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ABSTRACT Statistical analyses of forced unfolding data for protein tandems, i.e., unfolding forces (force-ramp) and unfolding
times (force-clamp), used in single-molecule dynamic force spectroscopy rely on the assumption that the unfolding transitions of
individual protein domains are independent (uncorrelated) and characterized, respectively, by identically distributed unfolding
forces and unfolding times. In our previous work, we showed that in the experimentally accessible piconewton force range, this
assumption, which holds at a lower constant force, may break at an elevated force level, i.e., the unfolding transitions may become
correlated when force is increased. In this work, we develop much needed statistical tests for assessing the independence of the
unobserved forced unfolding times for individual protein domains in the tandem and equality of their parent distributions, which are
based solely on the observed ordered unfolding times. The use and performance of these tests are illustrated through the analysis
of unfolding times for computer models of protein tandems. The proposed tests can be used in force-clamp atomic force microscopy
experiments to obtain accurate information on protein forced unfolding and to probe data on the presence of interdomain
interactions. The order statistics-based formalism is extended to cover the analysis of correlated unfolding transitions. The use of
order statistics leads naturally to the development of new kinetic models, which describe the probabilities of ordered unfolding
transitions rather than the populations of chemical species.

INTRODUCTION

Most of mechanically active proteins perform their biological

function in linear tandems of ‘‘head-to-tail’’ connected re-

peats. For example, ubiquitin (Ub), a naturally occurring

multimer of identical Ub repeats, is involved in protein

degradation and several signaling pathways (1,2). A giant

protein, titin plays a crucial role in muscle contraction and

relaxation. Titin spans almost half of the muscle sacromer

and consists of ;300 domains and 30,000 amino acids (3,4).

There are two types of titin domains, immunoglobulin (Ig)

and fibronectin (Fn) modules, which are linked in a tandem.

The number of Ig domains varies from 37 to 90 in different

titin molecules (5,6). Fibronectin is composed of ;20 dis-

tinct Fn domains of type FnI–FnIII. FnIII contains multiple

binding sites for integrin receptors of the extracellular matrix

(5). In ddFLN, a dimeric filamin from Dictyostelium dis-
coideum, and in human filamin (A protein), a single chain is

composed of a rod-like tandem of several Ig domains (6–8).

Filamins, which also form multidomain tandems, play an

important role in cellular locomotion (6,7).

In single-molecule atomic force microscopy (AFM) ex-

periments, the consecutive unfolding transitions of protein

domains in a tandem or a polyprotein are analyzed by ap-

plying constant mechanical force (force-clamp mode) or

time-dependent force (force-ramp) (9–14). In force-ramp

AFM experiments, the force-induced unraveling of protein

tandems results in sawtooth profiles of the unfolding forces,

ff1, f2, . . ., fng, which correspond to the unfolding of indi-

vidual protein domains. In force-clamp AFM probes, the

force-induced tension in the tandem chain results in the

stepwise elongation of the tandem end-to-end distance, X.

For the polyubiquitin chain (Ubn, 3 , n , 12), elongation of

X in steps of DX � 20 nm was used to identify the unfolding

transitions in the individual Ub domains (15,16).

Current statistical analyses of forced unfolding data for

protein tandems ((D)n) rely on the assumption that a), the

forced unfolding transitions of individual domains (D) are

mutually independent (uncorrelated), and that b), the re-

corded unfolding forces (force-ramp) and unfolding times

(force-clamp) are realizations of the same probability density

function (pdf) (13,14,16–18). Said differently, these analyses

are based on the assumption that the unfolding times and

forces form a set of independent identically distributed (iid)

random variables. In our previous computer simulation

studies of forced unfolding, hereafter referred to as Study

1 (19), we tested the validity of the ‘‘iid assumption’’ in an

experimentally accessible piconewton range of applied con-

stant force. We showed that the uncorrelated forced unfold-

ing transitions, observed for the model tandem S2–S2–S2,

become correlated when the applied force is increased (19).

In a typical force-clamp AFM experiment on a tandem D1–

D2– . . . –Dn, the recorded first, second, etc. forced unfolding

times, t1:n, t2:n, . . ., tn:n, are ordered, i.e., t1:n # t2:n # . . .tn:n

(19). Because any domain Di, i ¼ 1, 2, . . .n, could have

unfolded at any time, there is no direct correspondence be-

tween the observed ordered unfolding time data, ft1:n,
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t2:n, . . ., tn:ng, and the unobserved parent unfolding times ft1,

t2, . . ., tng for individual domains D1 (t1), D2 (t2), . . ., Dn (tn).

