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Introduction

Problem — Sudden failures of civil infrastructure systems
= Significant impacts

= (Catastrophic results

Approaches to the problem —

= Condition assessment of structures

=  Strengthening and repair of structures

In both approaches, assessment techniques are the
pivotal capability in the success of these approaches.
Fact: The U.S. infrastructure receives an overall grade of D,
indicating that America has a infrastructure that is poorly

maintained, unable to meet current and future demands, and in
some cases, unsafe and suggesting a total cost of $2.2 trillion for

repair. (Source: ASCE 2009 Report Card for America’ s Infrastructure)
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Introduction (cont q)

Sudden failures of civil infrastructure systems
= Significant impacts

= EX: I-35 Highway Bridge Collapse, Minneapolis, Minnesota
(6:05pm, Wed., Aug. 1, 2007)

(Source: Security camera by the Army Corps of Engineers) (Source: www.gettyimages.com)

- We don’ t want to see this happen again. But, do we have a solution? -
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Introduction (cont q)

* Sudden failures of civil infrastructure systems
= Catastrophic results — 1-35 Highway Bridge Collapse, MN
= Causality: 13 deaths, 98 victims (Mn/DOT, Aug. 3, ‘07)

= Cost of emergency response: $8 million from Mn/DOT, $250
million from the Congress

= Business activities: $1.5 million to local small businesses (U.S.
Small Business Administration, Aug. 24,” 07)

= Road-user cost due to detouring: $400k/day (Mn/DOT, Office of
Investment Management, Aug. 6, ‘07)

= Rebuild cost: $234 million (project awarded to the Flatiron-Manson and
FIGG Bridge Engineers by Mn/DOT, Oct. 8, ‘07)

= QOther associated costs and expenses for the rehabilitation (??)
- Original cost of the bridge: $5.27 million (value in 1964)
[ $32.11 million (current value of original cost)
<< more than $493.5 million (rehabilitation and rebuild cost) ] -
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Introduction (cont q)

=  Condition assessment of structures

= |n addition to the [-35W bridge, there are approximately 75,000
other U.S. bridges also rated as “structurally deficient” in 2007.

= Structurally deficient: The structure is deemed to have met
minimum tolerable limits to be left in place as it is.

- Are these 75,000 structurally deficient bridges safe? How do
we know for sure?

- We need reliable (inspection results are creditable), efficient
(inspection can be accomplished in time) condition assessment
technologies for this challenging problem.
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Introduction (cont q)

Strengthening and repair of structures

For intact structures: To upgrade their design capacity
For damaged structures: To restore their design capacity

Novel composite materials (fiber reinforced polymer, FRP) have
been widely used, such as glass FRP, carbon FRP, & aramid FRP.

How is an appropriate level of strengthening determined?

We need condition
assessment technologies
for (1) determining the
level of strengthening
and (2) evaluating the
quality of strengthening.

(Source: Fyfe Co. LLC, 2005)
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Introduction (cont q)

A far-field airborne radar (FAR) NDT technique®
proposed for the distant, in-depth assessment of

concrete structures.
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* Inspection parameters:
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Incident angle
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[* Yu, T.-Y., and O. Buyukozturk, NDT&E Intl, 4:10-24, 2008. ]
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Motivation and Scope

» Determining the optimal range of incident frequency and
incident angle for defect detection is crucial in field
applications. - For efficient inspection

= Questions must be answered:

1. There are different types of defects in real situations. How do
we model them?

2. What is the objective function in determining the optimal range
of incident frequency and angle?

- Start with simplified artificial defects to understand the
pattern of defects.

- Need to quantify the detectability in the FAR NDT
technique for optimization.
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Theory

Components in the FAR NDT technique:

Distant inspection — Reflection measurements made in a range beyond
the far-field distance.—> Distant ISAR (inverse synthetic aperture radar)
measurements

Data processing — Backprojection processing of ISAR measurements and
morphological processing of backprojection images

- Distant inspection provides in-depth assessment.
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Field configuration of FAR NDT
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Theory (cont’ d)

= Distant ISAR measurement —
= Time-dependent scattering response of a point scatterer:

we+mTB
1
S(Tej,t) = 128 / dw - expliwt] (1)
8,7

we—mB

» Range-compressed scattering response:

8P, ;. 1) = Rg expliwt] - sinc( Bt) (2)

» Integrated ISAR response:

R 27
D(E,b) = f dr; f d6; - G(75, 63)8(7a 1) (3)
0 0
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Theory (cont’ d)

Backprojection algorithms™ —

Backprojection image:
R0,
red) = [ de-Fled (4)

