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Historical Perspective

• 1745 – First condenser (capacitor) constructed by A. Cu-

naeus and P. van Musschenbroek and is known as the

”Leyden jar”. Similar device was invented by E.G. von

Kleist. The jar was made of glass, partially filled with

water and contained a brass wire projecting through its

cork stopper. An experimenter produced static electricity

by friction, and used the wire to store it inside the jar.

Without the jar, the electrified material would loose its

charge rapidly to the surrounding air, in particular if it

was humid.
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Historical Perspective

left Pieter Van Musschenbroek (1692-1761); (center) Ewald Georg

von Kleist (1700-1748); (right) Leyden jar, the first electrical capac-

itor
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Historical Perspective

The jar was made of glass, partially filled

with water and contained a brass wire projecting through its cork stopper. An

experimenter produced static electricity by friction, and used the wire to store

it inside the jar. Without the jar, the electrified material would loose its charge

rapidly to the surrounding air, in particular if it was humid.
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Historical Perspective

• 1837 – M. Faraday studied the insulation materials, which

he called the ”dielectrics”.

• 1847 – O-F. Mossotti explained how stationary electro-

magnetic waves propagate in dielectrics.

• 1865 – J.C. Maxwell proposed the unified theory of elec-

tromagnetism. → Maxwell’s curl equations
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Historical Perspective

(left) Michael Faraday (1791-1867); (center) Ottaviano-Fabrizio Mossotti (1791-

1863); (right) James Clerk Maxwell (1831-1879)
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Historical Perspective

• 1879 – R. Clausius formulated the relationship between

the dielectric constants of two different materials. → The

Claudius-Mossotti relation.

ε∗r − 1

ε∗r + 2
·
M

d
=

4πNAα

3
(1)

where ε∗r is the complex electric permittivity (F/m), M the molecular weight of the
substance (kg), d the density (kg/m3), NA the Avogadro number for a kg mole
(6.022×1026), and α the polarizability per molecule.

• 1887 – H.R. Hertz developed the Hertz antenna receiver

(1886) and experimentally proved the existence of elec-

tromagnetic waves.

7



Historical Perspective

(left) Rudolf Julius Emanuel Claudius (1822-1888); (right) Heinrich Rudolf Hertz

(1857-1894)
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Historical Perspective

• 1897 – P. Drude integrated the optics with Maxwell’s
theories of electromagnetism. → Drude’s model

vth =

√
3kBT

m
(2)

where vth is average thermal velocity, kB Boltzmann’s constant, T the absolute
temperature, and m the electron mass.

• 1919 – P. Debye funded the modern theory of dielectrics
to explain dielectric dispersion and relaxation. → Debye’s
model

ε∗ =
εs

1− iωτ
= ε′ + iε” (3)

where vth is average thermal velocity, kB Boltzmann’s constant, T the absolute
temperature, and m the electron mass.
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Historical Perspective

(left) Paul Karl Ludwig Drude (1863-1906); (right) Peter J.W. Debye (1884-1966)
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Historical Perspective

• Dielectrics are also called insulating materials, with low

electric conductivities ranging from 10−18 S/m to 10−6

S/m. Metals have conductivities of the order of 108 S/m.

Semiconductors have conductivities of the order of 10

S/m.

• Since the pioneering work done by early researchers, phys-

ical measurement and theoretical modelling of gaseous,

liquid, and solid dielectrics have been reported in physics,

chemistry, electrical engineering, mechanical engineering,

and civil engineering.
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Introduction

• When a dielectric is upon the application of an exter-

nal electric field, very low electric conduction or an very

slowly varying dielectric polarization is observed inside

the dielectric. → Polarization means the orientation of

dipoles.