The main goal of unfolding time data analysis is to charac-

terize the forced unfolding times of individual domains. This

is equivalent to inferring the parent unfolding time distribu-

tions for individual domains, c1(t) (D1), c2(t) (D2), . . ., cn(t)
(Dn), from the distributions of ordered time variates, t1:n,

t2:n, . . ., tn:n. As we showed in Study 1 (19), only when the

unfolding times are iid, which is the case for the uncorrelated

unfolding times for a homogeneous tandem (D)n, the con-

nection between ordered unfolding times and the parent

densities is direct, and c (t)¼ c1(t)¼ c2(t)¼ . . .¼ cn(t) can

be estimated by combining all ordered time variates into a

single histogram. However, when the parent distributions are

nonidentical, i.e., c1(t) 6¼ c2(t) 6¼ . . . 6¼ cn(t) (heterogeneous

tandem D1–D2– . . . –Dn) and/or the unfolding times, t1,

t2, . . ., tn are correlated (dependent), the relationship between

the observed ordered time data and the unobserved parent

time data is more complex, and data analysis based on the iid

assumption is inappropriate. We will show in this study that

when the unfolding times are correlated, the use of the iid

assumption could result in an inaccurate description of pro-

tein unfolding. Hence, statistical tools for testing whether the

iid assumption holds are much needed.

In the case of noninteracting domains, such as domains S2

in tandem S2–S2–S2 (Study 1), the emergence of correlations

among the unfolding transitions is due to dynamic competi-

tion between the unfolding kinetics and tension propagation

along the tandem chain (19). However, in wild-type protein

tandems, correlations can also build up due to interdomain

interactions. Recent experiments on tandems of I27–I28 re-

peats showed enhanced domain stabilization against applied

pulling force, which causes the increase of the average un-

folding force from 260 pN (for the tandem of domains I27) to

300 pN (for the tandem of I27–I28 repeats) (20). Similar

domain stabilization effect has been reported for the tandem

of FnIII domains (21). Also, recent force-ramp AFM mea-

surements on the homogeneous tandems of fibrinogen, per-

formed at a pulling speed of 1 mm/s, revealed that the

consecutive unfolding transitions are strongly correlated (A.

Brown and J. Weisel, University of Pennsylvania Medical

School, private communication, 2008). This behavior is most

likely due to interaction between fibrinogen’s aC-domains

and its central region (22).

These experimental findings demonstrate the importance

of the inter- and intramolecular protein-protein interactions

and show that current AFM technology can be used to probe

these interactions by analyzing correlated (dependent) forced

unfolding transitions in protein tandems. In force-ramp AFM

measurements on protein tandems, mutual independence

between the unfolding transitions can be accessed by ap-

plying standard tests for independence, such as the Pearson

correlation (23), Spearman rank correlation coefficient (23),

or Hoeffding’s D statistic- (24,25) based test to the recorded

unfolding forces. In the case of force-clamp AFM measure-

ments, however, the observed forced unfolding times are

ordered. To assess independence of the parent unfolding

times, one would have to use statistical tests designed to

detect possible correlations of the unobserved unfolding time

data by analyzing the observed ordered unfolding times. Yet

such tests do not exist. Standard tests for independence can

only be applied to the unobserved parent unfolding times. In

this study, we develop statistical tools for assessing 1), in-

dependence of the forced unfolding times and 2), equality of

their (parent) pdfs from observed ordered time data. We il-

lustrate the use of these tests by analyzing the unfolding times

for a model of the homogeneous dimer S2–S2 and the het-

erogeneous dimer S2–S1 of connected domains S2 and S1.

