

Structural Engineering Research Group (SERG) Summer Seminar Series #4 June 13, 2014

Finite Element Analysis for the Damage Detection of Light Pole Structures

Qixiang Tang Advisor: Prof. Tzu-Yang Yu Department of Civil and Environmental Engineering The University of Massachusetts Lowell Lowell, Massachusetts, U.S.A.

June 2014

Outline

- Introduction
- Objective
- Literature Review
- Approach
- Finite Element Models
- Results and Discussion
- Proposed Methodology
- Conclusion
- Reference

Introduction

In December 2009, a 200-pound corroded light pole fell across the southeast expressway in Massachusetts.[1]

(Source: [1] I-team: Aging light poles a safety concern on mass. roads)

Introduction

- 1. Failures of light poles are critical as they are typically located adjacent to roadways, highway and bridges.
- 2. Failures of aging light poles can jeopardize the safety of users and damage adjacent structures. (e.g., residential houses, and electricity boxes.)

(Source: Internet)

(Source: Internet)

Introduction

Therefore, aging light poles need to be repaired or removed before residents get hurt.

Objective

To develop a damage detection methodology for light poles structures.

- There are three most common/possible damage locations in light poles (Garlich and Thorkildsen (2005) [14], Caracoglia and Jones (2004)[7]; Conner et. al. (2005)[6])
 - (i) pole-to-baseplate connection,
 - (ii) handhole detail, and
 - (iii) anchor bolts (not considered in this study);

Cracks at bottom of the pole

Cracks at handhole detail

 Changes in modal frequencies and mode shapes are expected while introducing damages into structures. (Lee and Chung (2000) [44]; Abdo and Hori (2002)[4])

For example, first mode modal frequency of a single degree of freedom (SDoF) system can be determined by following equation: $\omega = \sqrt{k/m}$

where ω is first mode modal frequency, k is stiffness of the structure, and m is mass of structure.

Since introduction of damage reduces k (stiffness) of the structure. As a result,

$$k \downarrow \longrightarrow \omega \downarrow$$

 Structural damages in light poles can be simulated by reducing local materials' properties (i.e. Young's modulus) in FE models. (Yan *et. al.* (2006) [42])

Since stiffness of a single degree of freedom (SDoF) system can be written as:

k=3*EI/h*3

where *E* is Young's modulus of material, and *I* is moment of inertia, and h is the height of this SDoF.

$$E_{\mathbf{k}} \longrightarrow k_{\mathbf{k}}$$

 Experimentally capture dynamic characteristics (such as modal frequencies and mode shapes) of light poles are difficult and time consuming. (Yan *et. al.* (2007)[43])

- How do damages effect light poles?
 There will be changes in modal frequencies and mode shapes.
- Where are those effects? How much? Three common damage locations. Use numerical methods to find out.
- Can those effects be represented by equations? (be quantified?)

Use numerical methods to find out.

Approach

A research approach is determined based on:

- 1. Assume damages only occur at three most common damage locations.
- 2. Using dynamic responses (i.e., modal frequency and mode shapes) as parameters for investigating differences between intact and damaged light poles.
- 3. Using numerical methods (i.e., finite element method) instead of experimental methods.

Approach

 Simulate intact and damaged light poles by Finite Element (FE) method, and then study the differences in modal frequencies and mode shapes among intact and artificially damaged FE models.

Approach

Assumptions for this research approach:

- First ten modes modal frequencies are available.
- FE light pole is an undamped structure.
- Damages only occur at pole-to-baseplate connection, and handhole detail.
- There is only one damage in any artificially damaged light pole.

Research Methodology

Roadmap

Intact model

An FE model was created in ABAQUS[®].

Configurations of an Example Light Pole

*- dimensions for pole H≤7m

Technical data								
ТҮРЕ	Η	t _{bl}	H ₁	Ød/D _E	L	m	S	axaxh Type
	m	mm	m	mm	mm	kg	m ²	m
S-60SRwP/4	6		2,0	48:60/140		68,0	1,47	0,3x0,3x1,0
S-70SRwP/4	7		2,0	40, 00/140		79,0	1,71	F100/200
S-80SRwP/4	8		2,2			96,0	2,76	
S-90SRwP/4	9	4	2,5		100	104,0	3,41	0.200.201.5
S-100SRwP/4	10		3,5	48; 60/170		110,0	3,65	E150/200
S-110SRwP/4	11		2,2			128,0	3,89	1130/200
S-120SRwP/4	12		3,2			135,0	4,22	-

Note: H₁ – reduction piece for straight pole is ordered as separate element.

