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ABSTRACT   

Modern improvised explosive device (IED) and mine detection sensors using microwave technology are based on 
ground penetrating radar operated by a ground vehicle. Vehicle size, road conditions, and obstacles along the troop 
marching direction limit operation of such sensors. This paper presents a new conceptual design using a rotary unmanned 
aerial vehicle (UAV) to carry subsurface imaging radar for roadside IED detection. We have built a UAV flight 
simulator with the subsurface imaging radar running in a laboratory environment and tested it with non-metallic and 
metallic IED-like targets. From the initial lab results, we can detect the IED-like target 10-cm below road surface while 
carried by a UAV platform. One of the challenges is to design the radar and antenna system for a very small payload 
(less than 3 lb). The motion compensation algorithm is also critical to the imaging quality. In this paper, we also 
demonstrated the algorithm simulation and experimental imaging results with different IED target materials, sizes, and 
clutters.  

Keywords: UAV, SAR, IED, Radar, Remote Sensing,  
 

1. INTRODUCTION 
1.1 Background 

Drones are more formally known as small unmanned aerial vehicles (UAV). Essentially, a drone is a flying robot. The 
aircraft may be remotely controlled or can fly autonomously through software-controlled flight plans in their embedded 
systems working in conjunction with the GPS. UAVs have most often been associated with the military applications but 
they are also used for search and rescue, surveillance, traffic monitoring, weather monitoring and firefighting, among 
other things. More recently, the UAV has come into consideration for a number of commercial applications. Personal 
drones are also becoming increasingly popular, often for the drone-based photography. The most popular personal 
drones are rotary types drones. Rotary (multi-copter) drones are easier to operate and more accessible to either open or 
obstacle space than fixed-wing drones. The main drawbacks to rotary drones are slower speeds and shorter range than 
fixed-wing drones; even with battery extenders, most can't run more than a half-hour. To solve the flight time issues, 
some rotary drones can be operated through cable tethering with a generator or a portable high-volume battery.  In battle 
field, military personnel operating a small UAV to detect IED treats is not new but mostly fixed wing UAVs are used 
which provide a wider area of view from a remote distance. Since those fixed wing UAVs cannot operate under a low 
altitude close to the ground due to its maneuver ability and minimum flight speed, it limits the probability to detect 
buried IEDs. To fill the detection gaps of using fixed wing UAVs, using a personal drone for IED detection can further 
improve IED detection performance and reduce the false alarm rate. It can secure and sweep the mission critical zone 
with more closely view and the detection under road subsurface. It can also give real-time update and alert team 
members right behind it.    

In this paper, we start with the concept of operation in Section 1.2, including flight path planning, payload, and required 
functions. Section 2 presents the radar system, data processing, and lab testing test results. Sections 3 will discuss the 
modeling and simulation with different types of IED and with ground reflection analysis. The preliminary field testing 
results are present in Section 4. Future work and conclusion are given in Section 5.    

 

1.2 Concept of operation 

The proposed rotary UAV IED detection system (RUIED) consists of (1) a lightweight imaging radar for 3D-scanning, 
(2) optical cameras for the user’s inspection of suspicious target from IED detection and guidance as an option in 
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addition to the future features of autonomous mission planning, (3) a ground control terminal, and (4) a rotary UAV 
which can provide a 3-lb payload and its flight time is greater than 30 minutes.  
 
Figure 1 illustrates the operation and flight path planning for RUIED to detect roadside IEDs. RUIED will allow users 
to:  
 

i) Survey the large zone with future military activities that will happen.  
ii) Provide localized scanning around the suspicious area with visual inspection through a wireless camera.  
iii) Send multiple RUIEDs to complete the scanning with the shortest time. 
iv) Broadcast the treats from a high altitude after the IED detection.  

 
The work concept is simple but it does take a lot of engineering efforts to make our first prototype system and the 
testing in both laboratory and outdoor environments.  
 

 
Figure 1. Operation overview of a rotary UAV IED detection system. 

