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Buckling of Rigid Frame – I  

(Source: AutoFEM Analysis) 
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Buckling of Rigid Frame – I  

(Source: Super Structures Associates, UK) 

•  Moment distribution 
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Buckling of Rigid Frame – I  

(Source: J.E. Steel, AZ) 
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Buckling of Rigid Frame – I  

(Source: AutoFEM Analysis) 
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Buckling of Rigid Frame – I  

(Source: T-Flex Analysis) 
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Rigid Frames – I  

•  Effects of geometric imperfection 
–  P-δ and P-Δ effects 
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Rigid Frames – I 

•  Load-deflection behavior of frames 
–  Elastic buckling load, Pcr  
–  Plastic collapse load, Pp  
–  Actual failure load, Pf  
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Rigid Frames – I 

•  Analysis approaches 
–  D.E. method 

•  Force based  
•  Second-order and fourth-order 

–  Slope-deflection method 
•  Displacement based 
•  Matrix form 

–  Matrix stiffness method 
•  Force based 
•  Matrix form 
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Slope Deflection Method 

•  Slope deflection method is a displacement-based analysis for 
indeterminate structures 

•  Unknown displacements are first written in terms of the loads by 
using load-displacement relationships; then these equations are 
solved for the displacements.  

•  Once the displacements are obtained, unknown loads are 
determined from the compatibility equations using load-
displacement relationships. 

– Nodes: Specified points on the structure that undergo displacements 
(and rotations). 

 
– Degrees of Freedom (DOF): These displacements (and rotations) 

are referred to as degrees of freedom. 
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To clarify these concepts we will consider some examples, beginning 
with the beam in Fig. 1(a). Here any load P applied to the beam 
will cause node A only to rotate (neglecting axial deformation), while 
node B is completely restricted from moving. Hence the beam 
has only one degree of freedom, θA.  

Slope Deflection Method 

Fig. 1 (a) 
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The beam in Fig. 1(b) has node at A, B, and C, and so has four 
degrees of freedom, designed by the rotational displacements 
θA, θB, θC, and the vertical displacement ΔC.  

Slope Deflection Method 

Fig. 1 (b) 
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Consider now the frame in Fig. 
1(c). Again, if we neglect axial 
deformation of the members, an 
arbitrary loading P applied to the 
frame can cause nodes B and C to 
rotate nodes can be displaced 
horizontally by an equal amount. 
The frame therefore has three 
degrees of freedom, θA, θB, ΔB.  

Slope Deflection Method 

Fig. 1 (c) 
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Consider portion AB of a continuous beam, shown below, subjected to a 
distributed load w(x) per unit length and a support settlement of Δ at B; 
EI of the beam is constant. 

Δ 
A B 

θB ψ 

θA 

ψ = rigid body motion 
   = Δ/L 

= 

FEMAB 
FEMBA 

Mʹ′BA=(2EIθA)/L 
Mʹ′AB=(4EIθA)/L 

θA 

i) Due to externally  
applied loads 

ii) Due to rotation θA  
at support A 

+ 

Slope Deflection Method 
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Mʹ′ʹ′BA=(4EIθB)/L 
θB 

Mʹ′ʹ′AB=(2EIθB)/L 

+ 

A B 

iii) Due to rotation  
θB at support B 

L 

Mʹ′ʹ′ʹ′AB=(-6EIΔ)/L2 
A B 

L 

Mʹ′ʹ′ʹ′BA=(-6EIΔ)/L2 

Δ 

+ iv) Due to differential 
settlement of Δ (between 
A and B) 

Slope Deflection Method 
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Slope Deflection Method 

•  Governing equation –  
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θA 

θB 

Δ 

= 

(FEM)AB 

(FEM)BA 

(FEM)BA/2 

(FEM)BA 
+ 

Slope Deflection Method 
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+ 

θA 

Mʹ′ʹ′AB=(3EIθA)/L 
+ 

Δ 
Mʹ′ʹ′ʹ′AB=(3EIΔ)/L2 

MAB = [(FEM)AB - (FEM)BA/2]+(3EIθA)/L -(3EIΔ)/L2 

Modified FEM at end A 

Δ = PL3/(3EI), 
M = PL = (3EIΔ/L3)(L) = 3EIΔ/L2 

Slope Deflection Method 
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Rigid Frames – I 

•  Elastic critical load – Differential equation approach 
–  Non-sway case 
1.  Governing equations 

1.1 For the beam 
 
 
 
1.2 For the column 

2.  Displacement solution & boundary conditions 
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Rigid Frames – I 

•  Elastic critical load – Differential equation approach 
–  Non-sway case 
3.  Compatibility condition 

4.  Characteristic equation à Critical load, Pcr  



22 

Rigid Frames – I 

•  Elastic critical load – Differential equation approach 
–  Sway case 
1.  Governing equations 

1.1 For the beam 
 
 
 
1.2 For the column 

2.  Displacement solution & boundary conditions 
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Rigid Frames – I 

•  Elastic critical load – Differential equation approach 
–  Sway case 
3.  Compatibility condition 

4.  Characteristic equation à Critical load, Pcr  
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Summary 

•  Real structures, such as buildings, behave like frames. Boundary conditions 
and joint conditions become critical in determining the critical load of the 
structures.  

•  Geometric imperfection plays a key role in the critical load.  

•  Secondary effects (P-δ and P-Δ effects) will make the elastic load-deflection 
behavior become nonlinear (geometric nonlinearity) 
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