To model correlated unfolding transitions and interdomain

interactions in protein tandems, novel theoretical approaches

that go beyond the iid assumption are needed. In Study 1, we

introduced an order statistics-based approach to analyze the

ordered unfolding transitions in protein tandems (19). The

key elements of the order statistics formalism are the cumu-

lative distribution function (cdf) of the r-th order statistic (r¼
1, . . ., n) in a tandem of length n, Fr:n(t) [ Prob(tr:n # t), and

the corresponding probability density function (pdf), fr:n(t) ¼
dFr:n(t)/dt. Because the order statistics cdfs and pdfs, Fr:n(t)
and fr:n(t), depend on the parent cdfs and pdfs, C(t) and c (t),
order statistics-based theory can be used to infer C(t) and c

(t) from the ordered time data. In this study, we extend the use

of order statistics to analyzing correlated unfolding transi-

tions in model tandems S2–S2 and S2–S1, characterized by

dependent and identically distributed (did) and dependent and

nonidentically distributed (dnid) unfolding times, respec-

tively. In our test studies, we use single domains S2 and S1,

and the dimers S2–S2 and S2–S1 to represent protein tandems

of short and long length, respectively. The order statistics-

based analysis, presented here, can be performed by using

experimental unfolding time data for homogeneous as well as

heterogeneous tandems of any length. In AFM experiments

on a tandem (D)N of length, say N¼ 12, the unfolding data for

short (long) tandems can be obtained by grouping together

and analyzing separately the unfolding times for tandems of

length n ¼ 1–3 (n ¼ 9–12). Because in a typical AFM ex-

periment the cantilever tip randomly picks up a tandem of any

length n, 1 # n # N, this can always be done.

The rest of this study is organized as follows. First, we

describe Langevin dynamics simulations of the forced un-

folding for single domains S2 and S1, and tandems S2–S2 and

S2–S1. Second, we model the unfolding time distributions for

single domains S2 and S1. The models of forced unfolding

for single domains are used to assess the prediction accuracy

of the order statistics-based analysis. Third, we perform a

preliminary analysis of the forced unfolding times for tan-

dems S2–S2 and S2–S1. Because in computer simulations we

can access the parent unfolding times, we use standard tests

for independence, based on Spearman rank correlation co-

efficient and Hoeffding’s D statistic, and the quantile-quantile

(Q-Q) plots to probe, respectively, the independence of un-
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folding times and their distributional equality. This allows us

to classify the forced unfolding times as iid, inid, did, and

dnid random variables (Table 5, Study 1) (19). Next, we use

these data to generate ordered time variates, as observed in

force-clamp experiments. The ordered unfolding times are

then used to assess the performance of proposed tests for

independence of the unobserved (parent) unfolding times and

equality of their (parent) distributions. Finally, the dependent

(did and dnid) unfolding times are used to illustrate the order

statistics-based analysis of correlated unfolding transitions in

tandems S2–S2 and S2–S1.

METHODS

Langevin dynamics simulations of tandem
S2–S2 and S2–S1

We performed Langevin simulations of forced unfolding using coarse-

grained models of the homogeneous dimer S2–S2 and the heterogeneous

dimer S2–S1, formed by domains S2 and S1 (Fig. 1) (26,27). The off-lattice

Ca-based coarse-grained model of protein tandems serves as a conceptual

representation of the wild-type multidomain proteins (27–30).

Tandem construction

The domains S2 and S1 consist of 46 hydrophobic (B), hydrophilic (L), and

neutral (N) residues. Each bead is represented by a united atom at the position

of the Ca atom (Fig. 1). The distance between Ca carbons is a ¼ 3.8 Å. The

tandems S2–S2 and S2–S1 are constructed by connecting domains S2 and S1

‘‘head-to-tail’’ by a flexible linker of five Gly residues (Fig. 1) (19). The

potential energy V ¼ VBL 1 VBA 1 VDIH 1 VNB includes the bond-length

potential VBL, bond-angle potential VBA, dihedral angle potential VDIH, and

nonbonded potential VNB (26,30). The nonbonded distance R dependent

interaction between a pair of B residues is given by VBB
NBðRÞ ¼ 4leh½ða=RÞ12�

ða=RÞ6�; where l accounts for variation in the strength of hydrophobic inter-

actions, and eh¼ 1.25 kcal/mol is the average strength of hydrophobic contacts.

In the native state, S2 and S1 form four-stranded b-barrels, stabilized by Q0¼
106 native contacts (6.8 Å cut-off), with the potential energies of �85.5 kcal/

mol and �88.0 kcal/mol, respectively. Interdomain interactions are limited to

steric repulsion.