(source: ELEKTROMONTAŻ RZESZÓW SA: Lighting poles and masts, 2009)

-- Chosen geometry

Materials (steel) & Geometries

Density:7.85E-09 ton/mm³Young's Modulus:207,000 MPaPoisson's ratio:0.3Yield stress:450 MpaLength of the pole:6,000 mmDiameter at top:60 mmBottom:140 mm

Bolt Models

Base Plate Model

 Handhole size: 250x105(mm)

Verification of an Intact FE Pole Model

The verification of a intact FE pole model is conducted by comparing first mode model frequencies between the FE result and a theoretical calculation result.

First mode model frequency of the FE pole model created in ABAQUS[®] is : **4.236 Hz (FE result).**

0	Incremer	nt – 0: Base S	tate			
1	Mode	1: Value =	708.22	Freq =	4.2355	(cycles/time)
2	Mode	2: Value =	708.22	Freq =	4.2355	(cycles/time)
3	Mode	3: Value =	14192.	Freq =	18.960	(cycles/time)
4	Mode	4: Value =	14192.	Freq =	18.960	(cycles/time)
5	Mode	5: Value =	89791.	Freq =	47.691	(cycles/time)
6	Mode	6: Value =	89791.	Freq =	47.691	(cycles/time)

Theoretical Calculation

Given:

26

Cross section at base of pole(x=0)

Theoretically Computed Fundamental Frequency

1.Radius functions

Radius of external edge:

$$R(x) := \frac{1}{-150} \cdot x + 70$$

Radius of internal edge: r(x) := R(x) - 22.Functions for mass and moment of inertia

$$m(x) := \pi \cdot \left(R(x)^2 - r(x)^2 \right) \cdot 7.85 \cdot 10^{-5}$$
$$I(x) := \left(R(x)^4 - r(x)^4 \right) \cdot \frac{\pi}{4}$$

Theoretically Computed Fundamental Frequency

3.Generalized mass, and generalized stiffness

$$m' := \int_{0}^{L} m(x) \psi(x)^{2} dx$$
$$\int_{0}^{L} (x) \psi(x)^{2} dx$$

 $\mathbf{k}' := \left[\begin{array}{c} \mathbf{E} \cdot \mathbf{I}(\mathbf{x}) \cdot \left[\frac{\mathbf{d}^2}{\mathbf{dx}^2} \psi(\mathbf{x}) \right] & \mathbf{dx} \end{array} \right]$

Eq. 8.3.12

Anil K Chopra. *Dynamics of structures-Theory and applications to earthquake engineering.* Pg.312

where $\psi(x)$ is shape function of cantilever beams. The bestfit shape function is the one which provides lowest value of first mode modal frequency.

Theoretically Computed Fundamental Frequency

First mode modal frequency:

$$\omega := \left(\frac{\mathbf{k'}}{\mathbf{m'}}\right)^{0.5}$$

Shape function	$\psi(\mathbf{x}) := \frac{3x^2}{2 \cdot 6000^2} - \frac{x^3}{2 \cdot 6000^3}$	$\psi(\mathbf{x}) := 1 - \cos\left(\frac{\pi \cdot \mathbf{x}}{2 \cdot 6000}\right)$	$\psi(\mathbf{x}) := \frac{\mathbf{x}^2}{6000^2}$
f (Hz)	4.361	4.298	4.396

Theoretical result: lowest value of fundamental frequency is **4.298 Hz ()**;

FE result: **4.236 Hz.**

Only 1.4% of difference. This means the FE result is correct and accurate.

Roadmap

Damaged models

Damaged models were simulated by introducing artificial damages to intact light pole models.

