Quiz 2

Date: Friday, 03/09

Time: 11:00 AM~ 11:50 AM

(This is an open-book, open-note quiz. You must sign your name on this sheet and return it with your examination book. Academic misconduct (any type of cheating) will result in a failing grade in ENGN 2070-201 Dynamics.)

Name: _____

- 1. (30%) A 400 N crate is released from the top of a frictional slope, as shown in Figure 1. With the following information, determine the maximum deflection (Δ_{max}) of the spring down the slope.
 - Slope angle $\theta = 30^{\circ}$
 - Slope height h = 1.5 m
 - Coefficient of kinetic friction $\mu_k = 0.16$
 - Spring constant $k_s = 500 \text{ N/m}$

Figure 1: A crate on a frictional slope

- 2. (30%) Two boats leave the shore at the same time and travel in the directions shown in Figure 2. If $v_A = 35$ ft/s and $v_B = 20$ ft/s, determine the following information.
 - The velocity of B with respect to A, $v_{B/A}$ (15%)
 - The time when two boats are 1,000 ft apart, t (15%)

Figure 2: Relative motion between two boats

- 3. (40%) In Figure 3, a 3-lb collar C fits loosely on the smooth shaft. If the spring is unstretched when s = 0 and the collar is given an initial velocity of 20 ft/s, determine the following information with $k_s = 4.5$ lb/ft.
 - The velocity of the collar when s = 0.5 ft (20%)
 - The maximum travelling distance when the velocity of the collar becomes zero, $s_{\rm max}$ (20%)

Figure 3: Motion of a collar attached to a spring