Forced unfolding

The forced unfolding kinetics are obtained by integrating the Langevin

equations for each residue coordinate xj, subject to the total potential Vtot ¼
V � fX, i.e., hdxj/dt ¼ – @Vtot/@xj 1 gj(t), where h is the friction coefficient

and gj is Gaussian white noise. The force f ¼ fn of magnitude f is applied

to C- and N-terminals of the tandem in the direction of the end-to-end vector

X (Fig. 1). Numerical integration is performed with a step size dt ¼ 0.05tL,

where tL¼ (ma2/eh)1/2¼ 3 ps is the unit of time, and m� 3 3 10�22 g is the

residue mass. The simulation temperature Ts¼ 0.69eh /kB , TF� 0.79eh /kB,

where TF� 0.79eh /kB is the equilibrium folding temperature for S1 and S2, is

defined as the temperature at which the average fraction of contacts ÆQ(Ts)æ �
0.7Q0. The unfolding time for domain S2 (or S1) is defined as the time at which

all contacts are disrupted. Throughout this study, the unfolding times and rates

are expressed in terms of the number of integration steps Ntot (t ¼ Ntotdt).

Preliminary analysis of the unfolding times for
S2–S2 and S2–S1

To prepare the stage for the use of order statistics, we analyze the forced

unfolding times for single S2 and S1 domains, and characterize their parent

pdfs, cS2(t) and cS1(t). We also analyze the parent unfolding times for first

(S21) and second (S22) domain in tandem S2–S2, and first (S21) domain and

second (S12) domain in tandem S2–S1 for independence and equality of their

parent pdfs. The tests used in this section should not be confused with the

statistical tests for independence and distributional equality for ordered un-

folding times introduced in the following section.

Unfolding times for single domains S2 and S1

Histograms of the unfolding times for single S2 and S1 domains, obtained at

constant force f ¼ 66 pN and f ¼ 88 pN, and corresponding nonparametric

density estimates are presented in Fig. 2. A nonparametric density estimate

provides a visual assessment of the distribution and fits the density by locally

weighting the observations (19,31,32). In force-clamp AFM experiments on

a protein tandem of length n, a suitable model for the parent unfolding time

pdfs can be obtained by using trial densities for the distribution of the first

unfolding times, f1:n(t), and fitting f1:n(t) to the histograms of the first un-

folding times ft1:ng (see Eqs. 7 and 8 in the next section). Here, as in Study 1,

FIGURE 1 (a) Model b-barrel proteins S1 (left) and S2 (right), formed by

the hydrophobic (in blue), hydrophilic (in red), and neutral Gly residues (in

gray). In the native state of S1, the terminal strands b1 and b4 (shown by

yellow circles) form a rigid and highly stable native core; the native core of

S2 involves the nonterminal strands b2 and b3, and the terminal strand b4 is

flexible. (b and c) The homogeneous tandem S2–S2 (b) and the heteroge-

neous tandem S2–S1 (c) of S2 domain (shown in red) and S1 domain

(yellow), connected ‘‘head-to-tail’’ by a flexible linker (shown in green).

The linker is composed of five Gly residues. Constant mechanical force, f, is

applied to the N-terminal of the first domain S2 and the C-terminal of the

second domain S2 (S1) in the tandem S2–S2 (S2–S1). The arrow indicates

the direction of applied force.
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we used the Gamma density to describe the parent unfolding time pdfs for

single domains S2 and S1,

cGammaðtÞ ¼
k

a

GðaÞt
a�1

e
�kt
; (1)

where a and k are the shape parameter and unfolding rate, respectively, and

G(a) [ (a � 1)! (19). The Q-Q plots of the unfolding times for single

domains S2 and S1 versus unfolding times for the Gamma distribution (Eq. 1)

are displayed in Fig. 3. A Q-Q plot is a graphical technique for determining

whether two data sets come from populations with common distribution (19).

If the two sets have the same distribution, the points fall along the 45�
reference line. Gamma provides a good fit to the unfolding times for S2 and

S1 domains. The parameters of the Gamma distribution were computed using

the maximum likelihood estimation method described in Study 1 (19). The

maximum likelihood estimates of a and k for single S2 and S1 domains,

which were used to compute the Gamma quantiles in the Q-Q plots, are

reported in Table 1. The difference in the obtained parameter values shows

clearly that the unfolding times for single S2 and S1 domains are non-

identically distributed.

Unfolding times for tandems S2–S2 and S2–S1

The unfolding time histograms for domains S2 and S1 are shown in Fig. 4.