Most common damage location:

Description	Finite Life Constant, .4×10 ⁸ (ksi ³ (MPa ³))	Threshold, (ΔF) _{TH} (ksi (MPa))	Potential Crack Location	Illustrative Example
	SECTI	ON 3 - HOLES AND CUTO	DUTS	
3.1 Net section of un-reinforced holes and cutouts.	250.0 (85200)	24.0 (165)	In tube wall at edge of unreinforced handhole.	
4.6 Full penetration groove-welded tube-to- transverse plate connections welded from both sides with back-gouging (without backing ring).	K _F ≤ 1.6 : 11.0 (3750) 1.6 < K _F ≤ 2.3 : 3.9 (1330)	$K_I \le 3.2 : 10.0 (69)$ 3.2 < $K_I \le 5.1 : 7.0 (48)$ 5.1 < $K_I \le 7.2 : 4.5 (31)$	In tube wall at groove-weld toe.	

(Source: NCHRP Report, Cost-Effective Connection Details for Highway Sign, Luminaire, and Traffic Signal Structures)

1. Location:

Artificial damages have three damage location: L_1 , L_2 and L_{3} .

2. Different damage sizes (ΔA).

Artificial damages have five different sizes, including: $\Delta A \in [0.2A, 0.4A, 0.6A, 0.8A, 1.0A]$, where A is the total cross-sectional area.

0.2A – 20% Cross-section area damaged (at location L3)

0.6A -- 60% Cross-section area damaged (at location L3)

3. Damage levels (ΔE).

Damages are simulated by reducing Young's Modulus. Including five levels: $\Delta E \in [0.1, 0.3, 0.5, 0.7, 0.9] * E$, where E is the Young's modulus of intact material. Obtain first ten modes modal frequencies and mode shapes from different damaged models (listed in following) and intact model.

	Group A										
	$\Delta E = 50\%$ of Youngs modulus										
	$\Delta A=20\% \qquad \Delta A=40\% \qquad \Delta A=60\% \qquad \Delta A=80\% \qquad \Delta A=100\%$									00%	
Scer	Scenario A-1 Scenario A-2 Scenario A-3 Scenario A-4 Scenario A-5							A-5			
L_1	L_2	L_3	L_1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							L_3

	Group B									
Δ A=100% of total area										
	$\Delta E=90\% \qquad \Delta E=70\% \qquad \Delta E=50\% \qquad \Delta E=30\% \qquad \Delta E=10\%$									10%
Sce	Scenario B-1 Scenario B-2 Scenario B-3 Scenario B-4 Scenario B-4						B-5			
L_1	L_2	L_3	L_1	$egin{array}{c c c c c c c c c c c c c c c c c c c $						L_3

Roadmap

Definition:

When the intact light pole is known, modal frequency difference can be computed by the following equation:

$$\Delta f_i^j = \frac{(f_i^j|_{intact} - f_i^j|_{damaged})}{f_i^j|_{intact}} * 100\%$$

Wher Δf_i^j is the model frequency difference of an damaged pole in ith mode with a damage locate at L_j, $[f_i^j]_{intact}$ is modal frequency of the intact model, and $f_i^j]_{damaged}$ is modal frequency of a damaged model

Definition:

• Sensitive modes:

Out of first ten modes, the modes whose modal frequency differences exceed the defined threshold value t_s .

Threshold value t_s : 1.25 times the average modal frequency differences of the first ten modes.

ts=1.25*_i*=1*1*10*____fij*/10

Definition:

• Insensitive modes:

Out of first ten modes, the modes whose modal frequency differences lower than the defined threshold value t_i.

Threshold value t_i: 0.25 times the average modal frequency differences of the first ten modes.

t*s*=0.25*∑i*=1*î*10*∭ fij /*10

Curvature of mode shapes can be computed by Central Difference Equation:

$$\phi''(x)_n = \frac{\phi(x)_{n+1} - 2\phi(x)_n + \phi(x)_{n-1}}{d^2}$$

where $\phi(x)$ is the displacement of mode shape at node n, d is displacement between two nodes, and $\phi''(x)$ is the curvature of mode shape at node n.

Changes in curvature of mode shapes can be computed by the following equation:

$$\Delta r_{\phi_n^{"}} = \frac{\phi_n^{"}|_{damaged}}{\phi_n^{"}|_{intact}}$$

Summary of FE Results

Three patterns were found from FE results on modal frequencies.

1. In different damage scenarios with same damage location, some modes always have highest/lowest value in modal frequency differences (Δf_i^j).

