

CIVE.5120 Structural Stability (3-0-3) 04/04/17

Buckling of Beams – II

Prof. Tzuyang Yu

Structural Engineering Research Group (SERG) Department of Civil and Environmental Engineering University of Massachusetts Lowell Lowell, Massachusetts

Outline

- Analysis of lateral buckling of beams
 - Simply-supported I-beam under a central concentrated load
 - Simply-supported I-beam under a uniformly distributed load
 - Out-of-plane bending and torsional buckling of doubly symmetric sections
 - Continuous beams
- Effect of the location of loading
- Review on the determination of the shear center
- Effect of boundary condition
- Summary

• Analysis of lateral buckling of beams – Stress-distribution

• Analysis of lateral buckling of beams – Stress-distribution

Analysis of lateral buckling of beams – Stress-distribution

- Simply-supported I-beam under a central concentrated load
 - Governing equations
 - In-plane bending
 - Out-of-plane bending
 - Torsion
 - Characteristic equation of the system

- Simply-supported I-beam under a central concentrated load
 - B.C.
 - Solution of the critical moment

- Simply-supported I-beam under a uniformly distributed load
 - Governing equations
 - In-plane bending
 - Out-of-plane bending
 - Torsion
 - Characteristic equation of the system

- Simply-supported I-beam under a uniformly distributed load
 - B.C.
 - Solution of the critical moment

- Analysis of lateral buckling of beams
 - Out-of-plane bending and torsional buckling of doubly symmetric sections (Clark and Hill 1962)

- Analysis of lateral buckling of beams
 - Continuous beams

Effect of the location of loading

- Above the shear center
- At the shear center
- Under the shear center

Q: How does this phenomenon affect the design of beams for lateral torsional buckling?

• Formation of plastic hinge on a steel I-beam cross section

14

Uniform torsion of thin-walled open sections

Venant shear stress distribution in an I-section

If warping restrained at the support, Venant shear will be developed.

Warping restrained

• Warping constant, C_w

Table 5.1 Torsional Constant and Warping Constant for a Doubly Symmetric I-Section

• Cross sections without any Venant shear stress ($C_w = 0$)

• Equivalent moment factor, *C*_b

Table 5.2 Values of C_b for different loading cases (all loads are applied at shear center of the cross section)

Loadings	Bending Moment Diagrams	M _{cr}	сь
Lundings	Danding Momant Diagrams	cr	о В
		Mcr	1.00
		M _{cr}	1.75
۲ <u>ــــ</u> ۲		M _{cr}	2.30
	$\overline{}$	Per L 4	1.35
	\smile	<u></u> 8	1.13
		Pcr L 4	1.04
P L/4 3L/4	$\overline{}$	<u>3 Pçr L</u> 16	1.44

Effect of the location of a concentrated load on an l-beam
^WerL³ 60
^WerL³ 60
^WerL³ 60

• Formation of plastic hinge on a steel I-beam cross section

• Review – Determination of the shear center

- Definition: The shear center of a section is the location at which the application of a concentrated load will result in zero twist of the section.
- Example: Channel section beams

$$\tau_B = \frac{QA\bar{y}}{It} = \frac{Q \times kt}{It} \times \frac{h}{2} = \frac{Qkh}{2I}$$
$$\tau_A = 0$$

Average stress X area =
$$\frac{1}{2} \times \frac{Qkh}{2I} \times kt = \frac{Qk^2ht}{4I}$$

$$Q \times e = \frac{Qk^2ht}{4I} \times h$$

$$e = \frac{k^2 h^2 t}{4I} \rightarrow \text{Shear center}$$

(Source: E.J. Hearn (1997))

• Effect of boundary conditions

- Simply-supported, concentrated load

- Simply-supported, uniformly distributed load

 Cantilever (one end fixed and the other free), uniformly distributed load

- Fixed-ended, equal end moments

• Effect of boundary condition

- Asymmetric boundary conditions
 - Warping prevented in one plane and bending permitted in another plane

- Concept of the effective length KL

Summary

- The boundary condition of beams can be considered by different values of the effective length, KL, which depends on
 - Unbraced length of the beam
 - Material properties E and G,
 - Cross-section geometry c_w and J,
 - Types of loadings
 - Location of the load w.r.t. the shear center of the cross section.
- For design purpose, it is conservative to evaluate the critical load for each span in a continuous beam by assuming the ends of the span are simply supported.