The parent unfolding times for the first S21 domain (t1) and second S22

domain (t2) in tandem S2–S2, and unfolding times for the first S21 domain

(t1), and second S12 domain (t2) in tandem S2–S1, were analyzed for inde-

pendence and equality of their parent distributions.

Test for independence of unfolding times

In Study 1, we used the Spearman rank correlation coefficient (23,33), a

nonparametric and scale-invariant measure of dependence. This measure

detects linear and some nonlinear yet always monotonic relationships be-

tween two data sets ft1g and ft2g, when the sets either change in the same or

in the opposite direction, i.e., when the values ft1g and ft2g both increase or

decrease, or when the values ft1g always increase (decrease) while the values

ft2g decrease (increase). Hoeffding’s nonparametric test for independence,

described in Appendix A (24,25), and its asymptotic equivalent (34) detect

all dependence alternatives, including highly nonmonotonic relationships.

The values of D range from �0.5 to 1, with larger D(t1, t2) values signifying

stronger dependence between t1 and t2. In statistical data analyses, both tests

of independence are typically carried out so that monotonic as well as

nonmonotonic associations between two variables can be detected.

The values of D(t1, t2) and the Spearman rank correlations for the un-

folding times ft1g and ft2g obtained at f¼ 66 pN and f¼ 88 pN for tandems

S2–S2 and S2–S1 are reported in Table 2. The associated p-values for testing

independence are given in parentheses. The threshold p-value, which rep-

resents the level of tolerance for rejecting the independence hypothesis, was

set to 0.01 (in statistical hypothesis testing, the null is rejected if the p-value

does not exceed the threshold). At f ¼ 66 pN, both dependence measures

conclude that domains S21 and S22 in tandem S2–S2 and domains S21 and

S12 in tandem S2–S1 unfold independently. In contrast, at f ¼ 88 pN,

Hoeffding’s test for independence finds the forced unfolding times for the

same domains in the tandems S2–S2 and S2–S1 to be dependent. The

Spearman rank correlation coefficient test, on the other hand, is not signifi-

cant at level 0.01 for either tandem and does not detect dependence. Since

Hoeffding’s test is significant, the dependence between the unfolding times

FIGURE 2 Histograms (bars) of the forced unfolding times for single S2 domain (a and b) and single S1 domain (c and d) obtained at constant force f ¼
66 pN (a and c) and f¼ 88 pN (b and d). The overlaid curves are the nonparametric density estimate (the bandwidth bw¼ 0.9 3 min(SD; IQR=1:34Þn�1=5

p used

in the calculations is the default value used in the R software for statistical computing (36), where SD is the standard deviation, and IQR is the interquantile

range of the data (32)). In the histograms presented here and in Figs. 4 and 7, the number of bins nb and the bandwidth bw are estimated as described above.

In this figure and in Figs. 3–7, the time t is expressed in units of the number of integration steps Ntot (t ¼ Ntot0.15 ps).

FIGURE 3 Q-Q plots of the forced unfolding times for single S2 domain (a and b) and S1 domain (c and d), obtained at f ¼ 66 pN (a and c) and f ¼
88 pN (b and d) versus quantiles of the Gamma density (Eq. (1)). The dashed line is the 45� reference line.
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for the two domains in both tandems, obtained at f ¼ 88 pN, is non-

monotonic. This result supports our previous finding (Study 1) that in-

creasing the magnitude of applied force, f, may result in dependent unfolding

transitions (19).

Test for equality of unfolding time pdfs

Q-Q plots were used for the empirical assessment of the equality of the un-

folding time pdfs for domains S2 and S1 in tandems S2–S2 and S2–S1 (Fig. 5).

The Q-Q plot for the first S21 domain against the second S22 domain in tandem

S2–S2, obtained at f ¼ 66 pN, shows that almost all data points fall on the

reference line, indicating equality of the parent pdfs, i.e., cS21
ðtÞ ¼ cS22

ðtÞ:A
small parallel deviation of the time quantiles from the reference line for the

same domains, obtained at increased force f ¼ 88 pN, indicates only ap-

proximate distributional equality, i.e., cS21
ðtÞ � cS22

ðtÞ: Indeed, the unfold-

ing times of the S21 domain are consistently shorter than the unfolding times

of the S22 domain by a small time constant, Dt� 0.4 3 106. This can also be

seen by comparing the unfolding time histograms (Fig. 4, a and b). This time

difference (Dt) induces the dependence detected by Hoeffding’s D statistic.