• Dielectric spectroscopy – The study of frequency-dependent

behaviors of dielectrics, sensitive to relaxation processes

in an extremely wide range of characteristic times (fre-

quencies).
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Introduction
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Introduction
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Electric Dipole

• The electric moment of a point charge q relative to a fixed
point is defined as qr, where r is the radius vector from
the fixed point to the charge. The total dipole moment
of a whole system of a charge qi relative to a fixed origin
is defined as

m =
∑
i

qiri (4)

A dielectric can be considered as consisting of elementary
charges qi. Without the application of an external electric
field and any net charge inside the dielectric,∑

i

qi = 0 (5)

As long as the net charge of the dielectric diminishes,
the electric moment is independent of the choice of the
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Electric Dipole

origin. When the origin is displaced at a distance r0, the
increase of the total dipole moment is

∆m = −
∑
i

qir0 = −r0
∑
i

qi (6)

It becomes zero when the net charge is zero. This way,
we can determine the electric centers of the positive and
the negative charges by∑

positive

qiri = rp
∑

positive

qi = rpQ (7)

∑
negative

qiri = rn
∑

negative

qi = rnQ (8)

(9)

in which the radius vectors from the origin to the electric
centers are denoted by rp and rn. The total charge is
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Electric Dipole

denoted by Q. When the net charge is zero, Eq.(4) can
be rewritten by

m = (rp − rn)Q (10)

The difference (rp − rn) equals to the vector distance
between the electric centers, pointing from the negative
to the positive center. In the vector form, we have

m̄ = (r̄p − r̄n)Q = āQ (11)

which is the expression of the electric moment of a system
of charges with zero net charge, called the electric dipole
moment of the system.

• Ideal dipole – An ideal or point dipole has a distance a/n
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Electric Dipole

between two point charges q+ and q− by replacing the

charge by qn.

• Permanent dipole moment – In the molecular systems

where the electric centers of the positive and the nega-

tive charge distributions do not coincide/overlap, a finite

electric (permanent, intrinsic) dipole moment can be de-

termined.

• Polar molecules – The molecules which have a permanent

dipole moment (e.g., water).
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Electric Dipole

• Induced dipole moment – When a particle is upon the ap-
plication of an external electric field, a temporary induced
dipole moment can arise and will diminish when the field
is removed.

• Polarized particles – A particle is polarized under the ap-
plication of an external electric field. Upon the applica-
tion of this field, the positive and negative charges are
moved apart.

• Molecular dipole moments – The values of permanent or
induced dipole moments in a molecule are expressed in
Debye units (D, 1D = 10−18 electrostatic units or e.s.u).
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Electric Dipole

• Non-symmetric molecules – The permanent dipole mo-

ments of non-symmetric molecules are in the range of

0.5 D to 5 D The value of the elementary charge e0
is 4.4×10−10 e.s.u. The distance of the electric charge

centers in these molecules is in the range of 10−11 m to

10−10 m.
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Waves in Media

• Potentials and fields due to electric charges – From Coulomb’s

law, the force between two charges q and q′ with a dis-

tance vector r̄ is

F̄ =
qq′

r2
·
r̄

r
(12)

producing an electric field strength (or intensity) Ē to be

Ē = lim
q′→0

F̄

q′
(13)

Then the field strength due to an electric charge at a

distance r is given by

Ē =
q

r2
·
r̄

r
(14)

If we integrate field strength over any closed surface
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Waves in Media

around the charge e, we have∮
Ē · dS̄ = 4πq (15)

where dS̄ is the unit vector on the closed surface. The

charge q can be expressed by the integration of a volume

charge density ρ (or a surface charge density) by∮
Ē · dS̄ = 4π

∫ ∫ ∫
V

ρdv (16)

With Gauss or divergence theorem,

∇ · Ē = 4πρ (17)

and it leads to one of the Maxwell’s curl equations; called

the source equation.
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Waves in Media

• Consider the curl of Ē to be zero.

