Buckling of Beams – II

Prof. Tzuyang Yu
Structural Engineering Research Group (SERG)
Department of Civil and Environmental Engineering
University of Massachusetts Lowell
Lowell, Massachusetts
Outline

• Analysis of lateral buckling of beams
 – Simply-supported I-beam under a central concentrated load
 – Simply-supported I-beam under a uniformly distributed load
 – Out-of-plane bending and torsional buckling of doubly symmetric sections
 – Continuous beams

• Effect of the location of loading

• Review on the determination of the shear center

• Effect of boundary condition

• Summary
Beams – II

• Analysis of lateral buckling of beams
Beams – II

• **Analysis of lateral buckling of beams** – Stress-distribution

(Source: Lzyvzl)
Beams – II

- Analysis of lateral buckling of beams – Stress-distribution

(Source: Lzyvzl)
Beams – II

• Analysis of lateral buckling of beams – Stress-distribution

(Source: Strand7®)
Beams – II

• Analysis of lateral buckling of beams
 – Simply-supported I-beam under a central concentrated load
 • Governing equations
 – In-plane bending
 – Out-of-plane bending
 – Torsion

• Characteristic equation of the system
Beams – II

• **Analysis of lateral buckling of beams**
 – Simply-supported *I*-beam under a central concentrated load
 • B.C.
 • Solution of the critical moment
Beams – II

Analysis of lateral buckling of beams
- Simply-supported I-beam under a uniformly distributed load
 - Governing equations
 - In-plane bending
 - Out-of-plane bending
 - Torsion
 - Characteristic equation of the system
Beams – II

• Analysis of lateral buckling of beams
 – Simply-supported I-beam under a uniformly distributed load
 • B.C.

 • Solution of the critical moment
• **Analysis of lateral buckling of beams**
 – Out-of-plane bending and torsional buckling of doubly symmetric sections *(Clark and Hill 1962)*
Beams – II

• Analysis of lateral buckling of beams
 – Continuous beams
Beams – II

• Effect of the location of loading
 – Above the shear center

 – At the shear center

 – Under the shear center

Q: How does this phenomenon affect the design of beams for lateral torsional buckling?
Beams – II

- Formation of plastic hinge on a steel I-beam cross section
Beams – II

• Uniform torsion of thin-walled open sections
Beams – II

- Venant shear stress distribution in an I-section

If warping restrained at the support, Venant shear will be developed.
Beams – II

- Warping constant, C_w

Table 5.1 Torsional Constant and Warping Constant for a Doubly Symmetric I-Section

<table>
<thead>
<tr>
<th>Torsional Constant</th>
<th>Warping Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J = \frac{2b_t t_f^3 + (d-2t_f) t_w^3}{3}$</td>
<td>$C_w = \frac{t_f b_t^3 h^2}{24}$</td>
</tr>
</tbody>
</table>
Beams – II

- Cross sections without any Venant shear stress \((C_w = 0) \)

FIGURE 5.9 Cross sections with \(C_w = 0 \)

- Angle
- Tee
- Cruciform
- Solid Circular
- Tubular
Beams – II

- **Equivalent moment factor, \(C_b \)**

<table>
<thead>
<tr>
<th>Loadings</th>
<th>Bending Moment Diagrams</th>
<th>(M_{cr})</th>
<th>(C_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M) (\frac{L}{2}) (\frac{L}{2})</td>
<td>(M)</td>
<td>(M_{cr})</td>
<td>1.00</td>
</tr>
<tr>
<td>(M) (L)</td>
<td>(M)</td>
<td>(M_{cr})</td>
<td>1.75</td>
</tr>
<tr>
<td>(M) (L)</td>
<td>(M)</td>
<td>(M_{cr})</td>
<td>2.30</td>
</tr>
<tr>
<td>(P) (\frac{L}{4}) (\frac{L}{2}) (\frac{L}{4})</td>
<td>(P) (\frac{L}{4}) (\frac{L}{2}) (\frac{L}{4})</td>
<td>(\frac{P_{cr} L}{4})</td>
<td>1.35</td>
</tr>
<tr>
<td>(W) (L)</td>
<td>(W) (L)</td>
<td>(\frac{W_{cr} L^2}{8})</td>
<td>1.13</td>
</tr>
<tr>
<td>(P) (\frac{L}{4}) (\frac{L}{2}) (\frac{3L}{4})</td>
<td>(P) (\frac{L}{4}) (\frac{L}{2}) (\frac{3L}{4})</td>
<td>(\frac{3P_{cr} L}{16})</td>
<td>1.44</td>
</tr>
</tbody>
</table>

Table 5.2 Values of \(C_b \) for different loading cases (all loads are applied at shear center of the cross section)
Beams – II

- Effect of the location of a concentrated load on an I-beam

FIGURE 5.19 Comparison of theoretical and approximate solutions
Beams – II

- Formation of plastic hinge on a steel I-beam cross section
Beams – II

• **Review – Determination of the shear center**
 - Definition: The shear center of a section is the location at which the application of a concentrated load will result in zero twist of the section.
 - Example: Channel section beams

\[
\tau_B = \frac{Q A \bar{y}}{I t} = \frac{Q \times k t}{I t} \times \frac{h}{2} = \frac{Q k h}{2 I}
\]

\[
\tau_A = 0
\]

Average stress \(\times \) area = \(\frac{1}{2} \times \frac{Q k h}{2 I} \times k t = \frac{Q k^2 h t}{4 I} \)

\[
Q \times e = \frac{Q k^2 h t}{4 I} \times h
\]

\[
e = \frac{k^2 h^2 t}{4 I} \rightarrow \text{Shear center}
\]

(Source: E.J. Hearn (1997))
Beams – II

• **Effect of boundary conditions**
 - Simply-supported, concentrated load
 - Simply-supported, uniformly distributed load
 - Cantilever (one end fixed and the other free), uniformly distributed load
 - Fixed-ended, equal end moments
• **Effect of boundary condition**
 – Asymmetric boundary conditions
 • Warping prevented in one plane and bending permitted in another plane
 – Concept of the effective length KL
Summary

• The boundary condition of beams can be considered by different values of the effective length, KL, which depends on
 – Unbraced length of the beam
 – Material properties E and G,
 – Cross-section geometry c_w and J,
 – Types of loadings
 – Location of the load w.r.t. the shear center of the cross section.

• For design purpose, it is conservative to evaluate the critical load for each span in a continuous beam by assuming the ends of the span are simply supported.