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Introduction

Problem — Sudden failures of civil infrastructure systems
= Significant impacts

= (Catastrophic results

Approaches to the problem —

= Condition assessment of structures

=  Strengthening and repair of structures

In both approaches, assessment techniques are the
pivotal capability in the success of these approaches.
Fact: The U.S. infrastructure receives an overall grade of D,
indicating that America has a infrastructure that is poorly

maintained, unable to meet current and future demands, and in
some cases, unsafe and suggesting a total cost of $2.2 trillion for

repair. (Source: ASCE 2009 Report Card for America’ s Infrastructure)




Introduction

A far-field airborne radar (FAR) NDT technique® is
proposed for the distant, in-depth assessment of
concrete structures.

Far-field distance

* Inspection parameters:
Incident frequency and
Incident angle

Monostatic radar

GFRP-concrete
structure

[* Yu, T.-Y., and O. Buyukozturk, NDT&E Intl, 4:10-24, 2008. ]



Motivation and Scope

» Determining the optimal range of incident frequency and
incident angle for defect detection is crucial in field
applications. - For efficient inspection

= Questions must be answered:

1. There are different types of defects in real situations. How do
we model them?

2. What is the objective function in determining the optimal range
of incident frequency and angle?

- Start with simplified artificial defects to understand the
pattern of defects.

- Need to quantify the detectability in the FAR NDT
technique for optimization.



Theory

Components in the FAR NDT technique:

= Distant inspection — Reflection measurements made in a range beyond
the far-field distance.—> Distant ISAR (inverse synthetic aperture radar)

measurements

= Data processing — Backprojection processing of ISAR measurements and
morphological processing of backprojection images

- Distant inspection provides in-depth assessment.
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Theory

= Distant ISAR measurement —
= Time-dependent scattering response of a point scatterer:
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Theory

= Backprojection algorithms™ —
= Backprojection image:
Rs8int
red) = [ de-Fled (4)
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= |mage reconstruction:

= Bandpass transformation (C,, is the backprojection coefficient to
yield an ideal bandpass funcition)
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= Matched filtering

{ i

8D(§:® o a ? h no__ ! 8M(£_t/)
(&9 _ 2 [at-pe.n-mi-0) = [ e 2

0 0

[* Yu, T.-Y., and O. Buyukozturk, Proc. SPIE 6934, San Diego, CA, 2008. ]



Theory

Morphological processing — To extract and quantify the
reconstructed backprojection images

= Feature extraction:
= Erosion operator

ex (I) ={r|K, C I(z,y)] (5)
= Dilation operator
oy (I) = {7V, N I(z,y) # 0} (6)

= Feature-extracted images:

I (@, yn0) = 6v lex [Iaw (2, | nem)]] (7) rx, 3y

»  Quantification index: Euler’ s number

ng (Q‘Rthv) = Noby (Qmﬂw) — Nhol (9|nthv) (8) gr;ri)iagtgi)gj

structure



Theory

Morphological processing —
Low-pass filtering (for global assessment purpose):

Qént/z nE (9)

ng(0)=

Bz—gint/z

(9)
where L is the length of the low-pass filter.

Optimization — To yield maximum differential Euler’ s
number

Qo = max [Ang (Bopt, Gopt )| (10)

npesl
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Application

GFRP (glass fiber reinforced polymer)-wrapped concrete
cylinder specimens with an artificial defect:

15.7 cm

15.2 cm

30.4 cm

F 38cm

AD1

Concrete mix ratio (by weight) = water.cement:sand:aggregate = 0.45:1:2.52:3.21
GFRP mix ratio (by volume) = epoxy:glass fiber = 0.645:0.355

GFRP type = Tyfo SHE-51A by Fyfe / Epoxy = Tyfo S epoxy by Fyfe.

GFRP sheet thickness = 0.25 cm. (0.1 in.)
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Application

= Distant ISAR measurements:

= HH-polarized signals in X-band (8GHz~12GHz), 6 = -30°~30°, oblique
incident scheme

fname: CYLAD1FH, HH Pol., max = -5.09 dBsm
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Application

Reconstructed backprojection images: 6=-10°

08 0.6

04 0.4

0.3

’E\ 02 E
D ot (]
o o
é @1 § o.1
8 22 G £.2
.3 0.3
24 2.4
s 0 0.53 b 0 0.5
Range (m) Range (m)
AN N
N—————— N———1
0=30° 30°
0° (7 (7 0°
=300 e feeeee 0=-30°
S— S
(a) Specimen AD1 (b) Specimen AD1
— Intact side — Damaged side

[* Yu, T.-Y., and O. Buyukozturk, Proc. SPIE 6934, San Diego, CA, 2008. ]
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Application

Effects of incident angle in reconstructed |
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Application

= Effects of bandwidth in reconstructed images —
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-> Increase used bandwidth = improve image resolutions (range and cross-range)
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Application

Feature-extracted backprojection images

(a) Intact side images — n,,,= 0.81 (b) Damaged side images — n,,, = 0.73

- Intact side: ng= -1 - Damaged side: n= -2

->The more different the Euler’ s numbers for intact and for damaged sides,
the better the detectability.
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umber

Averaged Euler' n

Application

= Raw ng curves and filtered ng curves —

Original ng curves
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- Best result

- We can use the minimum length of the low-pass filter as a basis for minimum
amount of measurements to achieve consistent assessment.
- Optimal angle (or angular range) can be quantitatively determined by the

maximum differential n..
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Application
Optimal bandwidth
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- Optimal bandwidth can be determined by the minimum needed bandwidth
to achieve non-zero differential Euler’ s numbers.



Summary and Discussion

A methodology for quantitatively evaluating the backprojection images
iIn FAR NDT is proposed.

It is found that the use of a morphological index, Euler’ s number, can
provide a basis for determining the optimal parameters (incident
frequency (or bandwidth) and angle (or angular range)).

- The Euler’'s number of damaged structures should be less than the
one of intact structures.

- Optimal inspection angle(s) can be determined.

The use of a low-pass filter is to achieve a globally consistent
assessment.

- This averaging step could reduce the contribution from some
effective incident angles.

The change of defect geometry will lead to the change of scattering
pattern.

- Need to perform a systematic investigation to consider different
defects/damages.
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