∇× Ē = 0 (18)

With Stoke’s theorem,∫ ∫
S
∇× Ē · dS̄ =

∮
C

Ēdl̄ (19)

(where C is the external contour bounding the open sur-

face S, and dl̄ a vector differential length), we have∮
Ē · dl̄ = 0 (20)

• When there is no time variation,

Ē = −∇Φ (21)

23



Waves in Media

where Φ is a potential function. By virtue of the vector

identity:

∇× (∇Φ) = 0 (22)

we have

∇× Ē = 0 (23)

and it is only true when there is no time variation in Ē

(static electric field), suggesting the term ∂B̄/∂t in Fara-

day’s law can be neglected (B̄ is the magnetic flux density

(webers/m2)). In free space (vacuum), the Coulomb law

(or Gauss’ law for electricity) is

∇ · Ē =
ρ

ε0
(24)
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Waves in Media

where ε0 is the electric permittivity of vacuum (=8.854×10−12

F/m).

• Derivation of the value of ε0 (Homework #1)

• With Ē = −∇Φ, we have

∇2Φ =
ρ

ε0
(25)

which is known as the Poisson equation. When net charge

is zero, it becomes

∇2Φ = 0 (26)
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Waves in Media

which is known as the Laplace equation.

• In three-dimensional vector notation, Maxwell’s curl equa-

tions are

∇× H̄ =
∂

∂t
D̄ + J̄ (27)

∇× Ē = −
∂

∂t
B̄ (28)

∇ · D̄ = ρ (29)

∇ · B̄ = 0 (30)

where H̄ is the magnetic field strength (A/m), D the elec-

tric displacement (C/m2), J̄ the electric current density
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Waves in Media

(A/m2), and B̄ the magnetic flux density (webers/m2).

The constitutive relations for materials are

D̄ = εĒ (31)

B̄ = µH̄ (32)

where ε is the electric permittivity and ν the magnetic

permeability. In source-free and homogeneous regions,

the Maxwell curl equations become

∇× H̄ = ε
∂

∂t
Ē (33)

∇× Ē = −µ
∂

∂t
H̄ (34)

∇ · Ē = 0 (35)

∇ · H̄ = 0 (36)
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Waves in Media

A wave equation can be obtained by taking the curl of

Eq.(34) and using Eqs.(35) and (36), leading to(
∇2 − µε

∂2

∂t2

)
Ē (r̄, t) = 0 (37)

which is known as the homogeneous Helmholtz wave

equation in source-free media. Ē (r̄, t) is a time-space

function. Consider the solution in the following form.

Ē (r̄, t) = Ē cos (kxx + kyy + kzz − ωt) (38)

where Ē is a constant vector, (kx, ky, kz) are the wave

number components of the wave (or propagation) vector

k̄.

k̄ = kxx̂ + kyŷ + kzẑ (39)
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Waves in Media

Substituting the solution into the Helmholtz wave equa-

tion provides

k2
x + k2

y + k2
z = ω2µε = k2 (40)

Use the wave vector, the electric field solution can be

expressed by

Ē (r̄, t) = Ē cos
(
k̄ · r̄ − ωt

)
(41)

where r̄ = xx̄ + yȳ + zz̄ is the position vector. Similarly,

for the magnetic field vector H̄,

H̄ (r̄, t) = H̄ cos
(
k̄ · r̄ − ωt

)
(42)

When k̄ · r̄ = constant, a constant phase front is defined,

suggesting a plane wave.
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Waves in Media

• Waves in conducting media – Consider a conducting medium

in which a conduction current source J̄c is modeled. With

Ohm’s law, source J̄c is related to Ē.

J̄c = σĒ (43)

The Helmholtz wave equation in a homogeneous, isotropic,

conducting medium becomes(
∇2 − µε

∂2

∂t2
− µσ

∂

∂t

)
Ē (r̄, t) = 0 (44)

One solution is

Ē (r̄, t) = E0e−kIz cos (kRz − ωt) x̂ (45)

where (kR, kI) are the real and imaginary components of

the wave vector. Substituting this solution into Eq.(44)
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Waves in Media

leads to

e−kIz[
(
k2
I − k2

R + ω2εµ
)
cos (kRz − ωt) +

(2kRkI − ωµσ) sin (kRz − ωt)] = 0 (46)

with

kR = ω
√

µε

√√√√√1

2

√1 +
σ2

ε2ω2
+ 1

 (47)

kI = ω
√

µε

√√√√√1

2

√1 +
σ2

ε2ω2
− 1

 (48)

satisfying the following dispersion relation:

k2
R − k2

I = ω2µε (49)

