate is higher for more-sensitive products, and there-
fore the difference between high- and low-index products will
be less than or equal to zero.

The expression τ(i, k)/[1−Pii(k)] refers to the mean dura-
tion of time that the process spends in state i before making a
real transition to another state when product k is produced
and is often called the holding time [15, p. 632]. Condi-
tion (C5′) can therefore be interpreted as follows: the mean
holding time difference between higher-index (less-sensitive)
and lower-index (more-sensitive) products decreases as the
machine state gets higher.

The fact that the optimal action is nondecreasing with
respect to production simply means that we will produce
more-sensitive products when the machine condition is good,
and as the machine condition deteriorates, we will pro-
duce less-sensitive products. Eventually, the machine con-
dition will reach the maintenance threshold, and we will stop
production and perform maintenance.

4. SOLUTION METHOD

4.1. Linear Programming Solution

Many solution procedures are available for unichain
SMDPs; however, such procedures may not work when there
is a possibility of multiple recurrent classes, as is the case
here (Puterman [33]). One procedure that does work for mul-
tichain SMDPs such as this one is the linear programming
method of Denardo and Fox [5]. Denoting r(i, a) as the
expected reward for taking action a when the equipment is
in state i and maximizing

∑
i∈S

∑
a∈A r(i, a)xia subject to

constraints on the state frequencies, yields an average-reward
optimal policy with objective function value equal to g∗ from
Eq. (3). In this framework, the decision variable xia can be
thought of as the fraction of decision epochs that action a is
being taken while the system is in state i ∈ Sx , where Sx is
the set of recurrent states.

It may be of interest to add production targets to the model
presented in the last section, and doing so requires the addi-
tion of constraints to the linear program (LP) described above.
The addition of constraints to a multichain SMDP linear pro-
gram presents a non-trivial challenge due to the possibility
of multiple closed sets of states. The linear programming
approach proposed by Krass and Vrieze [24] is adapted here
to address this issue. The LP is as follows:

maximize
∑
i1∈S1

∑
a∈A

r(i1, a)xi1a (4)

subject to
∑
a∈A

xj 1a −
∑
i1∈S1

∑
a∈A

Pi1j 1(a)xi1a = 0

for all j 1 ∈ S1, (5)

yj 0δ +
∑
a∈A

yj 0a −
∑
i0∈S0

∑
a∈A

Pi0j 0(a)yi0a = αj 0

for all j 0 ∈ S0, (6)

yj 0δ −
∑
a∈A

τ(j , a)xj 1a = 0 for all j 0 ∈ S0, (7)

xi1a ≥ 0 for all i1 ∈ S1, and all a ∈ A,

yi0a ≥ 0 for all i0 ∈ S0, and all a ∈ A, (8)

and yi0δ ≥ 0 for all i0 ∈ S0,

where the superscript 1 indicates the real machine states,
and the superscript 0 signifies a “virtual” machine state. The
process begins in the virtual state j 0 with probability αj 0 . In
addition to the previously defined actions a ∈ A, the action
δ indicates the one-way (irreversible) switch from the vir-
tual to the real states. A solution to this LP yields the same
objective function value as the LP described previously but
does so in a way that ensures a separation between the tran-
sient and recurrent states, which allows constraints on the
long-term (recurrent) behavior of the process to be enforced.
The linear program specified by (4) through (8) is referred to
as LP-1.

Now consider the addition of a production target, meaning
that over the long run a certain proportion of total production
must consist of a particular product type. Let γk be the long-
run proportion of product k required, where k ∈ AK, and∑

k∈AK
γk = 1. The fraction of decision epochs where the

embedded Markov chain is in state i implementing action
a is equal to xia , where i ∈ Sx and a ∈ A. The expected
yield for product k when production begins in state i is
βik . Weighting the fraction of decision epochs where pro-
duction is performed by the expected yield of the different
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products tells us what fraction of good output is made up of
product k: ∑

i∈S xikβik∑
k∈AK

∑
i∈S xikβik

= γk for each k ∈ AK. (9)

These K constraints, rewritten in linear form and added to
LP-1, constitute was it referred to as LP-2. Also note that no
claims about the structural properties of optimal policy for
the production-constrained problem are being made here.