Summary of FE Results

Sensitive/ insensitive modes for each damage location:

Location	Sensitive modes	Insensitive modes
L_1	1,7	6
L_2	1,7	8, 10
L_3	9 or 10	7

Table of sensitive/insensitive modes

The combination of sensitive modes and insensitive modes is unique for each damage location.

Roadmap

Summary of FE Results

2.(1) Linear relationships were found between damage sizes and modal frequency differences.

Quantification of Damages

Linear relationships can be described by the following equation:

Damage size
$$\alpha^j = a\Delta f_i^j + b$$

Location(j)	Best-fit mode(i)	a	b	R^2
1	10	0.0255	0.4614	0.9841
2	6	0.0526	0.1665	0.9966
3	4	0.6858	-0.1251	0.9750

2. (2) Nonlinear relationships were found between damage levels (reduction in Young's modulus) and modal frequency differences.

Quantification of damage level:

Relationship between damage level and modal frequency differences can be described by the following equation:

Damage level $\beta^j = c \ln(\Delta f_i^j) + d$

Location(j)	Best-fit mode(i)	С	d	R^2
1	2	-0.195	0.3900	0.9911
2	2	-0.194	0.3879	0.9914
3	8	-0.199	0.3628	0.9914

Summary of FE results

3. Curvatures of second mode shapes changes the most ($\Delta r_{\phi'',max}$) at damage location.

Special Case: Blind-test

- Assumption: the intact light pole is unavailable.
- Modal frequencies of plural light poles can always be obtained.
 - 1) Pick an arbitrary light pole as baseline instead of intact light pole.
 - 2) Use adjusted equation to compute modal frequency difference.

$$\Delta f_i^j = \left| \frac{(f_i^j | baseline - f_i^j | damaged)}{f_i^j | baseline} \right| * 100\%$$

- 3) Determine the sensitive/insensitive modes using moving thresholds t_s and t_i .
- 4) Check the following Table and determine the damage location.

Location	Sensitive modes	Insensitive modes
L_1	1,7	6
L_2	1,7	8, 10
L_3	9 or 10	7

Roadmap

Proposed Methodology

- 1. Extract first 10 model frequencies/ mode shapes from an intact model & unknown models;
- 2. Compute the modal frequency differences and changes in mode shapes of the unknown light poles;
- 3. Compute thresholds t_s and t_i, and use them to determine sensitive/insensitive modes;
- Locate the damage by checking the combination of sensitive and insensitive modes of unknown light poles in *Table of sensitive/insensitive modes*; or locate the damage by finding Δr_{φ",max;}
- 5. Use obtained linear/non-linear equations to quantify the damage.

1. Locate damage using modal frequency -- since the combination of sensitive modes and insensitive modes is unique for each damage location, one can locate the damage of light pole by checking the following table:

Table of sensitive/insensitive modes

Location	Sensitive modes	Insensitive modes
L_1	1,7	6
L_2	1,7	8, 10
L_3	9 or 10	7

2. Quantify damage -- substituting modal frequency difference into following equations:

Damage size:

$$\alpha^j = a\Delta f_i^j + b$$

Damage level:

$$\beta^j = c \ln(\Delta f_i^j) + d$$

Location(j)	Best-fit mode(i)	a	b	R^2
1	10	0.0255	0.4614	0.9841
2	6	0.0526	0.1665	0.9966
3	4	0.6858	-0.1251	0.9750

Location(j)	Best-fit mode(i)	с	d	R^2
1	2	-0.195	0.3900	0.9911
2	2	-0.194	0.3879	0.9914
3	8	-0.199	0.3628	0.9914

- 3. Locate damage using mode shape curvature -- In 2nd mode, maximum curvature change ($\Delta r_{\phi''}$) occurs at damage location. Therefore, one can use changes in curvature of 2rd mode shape to localize damages. However, this method is **limited**.
 - •When damage size is greater than 80% of cross-section area, the maximum curvature changes accurately locate at damage locations.

• When damage size is between 40% to 60% of cross-section area, there will be shifts between the maximum curvature change location and damage location.

• When damage size is lower than 20% of cross-section area, the curvature change is not sensitive to localize the damage.

