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m Deterioration and degradation of civil infrastructure
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Motivation and Objective

m  Sudden failures of civil infrastructure systems
1 Significant impacts

s EX: |-35 Highway Bridge Collapse, Minneapolis, Minnesota
(6:05pm, Wed., Aug. 1, 2007)

(Source: Security camera by the Army Corps of Engineers)
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Motivation and Objective

m Deterioration/degradation is inevitable, but sudden failure must be

prevented.

m  Among various strengthening and repairing techniques, externally-
wrapped strengthening technique provides a rapid and effective

solution.

m After strengthening, a multi-layer fiberglass-concrete system is
formed. - Less ductile than the original reinforced concrete system



Motivation and Objective

m Delamination/debonding in a strengthened reinforced concrete beam:
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FRP reinforcement bonded to soffit Anchorage with bolts
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Debonding from laminate end Debonding from flexural-
shear crack

concrete/flexural rebar layer

concrete substrate
concrete/adhesive interface

FRP(fiber reinforced
polymer/plastic)
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m Delamination/debonding in a strengthened reinforced concrete column:

a) Bond delamination between plies b) Overlap joint debonding

[Au (2001)]



Motivation and Objective

m Strengthening techniques are used —

. For new constructions to upgrade their design capacity
. For damaged structures to restore their design capacity

m |nspection needs:
m Need to determine the level of strengthening
m Need to evaluate the quality of strengthening construction
m Need to monitor the long-term performance of the strengthened system

m Objective:

m To develop a distant/standoff technique for the inspection of
delamination/debonding
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Acoustic-Laser NDE

m Inspection scheme:

Laser
Vibrometer

Backscattered acoustic waves from
voids and unbonded regions cause

! Incident
e iesonances in FRP Reflected .
::::::::~:' ”::,S_ S~ Alr/FRP
I 4 ~ N : - - b -~ \. hn
unbonded area/ void/ Rayleighwave Concrete
delamination rac

S-wave



"
Acoustic-Laser NDE

m Proposed acoustic-laser NDE technique

m [s a standoff inspection technique
m Has a high powered parametric acoustic array (PAA) that can
excite the structure from ranges exceeding 30 meters

m Has a laser vibrometer that collects the surface dynamic
signature of the multi-layer structure

m Principle:

m Dynamic signature of an intact multi-layer system is different
from the one of an damaged multi-layer system.



Acoustic-Laser NDE

m  Simplified models of delamination and concrete cracking:
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Acoustic-Laser NDE

m Theoretical basis:
m Difference in natural frequencies of the damaged and intact
regions
m Governing equation of an intact region — 2D beam model:
EIa 4 +,0A +ky 0
ox*

where E = Young s modulus, / = moment of the inertia, p = density of the material
(fiberglass), 4 = cross sectional area, y(x,?) = transverse displacement of the beam at
position x and time ¢, and & = distributed stiffness coefficient characterizing the
connection between FRP and concrete.

m Governing equation of a damaged region (clamped beam):

g y+pA‘9 2 -0
ox” ot
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Acoustic-Laser NDE

m Natural frequencies of the intact and damaged regions:

m |ntact —
d*¢,(x)]
xz

wi=\/§z=\/EILL y } dx+J;Lk[¢i(x)]2dx/,0Aﬁ)L

where M, = the generalized mass of the i-th mode, and ¢,(x) = shape function.
m Damaged (with void) —

(@), =\/§2=\/E[ﬁf 2dx/,0Aﬁ)L rdx

m The Rayleigh wave over a finite length void can be described in
terms of two harmonic waves traveling in opposite directions.

y(x,t) = Ae’ ™) 4 Be ()

where 4 and B are complex amplitudes.

ag(x)] .
dx

d’¢,(x)
X2

dg (x)
d dx




Acoustic-Laser NDE

m Parametric acoustic array (PAA):

shutoff motion
detectors

3000 Watt Power Supply
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[Courtesy of MIT Lincoln Laboratory]




Acoustic-Laser NDE

m Acoustic radiation pattern of the developed PAA:

SPL (dB)
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[Courtesy of MIT
Lincoln Laboratory]

Acoustic Spectrum
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Acoustic-Laser NDE

m PAA radiation patterns at 7 kHz and 26.3 kHz:
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Acoustic-Laser NDE

m Acoustic radiation patterns at different frequencies:
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Acoustic-Laser NDE

m Acoustic power from PAA:

Low power amplifier

close near field near field end near fielo
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Experimental Result

Specimen description
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15.7 cm

(Concrete core)
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38.1cm |

.8 cm

v Large void

Small void

Damaged/void region

Intact/solid region

Concrete mix ratio = water : cement : sand : aggregate =0.45:1:2.52 : 3.21
Glass FRP (GFRP) mix ratio = epoxy : glass fiber = 0.645 : 0.355

GFRP type = Tyfo SHE-51A by Fyfe

Epoxy = Tyfo S epoxy by Fyfe

GFRP sheet thickness = 0.25 cm (0.1 in)



"
Experimental Result

m Low frequency acoustic response using a loudspeaker

source:
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(Measurements were made at a distance of 30 m in an open area in Lexington, MA.)
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Experimental Result

m High frequency acoustic response using the PAA:

8000

large void
6000 region }
4000 -

4322 Hz

solid region

Velocity (u/sec)

2000 +

0k ADN
1 1 1 1

2000 3000 4000 5000 6000 7000
Frequency (Hz)

-> Using a sound speed of 340 m/s shows that the "> wavelength of the
resonance is approximately 2 inches which is the width of the large void.



Experimental Result

m High frequency acoustic response:

104

RN
o
W

Velocity (m/sec)
o
' N

1.
10

‘ large void

solid region

2000 3000 4000 5000 6000 7000

Frequency (Hz)



"
Experimental Result

m Approximate 3D solution:

— Uniform circular plate with fixed edge supports in free vibration
2

(ﬂa) D

mn

a =

where Dp=£r/12(1-2) = flexural rigidity of the plate, E = Young’s modulus, / =
thickness of the plate, v = Poisson’s ratio, p = density of the material, w=w(r,6,)
= transverse displacement in cylindrical coordinate as the function of spatial
variables and time ¢. (E = 21.5 psi (148 GPa); p = 1.4 Ib/in3 (1.5 kg/m3))

Aa is found from the frequency equation; a = the radius of the circular plate, A =
eigenvalue of the frequency equation.

dl dJ
J, (Aa) d; (ﬂa)—]n (/la) drn

where

(ﬂa)=0

Jn(ﬂa)=(%)n;< -(’t‘:) /c!r(n+k+1)} = Bessel function of the first kind

[ (Aa)
4

1,1(/161):(%)"; |

/c!r(n+k+l)} = modified Bessel function of the first kind
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Experimental Result

m Approximate 3D solution:
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—>Difference is attributed to i) non-perfectly shape of the delamination, and
ii) the variation in boundary condition.



Summary

m The proposed acoustic-laser technique is capable of remotely
exciting a fiberglass-concrete system and collecting the surface
dynamic signature from the system.

m Surface dynamic signature of the intact (solid) region in a multi-layer
fiberglass-concrete system is different from the one of the
delaminated (void) region. = A database relating surface dynamic
signature and delamination/debonding characteristics can be
established.

m High velocity measurements are remotely observed at the
debonding location and at the resonant frequency relating to the
debonding geometry.

m Possible use for detecting surface concrete cracking and steel
corrosion



Thank you for your attention.

Questions?