4.2. Solution Approaches: Different Timing
and Yield Information

In the next section, test problems are presented that
explore the impact of solving the maintenance and pro-
duction aspects of this problem sequentially versus simul-
taneously and solving the problems with yield information
versus without yield information. The three approaches
employed by Sloan and Shanthikumar [38] with the more
basic model are used here, as well as a new approach
which highlights the influence of yield information. We seek
to reveal how much better the simultaneous, yield-based
solution method is and whether the improvement comes
more from the simultaneity of the solution or the use of
yield information. The four approaches used are discussed
below.

4.2.1. Approach 1 (sequential, non-yield-based dispatch)

Two problems are solved. First, a maintenance schedule
is determined, ignoring product differences. The problem
is reduced to choosing between “produce” and “maintain”
for each state. Next, a production schedule is determined.
When producing, the next item to process is picked with-
out regard to the equipment condition. In the long run,
this is equivalent to choosing product k with probability γk

since that is the proportion of finished output desired. For
example, if there are two products produced, and they are
required in equal proportions, then there is a 50–50 chance
of choosing each product at the next decision epoch. The
expected reward earned for the “produce” action is a func-
tion of the expected reward for each product weighted by
the production ratios. Denote this weighted expected reward
as r̄(i) = ∑

k∈AK
γkRkβik . Under Approach 1, r̄(i) will be

earned for each k ∈ AK. This procedure will produce equiva-
lent results—in terms of yield—as any other dispatching pol-
icy that ignores the equipment condition, such as first-come,
first-serve (FCFS).

The maintenance threshold is determined by solving LP-1,
using the r̄(i) values in the objective function (4). Once the
maintenance threshold has been established, the production
schedule is determined by solving LP-2, requiring the produc-
tion ratios be attained and also that the maintenance threshold

be enforced. This procedure is referred to as the “traditional
approach.”

4.2.2. Approach 2 (simultaneous, non-yield-based
dispatch)

The maintenance and production problems are determined
simultaneously by solving LP-2 using the r̄(i) values in
the objective function for each k ∈ AK. Like Approach 1,
Approach 2 does not account for yield differences in deciding
which product to produce.

4.2.3. Approach 3 (sequential, yield-based dispatch)

The maintenance threshold is taken to be the one deter-
mined using Approach 1. A production schedule is deter-
mined by solving LP-2 with the original objective func-
tion coefficients (i.e., accounting for the product differences)
and with the constraint that the maintenance threshold be
enforced. Approaches 1 and 3 therefore have the same main-
tenance policy, but the production policy of Approach 3 will
take yield differences into account.

4.2.4. Approach 4 (simultaneous, yield-based dispatch)

The maintenance and production schedules are determined
simultaneously by solving LP-2 using the original objective
function coefficients.

The results of the test problems are presented in the next
section.

5. NUMERICAL RESULTS

The monotonicity conditions for this model are signifi-
cantly different from those reported in previous research,
and this section examines the practical effects of incorpo-
rating more in-line equipment condition and yield informa-
tion in production and maintenance scheduling decisions by
reporting the results of some numerical test problems.

5.1. Detailed Examples

Some simplified examples are presented to illustrate how
all of the pieces of the model fit together. Consider a prob-
lem with two products (actions 1 and 2), two maintenance
actions (actions 3 and 4), and four machine states (in increas-
ing order of deterioration, denoted as states S = {0, 1, 2, 3}).
For each i ∈ S, the mean production times are τ(i, 1) = 2 and
τ(i, 2) = 1, and the mean maintenance times are τ(i, 3) = 1
and τ(i, 4) = 2, respectively. The machine condition dete-
riorates while production is being performed, and since
τ(i, 1) > τ(i, 1), the likelihood of going to a worse state
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increases, as shown in the following machine state transition
probability matrices:

[Pij (1)] =




0.35 0.35 0.2 0.1
0 0.35 0.35 0.3
0 0 0.35 0.65
0 0 0 1




[Pij (2)] =




0.6 0.215 0.075 0.11
0 0.6 0.215 0.185
0 0 0.6 0.4
0 0 0 1


 .