Future work

Reference

- [1] I-team: Aging light poles a safety concern on mass. roads.
- [2] J. K. A. Furukawa, H. Otsuka. Structural damage detection method using uncertain frequency response functions. Computer-Aided Civil And Infrastructure Engineering, 21 (4):292–305, 2006.
- [3] Y. S. H. K. A. Iwasaki, A. Todoroki. Unsupervised structural damage diagnosis based on change of response surface using statistical tool (application to damage detection of composite structure). SME International Journal Series A-Solid Mechanics and Material Engineering, 47 (1):1–7, 2004.
- [4] M.-B. Abdo and M. Hori. A numerical study of structural damage detection using changes in the rotation of mode shapes. Journal of Sound and Vibration, 251 (2):227-239, 2002.
- [5] J. G. A.M. Yan. Structural damage localization by combining flexibility and stiness methods. Engineering Structures, 27 (12):1752–1761, 2005.
- [6] R. J. B.BRAKKE. Fatigue cracking and inspection of high-mast light-ing towers. Technical Report IBC-05-31, Iowa and Pennsylvania Departments of Transportation, Pennsylvania Infrastructure Technology Alliance (PITA), 2005.
- [7] L. Caracoglia and N. P. Jones. Analysis of light pole failures in illinois final report. Technical Report UILU-ENG-2004-2007, Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign, 2004.
- [8] Y. B.-H. D. Armon and S. Braun. Crack detection in beams by rankordering of eigenfrequency shift. Mechanical Systems and Signal Processing, 8:81-91, 1994.
- [9] Dassault Syst'emes, 10 rue Marcel Dassault, CS 40501, 78946 V'elizy- Villacoublay Cedex France. Abagus/CAE User's Manual Version 6.11, http://abagus.ethz.ch:2080/v6.11/.
- [10] H. V. der Auweraer. International research projects on structural damage detection. Damage Assessment of Structures Key Engineering aterials, 204-2:97-112, 2001.
- [11] S. G. D.R. Mahapatra. Spectral finite element analysis of coupled wave propagation in composite beams with multiple delaminations and strip inclusions. International Journal of Solids and Structures 41, 5-6:1173–1208, 2004.
- [12] P. F. E.P. Carden. Vibration based condition monitoring: A review. Structural Health Monitoring, 3 (4):355–377, 2004. [13] M. K. et al. Nchrp report 412: Fatigue-resistant design of cantilevered signal, sign and light supports. Technical Report HR 10-38, ATLSS Engineering Research Center, 1998.
- [14] M. Garlich and E. Thorkildsen. Guidelines for the installation, inspection, maintenance and repair of structural supports for highway signs, luminaires, and trac signals. Technical Report FHWA NHI 05-036, Oce of Bridge Technology Federal Highway Administration, 2005. 60

Reference

- [15] A. S. G.M. Owolabi and R. Seshadri. Crack detection in beams using changes in frequencies and amplitudes of frequency response functions. Journal of Sound and Vibration, 265:1–22, 2003.
- [16] P. Gudmundson. Eigenfrequency changes of strutures due to cracks, notches or other geometrical changes. Journal of Mechanics and Physics of Solids, 30:339–53, 1982.
- [17] J. He and Z. Fu. Modal Analysis. Butterworth Heiemann, 2001.
- [18] H. L. H.Z. Yang and S. Wang. Damage localization of oshore platforms under ambient excitation. China Ocean Engineering, 17 (4):495– 504, 2003.
- [19] A. G. C. C. J. Lopez-Diez, M. Torrealba. Application of statistical energy analysis for damage detection in spacecraft structures. Damage Assessment of Structures Vi Key Engineering Materials, 525-532:1-7, 2005.
- [20] H.-M. C. J.-T. Kim, Y.-S. Ryu and N. Stubbs. Damage identification inbeam-type structures: frequency-based method vs mode-shapebased method. Engineering Structures, 25:57–67, 2003.
- [21] J. G. J.H. Chou. Genetic algorithm in structural damage detection. Computers Structures, 79 (14):1335–1353, 2001.
- [22] H. C. N. S. J.T. Kim, Y.S. Ryu. Damage identification in beam-type structures: frequency-based method vs. mode-shape based method. Engineering Structures, 25 (1):57–67, 2003.
- [23] R. N. K. Moslem. Structural damage detection by genetic algorithms. AIAA Journal, 40 (7):1395–1401, 2002.
- [24] C. Kao and S. Hung. Detection of structural damage via free vibration responses generated by approximating artificial neural networks. Computers Structures, 81 (28-29):2631–2644, 2003.
- [25] J.-T. Kim and N. Stubbs. Crack detection in beam-type structures using frequency data. Journal of Sound and Vibration, 259 (1):145– 160, 2003.
- [26] Z. W. L.H. Yam, Y.J. Yan. Vibration-based non-destructive structural damage detection, advances in nondestructive evaluation. Key Engineering Materials, 270-273:1446–1453, 2004.
- [27] P. J. L.M. Khoo, P.R. Mantena. Structural damage assessment using vibration modal analysis. Structural Health Monitoring, 3 (2):177–194, 2004.
- [28] C. Lu and Y. Hsu. Vibration analysis of an inhomogeneous string for damage detection by wavelet transform. International Journal of Mechanical Sciences, 44 (4):745–754, 2002.
- [29] J. G. C. R. R. C. M.K. Yoon, D. Heider. Local damage detection using the two-dimensional gapped smoothing method. Journal of Sound and Vibration, 279:2198–2211, 2005.
- [30] C. F. M.L. Fugate, H. Sohn. Vibration-based damage detection using statistical process control. Mechanical Systems and Signal Processing, 15 (4):707–721, 2001.
- [31] Y. P. N.G. Park. Identification of damage on a substructure with measured frequency response functions. Journal of Mechanical Science and Technology, 19 (10):1891–1901, 2005.
- [32] V. A. Pino. Fatigue life prediction of cantilevered light pole structures, 2010.