2kRkI = ωµε (50)
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Waves in Media

• Derivation of the unit of electric permittivity from Coulomb”s

Law (Homework #2)

• Penetration depth – When electromagnetic waves propa-

gate in a conducting medium, the energy dissipates and

attenuates in the direction of propagation. The attenua-

tion depth is defined as

dp =
1

kI
(51)

indicating that the electromagnetic wave amplitude at-

tenuates by a factor of e−1 in a distance dp.
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Waves in Media

– For a highly conducting medium (1 �
σ

ωε
) –

kI ≈
√

ωµε

2
(52)

The penetration depth is

dp =

√
2

ωµε
(53)

which is frequency-dependent.

– For a slightly conducting medium (
σ

ωε
� 1) –

kI ≈
σ

2

√
µ

ε
(54)
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Waves in Media

The penetration depth is

dp =
2

σ

√
ε

µ
(55)

which is frequency-independent.
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Constitution Matrices

• Isotropic media – In an isotropic dielectric medium,

D̄ = εĒ = ε0Ē + P̄ (56)

where P̄ denotes the electric dipole moment per unit vol-
ume of the dielectric material. In an isotropic magnetic
medium,

B̄ = µH̄ = µ0H̄ + µ0M̄ (57)

where M̄ is the magnetization vector. When an isotropic
or anisotropic medium is placed in an electric field, it is
polarized. When placed in a magnetic field, it is magne-
tized.

• Anisotropic media – In anisotropic media,

D̄ = ¯̄ε · Ē (58)

35



Constitution Matrices

B̄ = ¯̄µ · H̄ (59)

where

¯̄ε =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (60)

A medium is electrically anisotropic when it is described
by an electric permittivity tensor ¯̄epsilon and a magnetic
permeability scalar µ. A medium is magnetically anisotropic
when it is described by a magnetic permeability tensor ¯̄mu

and an electric permittivity scalar ε.

• Bianisotropic media – In a bianisotropic medium, elec-
tric and magnetic fields are coupled. The constitutive

36



Constitution Matrices

relations are

D̄ = ¯̄ε · Ē +¯̄ξ · H̄ (61)

B̄ = ¯̄ζ · Ē + ¯̄µ · H̄ (62)
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Polarization and Dielectric Constant

• Polarization – When an external electric field F acting

on a charge q exerts on it a force Fq, which displaces it

in the direction of the field until the restoring force fr is

equal to it, suggesting that

Fq = fr (63)

where f is a proportionality constant. An electric moment

m = qr is created by this displacement r. With r = m/q,

we have

m =
Fq2

f
(64)

In the case of a molecule containing several electrons,

each of charge q, the total moment induced in the molecule
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Polarization and Dielectric Constant

in the direction of the field is

Σm = FΣ
q2

f
(65)

Molecular polarizability is defined by Eq.(65) as the dipole
moment induced in a molecule by unit electric field E,
which means

α0 = Σ
q2

f
(66)

and F = 1 e.s.u. = 300 volts per cm. It also suggests
that f is the force constant for the binding of the elec-
trons. The product of qr is called the dipole moment.