Action 3 can be thought of as “minor” maintenance and
action 4 as “major” maintenance, and the corresponding
machine state transition probabilities are

[Pij (3)] =




1 0 0 0
0.7 0.30 0 0
0.7 0.25 0.05 0
0.7 0.25 0.025 0.025




[Pij (4)] =




1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0


 .

The profit for a finished, working unit of product 1 is
R1 = 600 and for product 2 is R2 = 300. The yield val-
ues for product 1 are β01 = 0.5, β11 = 0.15, β21 = 0.05, and
β31 = 0. For product 2 the yields are β02 = 1, β12 = 0.8,
β22 = 0.7, and β32 = 0. These values illustrate the situ-
ation in which one product has a higher profit but lower
yield and longer processing time than the other. For both
products, the yield decreases as the machine condition dete-
riorates, but the drop-off is much steeper for product 1 than for
product 2.

The variable maintenance cost is 25 for both maintenance
actions: v(i, m) = −25 for each i and both m. The fixed cost
for minor maintenance starts at 225 and increases by 25 per
state as the machine condition deteriorates: c(0, 3) = −225
and c(i, 3) = c(0, 3) − 25i for i = 1, 2, 3. The fixed cost for
major maintenance is c(i, 4) = −500 for each i.

All of the conditions for Proposition 3.3 are met, and opti-
mal policy is monotone: π∗ = [2, 2, 2, 3], meaning produce
product 2 in states 0, 1, and 2, and perform minor maintenance
in state 3. Incorporating production targets will result in a
different optimal policy. For the remainder of the example,
suppose that equal proportions of each product are needed:
γ1 = γ2 = 0.5.

The results of the this and two other example problems
are reported in Table 1. In Example 1, the Approach 1 pol-
icy calls for production in the first three states and minor
maintenance in the last state. (The notation “1/2” in the table
indicates that both products 1 and 2 are being produced.) As
the results in the table show, solving the problems simulta-
neously without yield information (Approach 2), adjusting
the dispatching policy (Approach 3), and solving the prob-
lems simultaneously with yield information (Approach 4),
produce increasingly greater average rewards. Treating the
maintenance and production dimensions in isolation—as is
traditionally the case—can produce very poor results. This
insight is not just of theoretical interest: The author is famil-
iar with several semiconductor manufacturers making use of
particle monitors and the like to improve maintenance deci-
sions but ignoring the potential to use this information for
production scheduling.

Two other examples are considered. For Example 2, sup-
pose that mean minor maintenance time is τ(i, 3) = 1.5
for each i. The results in Table 1 demonstrate that this
small change has a big impact—particularly with respect to
Approach 3. For Example 3, suppose that the mean minor
maintenance time is τ(i, 3) = 0.25 for each i. Again,
this seemingly minor change greatly influences the results.
In these examples, solving the problems simultaneously
yields some improvement, but using yield information in the
production decisions has a bigger impact.

5.2. Overview of Test Problems

For the larger numerical study, we examine a single-stage
system that produces four products (labeled k = 1, 2, 3, 4)
and has five machine states (labeled i = 0, 1, 2, 3, 4). Two
maintenance actions are available: “minor” maintenance

Table 1. Summary of detailed example results.

Example 1 Example 2 Example 3

Machine state A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

0 1/2 1/2 1 1 1/2 1/2 1 1 1/2 1/2 1/2 1
1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 2/3
2 1/2 1/2 1/2 4 1/2 1/2 1/2 4 3 3 3 3
3 3 4 3 4 4 4 4 4 3 3 3 3
Reward 32.1 40.8 42.4 57.0 38.8 40.8 52.5 57.0 48.2 48.2 48.2 67.2
% Imp. over A1 — 27.2 32.1 77.9 — 5.0 35.2 46.9 — 0 0 40.8
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Table 2. Summary of test problem results.

