Quiz 3

Date: Wednesday, 04/18
Time: 11:00 AM~ 11:50 AM
(This is an open-book, open-note quiz. You must sign your name on this sheet and return it with your examination book. Academic misconduct (any type of cheating) will result in a failing grade in ENGN 2070-201 Dynamics.)

Name:

1. (20\%) A block at C is moving downward at $5 \mathrm{ft} / \mathrm{s}$. Please determine the angular velocity at bar $A B$ at the instant shown in Figure 1.

Figure 1: A moving block
2. (30\%) In Figure 2, a rectangular plate with thickness d has been machined to create a rectangular hole at the center. Please determine the mass moment of inertia of this rectangular plate with a triangular hole with respect to the x axis, I_{x}. Assume constant density ρ. $A=0.5, B$ $=0.6, C=0.4, D=0.3$, and $E=0.25$.
3. (50%) A pendulum consists of a $20-\mathrm{kg}$ uniform disk and a $5-\mathrm{kg}$ uniform slender rod. If it is released from rest in the position shown in Figure 3. Please determine i) its angular velocity when it rotates clockwise $60^{\circ}, \omega\left(\theta=60^{\circ}\right)(20 \%)$, ii) vertical reaction at point $A, O_{y}(\mathbf{1 5 \%})$, and iii) horizontal reaction at point $A, O_{x}(15 \%)$.

Figure 2: Mass moment of inertia

Figure 3: Angular motion of a pendulum