Reference

- [33] K. W. Q. Chen, Y.W. Chan. Structural fault diagnosis and isolation using neural networks based on response-only data. Computers Structures, 81 (22-23):2165–2172, 2003.
- [34] B. Reese. Non-destructive examination techniques of tubular steel pole sports lighting structures.
- [35] J. S. R.P.C. Sampaio, N.M.M. Maia. The frequency domain assurance criterion as a tool for damage detection. Proceedings Key Engineering Materials, 245-2:69–76, 2003.
- [36] S. V. S. Rajasekaran. Damage detection in beams and plates usingwavelet transforms. Computers and Concrete, 2 (6):481–498, 2005.
- [37] X. Z. S.S. Law, X.Y. Li and S. Chan. Structural damage detection from wavelet packet sensitivity. Engineering Structures, 27 (9):1339– 1348, 2005.
- [38] S. A. M. W. Y. T. Lea, A. Abolmaalia and R. Fernandezc. Finite element-based analyses of natural frequencies of long tapered hollow steel poles. Journal of Constructional Steel Research, 64:275–284, 2008.
- [39] J. L. W. Z. T.Y. Li, T. Zhang. Vibrational wave analysis of infinite damaged beams using structure-borne power flow. Applied Acoustics, 65 (1):91–100, 2004.
- [40] O. B. Y. Aoki. Damage detection of cfrp pipes and shells by using localized flexibility method. Advanced Composite Materials, 10 (2-3):189–198, 2001.
- [41] Y. Yan and L. Yam. Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis. Composite Structures, 58 (1):29–38, 2002.
- [42] L. C. L. Y. Y.J. Yan, L.H. Yam. Fem modeling method of damage structures for structural damage detection. Composite Structures, 72:193–199, 2006.
- [43] Z. W. L. Y. Y.J.Yan, L. Cheng. Development in vibration-based structural damage detection technique. Mechanical Systems and SignalProcessing, 21:2198–2211, 2007.
- [44] M. C. Y.Lee. A study on crack detection using eigenfrequency test data. Computers and Structures, 64:327–342, 2000.
- [45] M. C. Y.S. Lee. A study on crack detection using eigenfrequency test data. Computers Structures, 77 (3):327–342, 2000.
- [46] L. H.-F. Yuen Ka-Veng. On the complexity of artificial neural networks for smart structures monitoring. Engineering Structures, 28:977–984, 2006.
- [47] L. Z. Z.Y. SHI, S.S. Law. Structural damage detection form modal strain energy change. Journal of Engineering Mechanics ASCE, 26:1216–1223, 2000.
- [48] L. Z. Z.Y. Shi, S.S. Law. Structural damage detection from modal strain energy change. Journal of Engineering Mechanics- ASCE, 126 (12):1216–1223, 2000.95