The Q-Q plots for the first S21 domain against the second S12 domain in

tandem S2–S1 strongly indicate lack of equality of the parent pdfs both at

f¼ 66 pN and f¼ 88 pN, i.e., cS21
ðtÞ 6¼ cS12

ðtÞ (Fig. 5, c and d). This can also

be seen from the bimodal shape of the unfolding time density for the S2 do-

main (Fig. 4 c).

To summarize this section, we showed that the parent unfolding times for

S2 domains in tandem S2–S2 are iid for f ¼ 66 pN and did for f ¼ 88 pN,

whereas the parent unfolding times for S2 and S1 domains in tandem S2–S1

are inid for f ¼ 66 pN and dnid for f ¼ 88 pN.

RESULTS

We use simulated unfolding time data for model tandems S2–

S2 and S2–S1 to assess the performance of the proposed tests

for independence of the (parent) unfolding times and equality

of the parent unfolding time pdfs from the ordered time data,

t1:n # t2:n # . . . # tn:n. To generate ordered time variates as

observed in force-clamp AFM experiments, the unfolding

times ft1g and ft2g for domains S21 (ft1g) and S22 (ft2g) in

tandem S2–S2, and domains S21 (ft1g) and S12 (ft2g) in

tandem S2–S1 were rearranged in increasing time order. That

is, tmin , tmax, where tmin ¼ min(t1, t2) and tmax¼ max(t1, t2)

are the minimum and maximum unfolding times, respec-

tively. The ordered variates from 500 runs for each dimer

were grouped into ordered sets of the first ftming¼ ft1:2g, and

second ftmaxg ¼ ft2:2g unfolding times.

Testing equality of the parent unfolding time pdfs
by analyzing ordered time data

A simple empirical test for assessing distributional equality

of the parent unfolding time pdfs for individual domains in a

tandem D1–D2– . . . –Dn can be based on a recurrence relation

for order statistics (19). When the forced unfolding times are

iid, the pdfs of the r-th and (r 1 1)-st unfolding times (order

statistics) in a tandem of length n are related to the pdf of the

r-th unfolding times in a tandem of length n � 1 via the re-

currence relation (34,35)

nfr:n�1ðtÞ ¼ ðn� rÞfr:nðtÞ1 rfr11:nðtÞ: (2)

Equation 2 also holds when the unfolding times are

‘‘exchangeable’’, i.e., when they are identically distributed

but could be dependent (did) (34,35), and when the parent

unfolding time pdfs are identical in the sense that they have

the same shape but may differ in the location of the peak,

which quantifies the most probable unfolding time t*. This is

the case for tandem S2–S2, at f¼ 88 pN. Hence, Eq. 2 applies

both when the parent unfolding times for domains Di and Dj

are strictly identically distributed, and when the unfolding

times for, say, domain Dj are ‘‘shifted’’ from the unfolding

times for domain Di by a time constant Dt ¼ jtj* � ti*j.
By applying Eq. 2 recursively, we can obtain the parent

unfolding time pdf for a single domain D, c (t) [ f1:1(t), i.e.,

TABLE 1 Maximum likelihood estimates and 95% standard errors for the dimensionless shape parameter a and unfolding rate k

(in units of integration step) for single domains S2 and S1 obtained at f = 66 pN and f = 88 pN

Force, pN aS2 aS1 kS2 kS1

66 0.98 6 0.09 4.62 6 0.18 (2.27 6 0.26) 3 10�7 (1.52 6 0.06) 3 10�5

88 2.02 6 0.14 7.03 6 0.23 (3.84 6 0.31) 3 10�6 (4.59 6 0.16) 3 10�5

FIGURE 4 Histograms (bars) and nonparametric density estimates (curves) of the unfolding times for the first S21 domain (a) and second S22 domain (b) in

tandem S2–S2, and for the first S21 domain (c) and second S12 domain (d) in tandem S2–S1, obtained at f ¼ 88 pN.
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ncðtÞ[ nf1:1ðtÞ ¼ +
n

r¼1

fr:nðtÞ: (3)

Equation 3 provides a means to infer the parent distribution

for a domain in a tandem from the order statistics pdfs fr:n,

1 # r # n, when the forced unfolding times are iid or did; that

is, regardless of their dependence structure. In particular, Eq.