Improvement (%)

All problems A2/A1 A3/A1 A4/A1

Average 9.5 19.8 42.5
Maximum 474.3 612.6 774.0
Minimum 0.0 0.0 0.0

Factor Level
Deterioration rate low 1.7 15.9 23.0

med. 3.5 20.9 41.8
high 23.3 22.6 62.8

Production times low 7.3 35.9 36.5
(increase per state) med. 14.2 11.2 42.1

high 7.1 12.2 49.0
Minor maint. base mean 1.0 10.2 16.7 39.3

time, τ(0, K + 1) 1.5 8.8 22.9 45.8
Major maint. base mean 1.5 9.7 19.6 42.4

time, τ(0, K + 2) 2.0 9.3 20.0 42.7
Unit profits 100 23.6 37.9 93.8

(% difference) 150 2.7 14.2 21.8
200 2.2 7.3 12.0

Minor maint. fixed cost 5 10.0 19.0 41.0
($ increase per state) 10 9.0 20.6 44.1

Major maint. fixed cost 0 9.5 19.8 42.5
($ increase per state) 5 9.5 19.8 42.5

Expected yields 0 0.4 0.0 0.6
1 8.8 28.1 62.6
2 19.4 31.3 64.5

Each line of the section labeled “Factor” reports the average
improvement attained when the specified factor is held constant
at the level indicated. Details of the parameter values are reported
in Appendix B (available as an on-line supplement).

and “major” maintenance. Thus, we can choose one of
six actions at each decision epoch. The required output
is the same for all products, i.e., that γk = 0.25 for all
k. Other parameters values are chosen to reflect the semi-
conductor manufacturing environment which motivated the
study. Each model parameter (factor) is tested at several dif-
ferent values (levels), while holding the other parameters
fixed. The factors and levels are summarized in Table 2,
which also reports the test results. The details of the factors
and levels, including a discussion of how they were gen-
erated, are reported in Appendix B, which is available as
an on-line supplement. All problems meet the conditions of
Proposition 3.3.

5.3. Summary of Results

Table 2 summarizes the results of the test problems; it
reports the percentage improvement provided by Approach
2 over Approach 1 (A2/A1), Approach 3 over Approach 1
(A3/A1), and Approach 4 over Approach 1 (A4/A1). The
section labeled “All Problems” at the top of the table lists sum-
mary results for the entire set of 1,296 test problems. Each line

of the section labeled “Factor” reports the average improve-
ment attained when the specified factor is held constant at
the level indicated. Over all, the results mirror the pattern
observed in the example problems above. Specifically, solv-
ing the maintenance and production problems simultaneously
is beneficial, but using yield information for dispatching
is more important. In combination, i.e., solving the prob-
lems simultaneously and using yield information, substan-
tially improves performance. While not reported explicitly,
the A4/A2 improvement is roughly equal to the difference
between A4/A1 and A2/A1, and the A4/A3 improvement is
roughly equal to the difference between A4/A1 and A3/A1.

The effect of individual parameters can be seen in the
results reported in Table 2. In summary, differences in the
equipment deterioration rate, spread of the mean production
times, unit profit variance, and expected yields all have a sig-
nificant impact on how much better Approach 4 performs.
These results seems logical given that these parameters are at
the heart of the differences between products. Approaches 1
and 2 can effectively adjust to changes in maintenance-related
parameters, as one might expect. And when the Approach 1
maintenance policy is reasonably good, then Approach 3 can
make up for some—but not all—of the reward forgone by
Approach 1 by adjusting the dispatching policy. When the dif-
ferences between products are pronounced, then Approaches
1 and 2 typically do not fare well. When Approach 1 gener-
ates a maintenance policy that is far from optimal, then there
is little opportunity for Approach 3 to make improvements
based on production, and thus Approach 4 is substantially
better.

While the model differences make direct comparison dif-
ficult, these results generally echo the findings of Sloan and
Shanthikumar [38]. Specifically, the equipment deterioration
rate and spread of the profits were found to have a signif-
icant impact on the A4/A1 differences in both studies. By
including Approach 2 (simultaneous, non-yield-based), we
can see that using equipment condition and yield information
has a bigger effect than solving the problems simultaneously.
However, the current study reveals much bigger Approach 4
improvements over Approach 3 than reported in [38]. This
finding suggests that the model extensions—i.e., account-
ing for differences in expected production times, allowing
multiple maintenance actions, and incorporating uncertainty
with respect to maintenance action transition probabilities—
amplify the effects of solving the production and maintenance
problems simultaneously.

