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ABSTRACT

Modeling the dielectric properties of cementitious materials (e.g., cement paste, concrete) is important to the
success of nondestructive evaluation (NDE) of civil engineering infrastructure using electromagnetic sensors.
Information regarding material composition, aging, cracking, and chemical deterioration of cementitious materials
can jointly affect the dielectric properties of the material. Reliable and accurate condition assessment of concrete
structures using electromagnetic sensors cannot be achieved without the capability and knowledge of dielectric
modeling of cementitious materials. Among existing dielectric measurement techniques, open-ended coaxial
probe is convenient for in-situ measurement and superior for field applications than other techniques. Nonetheless,
quality of coaxial probe measurements is dependent on the contact condition between the probe and the specimen.
In this paper, our measurement and modeling efforts on the dielectric properties of cementitious specimens using
an open-ended coaxial probe in the microwave frequency range (0.5 4.5 GHz) are reported. Fluctuation of
dielectric data curves (dielectric constant and loss factor) due to the contact condition between the probe and
the specimen was investigated using frequency analysis. It is found that the presence of surface pores/cavities
can introduce high frequency noises into the measured dielectric data curves.
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1. INTRODUCTION

2. SPECIMEN DESCRIPTION

(The following needs to be revised. -TY)

Twelve 1ft-by-1ft-by-1in hydrated cement paste (hcp) (Portland cement Type I/II plus water) panels with
six water-to-cement (w/c) ratios (0.35, 0.40, 0.42, 0.45, 0.50, and 0.55; by weight) were manufactured, moist-
cured for 28 days and conditioned in two different environments (room temperature and oven dried). In the
room temperature environment, six hcp panels were conditioned at a temperature of 23◦C and 50% RH (relative
humidity) for seven days, while the other six hcp panels were oven dried at a temperature of 110◦C and 0%RH.
Plexiglass molds were used in casting the hcp panels to ensure a smooth surface for the accurate measurement
of the coaxial probe. Fig. 1 shows the twelve hcp panels. Hcp panels are denoted by their w/c ratio and
conditioning environment. For example, CP35rt is a hcp panel of w/c = 0.35 conditioned in room temperature
and CP50od is an oven dried hcp panel of w/c = 0.50. (Need a table to describe the design of specimens. -TY)

3. EXPERIMENTAL SYSTEM

Contact dielectric measurements of hcp specimens were conducted by using an open-ended coaxial probe system
and a series network analyzer (Agilent E5071C) in the frequency range of 0.5GHz to 4.5GHz. Fig 2 shows the ex-
perimental setup of the measurement system and the dimensions of hcp panels. Contact dielectric measurements
were calibrated by a E-cal module and using reference materials (water and perfect electric conductor) before
each measurement. Relative, complex permittivity (dielectric constant ε′r and loss factor ε′′r ) was converted from
the S11 measurement using the Agilent 85071E Material Measurement software.
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Figure 1. Manufactured and conditioned hcp panels
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Figure 2. Contact dielectric measurement system and dimensions of hcp panels
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