3 implies that when the unfolding times are identically dis-

tributed with common parent pdf c (t), then the latter can be

obtained by ‘‘mixing’’ all the order statistics pdfs, fr:n, r¼ 1,

2, . . ., n, with equal weight 1/n, i.e.,

cðtÞ ¼ 1

n
f1:nðtÞ1

1

n
f2:nðtÞ1 . . . 1

1

n
fn:nðtÞ: (4)

A simple test for equality of the parent unfolding time pdfs

for individual domains in a tandem can be constructed as

follows. First, the ordered unfolding times, collected at a

fixed force, are grouped into two time sets, one for unfolding

times for a shorter tandem of length, say n1 ¼ 1–3, and the

other for unfolding times for a longer tandem of length say,

n2 ¼ 9–12. As noted in the introduction, in AFM ex-

periments, the cantilever tip randomly picks up a tandem of

any length, so that this separation is implementable in prac-

tice. The corresponding pdfs, cn1
ðtÞ and cn2

ðtÞ; are estimated

by using Eq. 4. Next, cn1
ðtÞ and cn2

ðtÞ are compared via a

Q-Q plot. If the time quantiles for cn1
ðtÞ and cn2

ðtÞ fall close

(far) to (from) the reference line, then the parent pdfs for

individual domains in tandems of length n1 and n2 are

identically (nonidentically) distributed. The difference be-

tween the time quantiles for cn1
ðtÞ and cn2

ðtÞ; if any, can be

used as a signature of the distributional inequality of the

parent pdfs.

Test for equality of parent pdfs

The above arguments lead us to the following computational

algorithm:

Step 1. Collect the forced unfolding times, t1:n1
#

t2:n1
# . . . # tn1:n1

; for a tandem of shorter length n1.

Step 2. Generate a random number U in the interval (0, 1).

Step 3. If U2 (0, 1/n1), randomly select a point from the first

order statistic, ft1:n1
g. If U2 (1/n1, 2/n1), randomly select

a point from the second order statistic, ft2:n1
g; and so on.

Step 4. Repeat Steps 2 and 3 M times to obtain a sample

of size M from cn1
ðtÞ (Eq. 4).

Step 5. Collect the forced unfolding times, t1:n2
#

t2:n2
# . . . # tn2:n2

; for a tandem of longer length n2, and

repeat Steps 2–4 to obtain a sample of size M from cn2
ðtÞ:

Step 6. Draw the Q-Q plot for the time quantiles of cn1
ðtÞ

against the time quantiles of cn2
ðtÞ; and estimate the

distance of the time quantiles from the reference line.

If the unfolding time quantiles fall close to the reference

line, i.e., they are either aligned with or are parallel and close

to the reference line, then Eq. 4 is satisfied and the parent

unfolding times for individual domains (Ds) in a tandem D1–

D2– . . . –Dn are identically distributed, regardless of whether

they are dependent. Significant nonlinear divergence from the

reference line would indicate their distributional inequality.

Application of the algorithm to the ordered unfolding times
of S2–S2 and S2–S1

We tested the performance of the proposed algorithm by

using ordered unfolding time data for tandems S2–S2 and S2–

S1. For two-domain tandems, Eq. 4 becomes

TABLE 2 Preliminary analysis of the forced unfolding times

f ¼ 66 pN f ¼ 88 pN

Tandem Hoeffding’s D Spearman correlation Hoeffding’s D Spearman correlation

S2–S2 0.0003 (0.25) �0.06 (0.15) 0.0032 (0.01) �0.03 (0.59)

S2–S1 �6.08291 3 10�6 (0.37) �0.05 (0.26) 0.0043 (0.0052) �0.10 (0.02)

Hoeffding’s D statistics and Spearman rank correlation coefficients of the unfolding times for domains S21 and S22 in tandem S2–S2, and domains S21 and

S12 in tandem S2–S1, obtained at f ¼ 66 pN and f ¼ 88 pN. The numbers in parentheses are the p-values for testing for independence of the two variables.