While it may seem obvious at first glance that using
more information about the machine state is better than
ignoring it, this study shows that the current practice of
gathering equipment condition information solely for main-
tenance scheduling or yield prediction is a potentially severe
mistake. The magnitude of improvement suggested by these
test problems is extremely significant, especially for a
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highly competitive industry like semiconductor manufac-
turing.

6. CONCLUSIONS

In many manufacturing systems, the process or equip-
ment condition has an important effect on product quality,
and this article explores the effects of incorporating equip-
ment condition information into decisions about production
and maintenance scheduling. The article makes three con-
tributions. First, it extends the MDP model of Sloan and
Shanthikumar [38] to a more realistic environment by using
an SMDP model. Specifically, the decision maker can choose
among several maintenance actions as well as several produc-
tion actions, the time to complete an action can vary by both
action and by state, and the effects of performing mainte-
nance are uncertain, i.e., the equipment does not necessarily
return to the best state.

Second, the article reaffirms and extends the lessons
learned in [38]: simultaneously solving the production and
maintenance scheduling problems using available equipment
condition and yield information substantially improves per-
formance. In the 1,296 test problems studied, the simulta-
neous, yield-based approach generated rewards that were
an average of more than 42% greater than the sequential,
non-yield-based approach; roughly 27% greater than the
simultaneous, non-yield-based approach; and approximately
18% greater than the sequential approach with yield-based
dispatching. These results indicate that the use of equip-
ment condition and yield information has a bigger impact
than solving the problems simultaneously. The fact that the
improvements are even greater in a richer and more realistic
setting than that of [38] is noteworthy.

Third, the article develops new conditions sufficient to
ensure that a monotone policy is optimal, i.e., the optimal
actions are nondecreasing with respect to the equipment
condition. The “usual” monotonicity conditions for MDP
models are extended to SMDP models by adding a condi-
tion to account for time differences between actions. After
observing that these conditions generally do not hold for
the production decisions in this model, new conditions are
developed. These new conditions, which are based on con-
ditional transition probabilities, exploit the structure of the
machine state transition probabilities associated with the
production actions, and hold for a much broader range of
problems.

APPENDIX: PROOFS OF MAIN RESULTS

A.1 Proof of Proposition 3.1

Corollary 5.2 of Jianyong and Xiaobo [19] shows that for (weakly) com-
municating SMDPs, a stationary deterministic optimal policy exists and

ḡ∗(i) is constant for all i ∈ S. Since the state and action spaces are finite, and
τ(i, a) and r(i, a) are bounded for all i ∈ S and all a ∈ A, the conditions
of Theorem 11.4.8 of [33] are met, and we may conclude that optimality
Eq. (3) holds and g∗ is a constant such that g∗ = limα↓0 αVα(i) for all
i ∈ S.

Lastly, Theorem 9.1.6 of [33] shows that ḡ∗(i) = g∗ for all i ∈ S for mul-
tichain MDPs (including communicating ones) with finite state and action
spaces. Proposition 4.1 of [19] shows that this MDP result carries over to
(weakly) communicating SMDPs, and thus the result holds. This completes
the proof. �

A.2 Proof of Proposition 3.2

Preliminary Results for Proposition 3.2

Some preliminary results are needed for the proof of Proposition 3.2.

LEMMA A.1: If assumption (A1) is met and conditions (C1) and (C2)
hold, then h(i) is bounded and nonincreasing in i.

PROOF: Define Vn(i) as the finite-horizon version of the value function
in the discounted optimality equation (2), where i is the initial machine
state, and n refers to the number of periods remaining. (Note that Vn(i) also
depends on α; however, for notational convenience, the α is omitted.) By
condition (C1), r(i, a) is nonincreasing in i, so V0(i) is nonincreasing in
i. Suppose that Vn(i) is nonincreasing in i for n = 1, 2, . . . , N − 1. The
optimality equation is

VN(i) = max
a∈A


r(i, a) +

J∑
j=0

Pij (a)

∫ ∞

0
e−αt dFia(t)VN−1(j)


 .