 

2. IED DETECTION USING DRONE IMAGING RADAR (DAVID LAI) 
2.1 System architecture 

In this work, a new RUIED is developing to detect the roadside IED by utilizing surface electromagnetic (EM) 
reflections collected by a compact radar system. Subsurface imaging and target detection are achieved by processing 
reflection measurements at different frequencies, relative elevations, inspection angles, and signal polarizations, using 
synthetic aperture radar (SAR) algorithms [1][2][3]. Possible frequency bands to be explored include X-band (8-12 
GHz), S-band (2-4 GHz), and UHF-band (0.3-3 GHz) [4] [5]. Figure 2 shows the surface-scanning scheme of a RUIED 
on a road or a soil surface with/without the pavement.  

The design purpose of the prototype instrument is to validate the detection of different IED types and their buried depths 
through the RUIED. A higher frequency band of operation is selected because of commercially available transmitters, 
components, and antennas for their relatively small size, and low costs. The design can be transported to other bands if 
desired. The system needs to be low-cost, light weight, and possess scalability. Transmission-reflection (T-R) phase 
coherency is not required because only non-Doppler operations are supported. However, phase and amplitude coherency 
within all receive channels are required. The aperture size limitation of the RUIED sensor platform confines the angular 
resolution to about 10°. 

The important aspect of the proposed design is scalability of the transceiver system. A wideband radar transmitter is used 
as the basis of the transmit system. The minimum system in this design employs a high gain directional horn antenna, 
while the antenna gain can be changed from 15 to 22 dBi. The beam scanning relies on the RUIED moving in a designed 
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In Figure 4, the laboratory calibration of the RUIED is presented where the collected returned calibration target signals 
can be measured. The right size and reflection characteristics can be corrected based on the radar imaging results and the 
theoretical calculation. The calibration factors will be provided when the scanning angle and the antenna height are 
varied. Typical calibration targets are metal and plastic. However, we further prepare a plastic container to place the soil 
or other ground material samples to evaluate the performance of the radar system when the IED/calibration target is 
buried with ground samples. The difference of ground samples can make changes to the imaging results.  

    
Figure 4. Laboratory Calibration System 

Figure 5(b) shows a metal target which is placed on the top of the ground samples and its SAR imaging is presented in 
Figure 5(c). The scanning result is original and it is not reconstructed to match the metal target shape that is not 
presented in this paper. The purpose is to show how well the target location can be determined with real-time processing. 
Figure 6(b) and (c) show that the target is buried at 7.5 cm and 15 cm. The 15-cm result shows multiple scatterings from 
the target and it can be corrected by further developing imaging algorithms.       

             
(a)                        (b)              (c) 

Figure 5. (a) Background without the target; (b) Metal target on ground sample; (c) SAR imaging of the scanning area. 
 

                              
       (a)                           (b)                      (c) 

Figure 6. (a) The target buried with ground sample; (b) SAR imaging when the target is buried at 7.5-cm depth; (c) SAR 
imaging when the target is buried at 15-cm depth area. 
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band, the RCS is relative stable and the variation very small to each object. Figure 8 shows the 3D RCS of these four 
targets. The peak RCS of these IEDs is happened along the ±z-axis, i.e., the incidence angle (θ, φ) at (0, 0) and (180, 0). 
The RCS values of those IEDs with and (90, φ) degrees have been obtained is minimum. Therefore, it can be expected 
that the incident angle of the radar antenna will present different SAR images. The RCSs at different frequencies are 
shown in Figure 9. 

 

 
Figure 9. Simulated RCS of Round IED at different frequencies. The unit is in dBsm. 

 

 
Figure 10. (a) Environment to emulate the SAR analysis where the environment medium is “dry sandy soil” (εr = 3.2, μr = 1.0, σ = 0); 

(b) Simulated Gaussian waveform of the transmit/receive signal; (c) the return loss of the horn antenna. 
 

4. SIMULATION OF FIELD SCANNING TO DETETC IED 
The goal of this RUIED system design is to inspect the location of the IED through the CW radar SAR imaging. The 
RCS is one of important radar parameters, which especially impacts the transmitting power, amplifier, and the antenna 
system. The SAR imaging will be the final results to be presented. To verify the concept of our system, it’s able to use a 
3-D electromagnetic simulator to emulate the transmitting and reflected signals which will be used as the input raw data 
for the signal processing.  
 