• Electric moment – Consider a condenser consist of two
39



Polarization and Dielectric Constant

parallel plates in vacuum whose distance apart is small
in comparison with their dimensions. Inside the con-
denser the intensity of the electric field perpendicular to
the plates is

E0 = 4πσ (67)

where σ is the surface density of charge. When the con-
denser is filled with a homogeneous dielectric material
of dielectric constant ε′r (This will be explained later in
further detail), the field strength decreases to

E =
4πσ

ε′r
(68)

The decrease in field strength is

E0 − E = 4πσ

(
1−

1

ε′r

)
= 4πσ

ε′r − 1

ε′r
(69)
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Polarization and Dielectric Constant

The same decrease in field strength can be achieved by
reducing σ by an amount

σ
(
ε′r − 1

)
ε′r

= P (70)

where P is the equivalent surface density of this charge.
It is produced by an induced charge shift throughout the
dielectric material, which produces an electric moment
per unit volume. Therefore, P is called the polarization
which indicates the amount of surface charge inside the
polarized dielectric condenser.

The dielectric displacement inside the dielectric condenser
is defined as

D = 4πσ (71)
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Polarization and Dielectric Constant

From Eq.(68), it is clear that

D = ε′rE (72)

With Eq.(70), we have

D = E + 4πP (73)

Or

ε′r − 1 =
4πP

E
(74)

• Clausius-Mossotti Equation – Consider a constant electric

field E be applied to a sphere of a continuous isotropic
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Polarization and Dielectric Constant

dielectric. The field produced inside the sphere is given
by

E = Σ
3

ε + 2
F (75)

The electric moment induced in the sphere is

ms = αsF (76)

where αs is the polarizability of the sphere and is a macro-
scopic quantity. Since

P =

(
ε′r − 1

)
E

4π
(77)

and the volume of the sphere is

V =
4πa3

s

3
(78)
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Polarization and Dielectric Constant

as is the radius of the sphere. The induced electric mo-
ment becomes

ms = PV =

(
ε′r − 1

)
a3

s

3
E = αsF (79)

With Eq.(75), we have

ε′r − 1

ε′r + 2
=

αs

a3
s

(80)

which leads to the macroscopic expression of the Claudius-
Mossotti equation for a sphere of dielectric. For a con-
ducting sphere, ε′r is infinite and

αs = a3
s (81)

which is sometimes used for estimating molecular radius.
Note that the volume of the sphere is taken as that of
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Polarization and Dielectric Constant

a sphere. If the polarizability of a sphere αs with Ns

molecules equals the summation of individual molecular

polarization α0.

αs = Nsα0 (82)

then

4πa3

3
=

V

Ns
=

4πa3
s

Ns
(83)

where a is the radius of a sphere equal in volume to that

occupied per molecule by the dielectric material. We then

obtain

ε′r − 1

ε′r + 2
=

α0

a3
(84)
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Polarization and Dielectric Constant

Another expression of Eq.(84) is

ε′r − 1

ε′r + 2
=

M

ρN
(85)

where M is the molecular weight of the dielectric, ρ the
density, and N the number molecules per mole of the
dielectric. With Eq.(85), we have

ε′r − 1

ε′r + 2

M

ρ
=

4πN

3
α0 (86)

Since the refraction index n is related to ε′r by

n2 = ε′r, (87)

it lead to

n2 − 1

n2 + 2

M

ρ
=

4πN

3
α0 (88)
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Polarization and Dielectric Constant

which is the Lorentz-Lorenz expression for the molar re-
fraction.

• Dielectric constant and loss factor – The electric property
of dielectrics is defined by the complex electric permittiv-
ity (F/m).

ε∗ = ε′ − iε′′ (89)

where i is the imaginary number. In engineering, a rela-
tive expression is usually used, which is taking the ratio
between the complex electric permittivity and the real
part of the one of vacuum ε0.

ε∗r =
ε′ − iε′′

ε0
= ε′r − iε′′r (90)
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Polarization and Dielectric Constant

where ε′r is called the dielectric constant and ε′′r the loss

factor. A ratio between the imaginary part and the real

part leads to another defined parameter.

tan δ =
ε′′r
ε′r

=
ε′

ε′′
(91)

which is called the loss tangent. Note that, while the

dielectric constant and loss factor are dimensionless, they

are not ”constants” at all. They are usually dependent

on frequency and temperature. For dielectric mixtures,

the effective dielectric constant and effective loss factor

also depend on the composition.
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