By condition (C2),
∑J

j=l Pij (a) is nondecreasing in i. Since Vn(i) is non-
increasing in i, VN(i) is also nonincreasing in i (see Lemma 1 of Derman
[6]). Since the expected rewards are bounded and the time between deci-
sion epochs is bounded, Theorem 6.3.1 of Puterman [33] can be applied
to show that V (i) = limN→∞ VN(i). Therefore, V (i) is nonincreasing in
i. Since all expected costs and times are bounded, the number of machine
states is finite, and the number of actions is finite, V (i) is bounded. Note
that h(i) ≡ V (i)−V (z), where V (i) is the optimal discounted reward given
that the process begins in state i, and z is any distinguished state [33]. Since
V (z) is constant with respect to i, and V (i) is bounded and nonincreasing,
then h(i) is bounded and nonincreasing in i. �

PROOF OF PROPOSITION 3.2: The proof builds on the MDP results of
Theorem 8.11.4 of Puterman [33]. The objective is to show that if the optimal
action a(i) > a∗ for some i ∈ S, then a(l) > a∗ for all l > i. Suppose that
a(i) = â but a(l) = ā for some l > i, where â > ā. Since a(i) is defined as
the smallest action that maximizes (3), for state i we have

r(i, â)−g∗τ(i, â)+
J∑

j=0

Pij (â)h(j) > r(i, ā)−g∗τ(i, ā)+
J∑

j=0

Pij (ā)h(j),

and for state l

r(l, ā)−g∗τ(l, ā)+
J∑

j=0

Plj (ā)h(j) ≥ r(l, â)−g∗τ(l, â)+
J∑

j=0

Plj (â)h(j).
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Together, the above inequalities imply that

r(i, â)−r(i, ā) − g∗[τ(i, â) − τ(i, ā)] +
J∑

j=0

[Pij (â) − Pij (ā)]h(j) >

r(l, â) − r(l, ā) − g∗[τ(l, â) − τ(l, ā)] +
J∑

j=0

[Plj (â) − Plj (ā)]h(j).

Note that g∗ cannot be less than the smallest of the largest earning rates
over all of the states (Howard [15]). Since performing maintenance incurs
a negative expected reward, and the yield for any product must be greater
than or equal to zero, r(i, k) ≥ 0 ≥ r(i, m) for all i ∈ S, where k ∈ AK and
m ∈ AM; therefore, g∗ ≥ 0.

Since r(i, â) − r(i, ā) is nondecreasing in i by condition (C3) and
τ(i, â) − τ(i, ā) is nonincreasing in i by condition (C5), we must have

J∑
j=0

[Pij (â) − Pij (ā)]h(j) >

J∑
j=0

[Plj (â) − Plj (ā)]h(j).

However, condition (C4), together with Lemma A.1 and Lemma 3 of Hopp
and Wu [14], imply that

J∑
j=0

[Pij (â) − Pij (ā)]h(j) ≤
J∑

j=0

[Plj (â) − Plj (ā)]h(j).

Thus, we have a contradiction, and we can conclude that a(i) is nondecreas-
ing in i for a(i) > K . �

A.3 Proof of Proposition 3.3

Preliminary Result for Proposition 3.3

The next lemma is needed for the proof of Proposition 3.3.

LEMMA A.2: If condition (C4′) holds, then

J∑
j=i+1

(
Pij (k̂)

[1 − Pii (k̂)] − Pij (k̄)

[1 − Pii (k̄)]

)
f (j) is nondecreasing in i

for any bounded, nonincreasing function f , for production actions k̂, k̄ ∈ AK

such that k̂ > k̄.

PROOF: The proof builds on the proofs of the analogous lemmas of
Derman [6] and Hopp and Wu [14]. First, note that any bounded, nonin-
creasing function f (j) can be expressed as f (j) = ∑J

l=0 λlfl(j), where
λl ≥ 0 for l = 0, 1, . . . , J , and fl(j) = 1 for j ≤ l and 0 otherwise. Then

J∑
j=i+1

(
Pij (k̂)

[1 − Pii (k̂)] − Pij (k̄)

[1 − Pii (k̄)]

)
f (j)

=
J∑

j=i+1

(
Pij (k̂)

[1 − Pii (k̂)] − Pij (k̄)

[1 − Pii (k̄)]

)
J∑

l=0

λlfl(j)

=
J∑

l=0

λl

l∑
j=i+1

(
Pij (k̂)

[1 − Pii (k̂)] − Pij (k̄)

[1 − Pii (k̄)]

)
.