0

Image reconstruction:

= Bandpass transformation (C,, is the backprojection coefficient to
yield an ideal bandpass funcition)

F(faﬂzcbp' (9?5’)

= Matched filtering

¢ ¢

‘9D(§f’ﬂ —%fdt’-D({,ﬂ-M(f—t’):/dt’ (&,1) - aM(t_”

0 0

[* Yu, T.-Y., and O. Buyukozturk, Proc. SPIE 6934, San Diego, CA, 2008. ]
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Theory (cont’ d)

Morphological processing — To extract and quantify the

reconstructed backprojection images

= Feature extraction:
= Erosion operator

ex (I) ={r|K, C I(z,y)] (5)
= Dilation operator
oy (I) = {7V, N I(z,y) # 0} (6)

= Feature-extracted images:

]
B
/|

I (z,y|nem) = v [ex Law (2, Y| nem)]] (7) % )

»  Quantification index: Euler’ s number

X

ng (Q‘mh@) = Noby (Q‘ch@) — Nhol (9|nthfu) (8) 222&2;;?3;

structure
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Theory (cont’ d)

Morphological processing (cont’a) —
= Low-pass filtering (for global assessment purpose):

Qént/Q nE (9)

ng(0)=

ez—eint/z

(9)
where L is the length of the low-pass filter.

Optimization — To yield maximum differential Euler’ s
number

Qo = max [Ang (Bopt, Gopt )| (10)

npesl
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Application

GFRP (glass fiber reinforced polymer)-wrapped concrete
cylinder specimens with an artificial defect:

15.7 cm

15.2 cm

30.4 cm

F 38cm

Concrete mix ratio (by weight) = water.cement:sand:aggregate = 0.45:1:2.52:3.21
GFRP mix ratio (by volume) = epoxy:glass fiber = 0.645:0.355

GFRP type = Tyfo SHE-51A by Fyfe / Epoxy = Tyfo S epoxy by Fyfe.

GFRP sheet thickness = 0.25 cm. (0.1 in.)
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Application (cont’ q)

= Distant ISAR measurements:

» HH-polarized signals in X-band (8GHz~12GHz), 6 =

incident scheme
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Application (cont’ q)

Reconstructed backprojection images: 6=-10°
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[* Yu, T.-Y., and O. Buyukozturk, Proc. SPIE 6934, San Diego, CA, 2008. ]
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Application (cont q)

Effects of incident angle in reconstructed images —
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Cross-range (m)
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Application (cont q)
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Effects of bandwidth in reconstructed images —
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-> Increase used bandwidth = improve image resolutions (range and cross-range)
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Application (cont’ q)

Feature-extracted backprojection images

(a) Intact side images — n,,,= 0.81 (b) Damaged side images — n,,, = 0.73

- Intact side: ng= -1 - Damaged side: n= -2

->The more different the Euler’ s numbers for intact and for damaged sides,
the better the detectability.
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Euler's number

Application (cont’ q)

Raw ng curves and filtered n. curves —
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n —A— Intact —A— Intact
1.5 '”‘ ~-=©-- Damaged | 1 @ -=-6-- Damaged -
o ¢
E 0.5 4 “
: 6§
a O o A
g -0.5 1 ‘\‘ A
1l ) ! N A
o ! - ?
L é Q )
2.5 I”' " d EQ 65! ‘ G-;qu
"' F S e,
%0 -20 10 0 10 20 30 Ty 10 0 10 20

Inspection angle, 9 (deg.) Inspection angle, 9 (deg.)

Raw ng curves Filtered n: curves (filter length = 3)

—->We can use the minimum length of the low-pass filter as a basis for minimum
amount of measurements to achieve consistent assessment.

- Optimal angle (or angular range) can be quantitatively determined by the
maximum differential n_..

University of
! Massac usetts
21 Lowell

UMASS



Application (cont’ q)

Optimal bandwidth
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- Optimal bandwidth can be determined by the minimum needed bandwidth
to achieve non-zero differential Euler’ s numbers.
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Summary and Discussion

A methodology for quantitatively evaluating the
backprojection images in FAR NDT is proposed.

It is found that the use of a morphological index, Euler’ s
number, can provide a basis for determining the optimal

parameters (incident frequency (or bandwidth) and angle
(or angular range)).

The use of a low-pass filter is to achieve a globally
consistent assessment. = This averaging step could
reduce the contribution from some effective incident
angles.

The change of defect geometry will lead to the change of
scattering pattern. > Need to perform a systematic
investigation to consider different defects/damages.
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