The simulation environment is shown in Figure 10(a) where the frequency range is 8-1 (Δf = 20 MHz) and the sampling 
number is 201 points. The short pulse signal and Gaussian signal are two good choices to start with, as the input signal of 
the SAR imaging. Figure 10(b) shows an example of the input/output Gaussian signals through the horn antenna whose 
return loss is shown in Figure 10(c). The horn antenna is a linear polarized antenna. The waveform (period) is decided by 
the bandwidth and the sampling points, in which the magnitude is normalized to one. 
 
To know how the electromagnetic characteristic changes, we consider the placement of the IED and the incidence angle 
at 0 and 45 degrees. We use the small IED presented previously here and the set the frequency is at certain frequency. 
The initial distance from the antenna to the IED is 100 cm. All cases use the same boundary condition. The 
electromagnetic field distribution on XZ and XY planes at θ  = 0o are illustrated in Figures 18-19, and that at θ  = 45o are 
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shown in Figures 13-14, respectively. The information useful for the radar signal processing is the echo signals from the 
IED. Depending on the IED location relative to the soil, it gives different time-domain characteristics (reflection echo), 
which can be used for the SAR imaging. Figure 11(a) and Figure 11(b) shows similar features before the IED is totally 
buried into the soil. When the IED is buried into the soil, as shown in Figure 11(c) and Figure 11(d), the echo signals 
become more completed, especially inside the soil. Similar trend can be observed in Figure 12. Figures 13-14 show 
different wave behaviors when the incidence angle is 45 degree.  
 

 
Figure 11. Simulated E-field distributions at θ  = 0o when the small 
IED is (a) on the soil, (b) 50% buried, (c) one side exposed, and (d) 

100% buried. 

 
Figure 12. Simulated E-field distributions at θ  = 0o when the 

small IED is (a) on the soil, (b) 50% buried, (c) one side 
exposed, and (d) 100% buried, where the cut-plane is on the 

top side of the IED. 
 

Figure 13. Simulated E-field distributions at θ  = 45o when the 
small IED is (a) on the soil, (b) 50% buried, (c) one side exposed, 

and (d) 100% buried. 

Figure 14. Simulated E-field distributions at θ  = 45o when the 
small IED is (a) on the soil, (b) 50% buried, (c) one side 

exposed, and (d) 100% buried, where the cut-plane is on the top 
side of the IED. 

 

5. SYSTEM SETUP FOR FIELD SCANNING 
To demonstrate the field applicability of the proposed RUIED prototype, a sand field has been selected in the field test 
and shown schematically in Figure 15(a). A custom-built cart is used to carry the RUIED prototype to simulate the 
airborne radar of subsurface IED targets, as shown in Figure 15(b). A small marker (4 cm by 12 cm) and a large marker 
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Figure 17. Airborne field test of the RUIED in a sand field.   

  
                             (a) Background without IED targets           (b) With IED targets 

Figure 18. Radar images generated by the RUIED prototype at 0 degree, HH polarization. 
 

  
                             (a) Background without IED targets           (b) With IED targets 

Figure 19. Radar images generated by the RUIED prototype at 0 degree, VV polarization. 
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                             (a) Background without IED targets           (b) With IED targets 

Figure 20. Radar images generated by the RUIED prototype at 10 degree, HH polarization. 
 

 
                             (a) Background without IED targets           (b) With IED targets 

Figure 21. Radar images generated by the RUIED prototype at 10 degree, VV polarization. 
 

6. FUTURE WORKS AND CONCLUSIONS 
In this work, we have finished the radar system design which has been integrated with a rotary drone and a ground 
control station. A laboratory environment and a field measurement system for concept verification, calibration, data 
collection, and RCS/SAR imaging have been completed. The numerical simulation model, which can predict the 
reflection and scattering of targeted IED signals, will be developed to understand the theoretical properties of the IEDs 
that can generate the associated RCSs for different ground types as well as buried depths. Three dimensional SAR 
images will be obtained with the preprogrammed UAV flight path planning. The full-scale prototype RUIED system is 
shown in Figure 22. Several flight tests in the fields have been performed with certified FAA pilots and the research 
results will be presented in future publications and conferences.  
 

      
                             (a) RUIED system on the ground           (b) RUIED system in a flight test 

Figure 22. RUIED system under operation 
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