Since λl ≥ 0 and, by condition (C4′),
l∑

j=i+1

(
Pij (k̂)

[1 − Pii (k̂)] − Pij (k̄)

[1 − Pii (k̄)]

)

is nondecreasing in i for each l, then the result follows. �

PROOF OF PROPOSITION 3.3: The objective is to show that the opti-
mal action a(i) is nondecreasing in i for a(i) ≤ K . Examining equation
(3), we see that an h(·) term appears on both the right- and left-hand sides.
Furthermore, Pij (k) = 0 for j < i for all production actions k ∈ AK by
assumption (A1), so the optimality equation (3) can be rewritten as

h(i) = r(i, k) − g∗τ(i, k)

[1 − Pii (k)] +
J∑

j=i+1

Pij (k)

[1 − Pii (k)]h(j), (10)

for production actions k ∈ AK.
Let us assume that a non-monotone policy is optimal, i.e., that a(i) = k̂

for some i < J − 1, but a(l) = k̄ for some l > i, where k̄, k̂ ∈ AK, and
k̂ > k̄. Since a(i) is the smallest action that maximizes (10), for state i

we have

r(i, k̂) − g∗τ(i, k̂)

[1 − Pii (k̂)] +
J∑

j=i+1

Pij (k̂)

[1 − Pii (k̂)]h(j)

>
r(i, k̄) − g∗τ(i, k̄)

[1 − Pii (k̄)] +
J∑

j=i+1

Pij (k̄)

[1 − Pii (k̄)]h(j),

and for state l

r(l, k̂) − g∗τ(l, k̂)

[1 − Pll(k̂)] +
J∑

j=l+1

Plj (k̂)

[1 − Pll(k̂)]h(j)

≤ r(l, k̄) − g∗τ(l, k̄)

[1 − Pll(k̄)] +
J∑

j=l+1

Plj (k̄)

[1 − Pll(k̄)]h(j).

Together, these equations imply that

(
r(i, k̂)

[1 − Pii (k̂)] − r(i, k̄)

[1 − Pii (k̄)]

)
− g∗

(
τ(i, k̂)

[1 − Pii (k̂)] − τ(i, k̄)

[1 − Pii (k̄)]

)

+
J∑

j=i+1

(
Pij (k̂)

[1 − Pii (k̂)] − Pij (k̄)

[1 − Pii (k̄)]

)
h(j) >

(
r(l, k̂)

[1 − Pll(k̂)] − r(l, k̄)

[1 − Pll(k̄)]

)
− g∗

(
τ(l, k̂)

[1 − Pll(k̂)] − τ(l, k̄)

[1 − Pll(k̄)]

)

+
J∑

j=l+1

(
Plj (k̂)

[1 − Pll(k̂)] − Plj (k̄)

[1 − Pll(k̄)]

)
h(j). (11)

However, condition (C3′) implies that the inequality goes the other way for
the first term in parentheses on either side of (11). In addition, (C5′) along
with the fact that g∗ ≥ 0 (as shown above in the proof of Proposition 3.2)
implies that the inequality also goes the other way for the second term in
parentheses on either side of (11). Together, these imply that

J∑
j=i+1

(
Pij (k̂)

[1 − Pii (k̂)] − Pij (k̄)

[1 − Pii (k̄)]

)
h(j)

>

J∑
j=l+1

(
Plj (k̂)

[1 − Pll(k̂)] − Plj (k̄)

[1 − Pll(k̄)]

)
h(j).
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However, condition (C4′), along with Lemmas A.1 and A.2 imply

J∑
j=i+1

(
Pij (k̂)

[1 − Pii (k̂)] − Pij (k̄)

[1 − Pii (k̄)]

)
h(j)

≤
J∑

j=l+1

(
Plj (k̂)

[1 − Pll(k̂)] − Plj (k̄)

[1 − Pll(k̄)]

)
h(j).

Thus, we have a contradiction, and we can conclude that a(i) is nondecreas-
ing in i for a(i) ≤ K . �
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