FIGURE 5 Q-Q plots of the unfolding times for the first domain S21 (t1) versus the second domain S22 (t2) in tandem S2–S2, obtained at f ¼ 66 pN (a) and

f ¼ 88 pN (b), and for the first domain S21 (t1) versus the second domain S12 (t2) in tandem S2–S1, obtained at f ¼ 66 pN (c) and f ¼ 88 pN (d).
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cðtÞ ¼ f1:1ðtÞ ¼
1

2
f1:2ðtÞ1

1

2
f2:2ðtÞ: (5)

The Q-Q plots of the time quantiles for single domain S2

versus the quantiles for tandem S2–S2, sampled from the

mixture of the order statistics pdfs (Eq. 5), are displayed in

Fig. 6. At f ¼ 66 pN, the unfolding time quantiles run almost

parallel to the reference line, indicating an approximate dis-

tributional equality (up to the time shift Dt) of the parent

unfolding times for the first S21 domain and the second S22

domain, i.e., cS21
ðtÞ � cS22

ðtÞ: The time shift at the median

(50% quantile) from the reference line is ;Dt � 3 3 106

integration steps (Fig. 7 a). At f ¼ 88 pN, the time quantiles

show a shorter time shift, Dt � 0.5 3 106 integration steps,

still running almost parallel to the reference line, which in-

dicates an approximate distributional equality (up to Dt) of

the parent unfolding times for S2 domains in S2–S2, i.e.,

cS21
ðtÞ � cS22

ðtÞ (Fig. 6 b).

The observed time shift Dt is due to the tension drop in the

tandem chain, which occurs after the first unfolding transition

in one of the two domains at time t¼ t1:2. The resulting chain

elongation lowers the force-induced tension and the instan-

taneous force to a lower value, f9 , f ¼ 66 pN, and hence it

takes time Dt to ramp it up back to the initial level (f9 / f). As

a result, the time quantiles obtained for the longer tandem

(S2–S2) are above the reference line, indicating prolonged

unfolding for S2 domains in the tandem compared to a single

S2 domain. Although in our case study we used a single S2

domain and the dimer S2–S2 to represent, respectively, the

tandems of shorter and longer length, this algorithm can be

used to analyze protein tandems of any length n1 and n2 . n1.

The Q-Q plots of the time quantiles for single domain S1

versus the quantiles for tandem S2–S1, sampled from the

mixture of the order statistics pdfs (Eq. 5), are also displayed

in Fig. 6 for comparison. We observe much greater nonpar-

allel divergence from the reference line with a larger time

shift, Dt � 8 3 106 integration steps (f ¼ 66 pN) and Dt �
1 3 106 integration steps (f ¼ 88 pN), at the 50% quantile,

compared with tandem S2–S2. Such strong nonlinear diver-

gence is indicative of the fact that the forced unfolding times

for domains S2 and S1 in tandem S2–S1 are differently dis-

tributed both at f ¼ 66 pN and f ¼ 88 pN.

The results of the proposed test for distributional equality of

the parent unfolding time pdfs, applied to the ordered unfolding

times, agree with the results of preliminary data analysis, and

confirm that the parent unfolding times, obtained at f¼ 66 pN

and f¼ 88 pN, are identically distributed for tandem S2–S2 and

nonidentically distributed for tandem S2–S1. The proposed

algorithm can be used in statistical analyses of unfolding data

available from force-clamp AFM measurements. In addition,

for homogeneous tandems, the difference between the un-

folding time quantiles for tandems of short and long length,

parameterized by Dt, can be used to estimate the timescale of

force-induced tension propagation along the tandem chain, tf.

Indeed, there are n� 1 intervals of dropped tension of duration

Dt in a tandem of length n. When the pdfs for tandems of dif-

ferent length n1 6¼ n2, cn1
ðtÞ; and cn2

ðtÞ are compared via Q-Q
plots, tf can be estimated as tf � Dt/jn2 � n1j.

Testing independence of the parent unfolding
times by analyzing ordered time data

In this section, we propose a permutation test for iid versus

did parent unfolding times and an overlap fraction test for

inid versus dnid unfolding times using the ordered unfolding

times for tandems S2–S2 and S2–S1.

Permutation test for iid versus did unfolding times

Let us assume that we record n ordered unfolding times

sampled from the joint distribution C(t1, . . ., tn) and joint pdf

c (t1, . . ., tn), where as before ti denotes the unfolding time of

the ith domain (i¼ 1, . . ., n) in a tandem of length n. Suppose

we observe the unfolding time order statistics, t1:n # t2:n #

. . . # tn:n, sampled from the joint distribution C(t1, . . ., tn).

We want to infer if the (unobserved) parent data, t1, t2, . . ., tn
are uncorrelated from their order statistics, t1:n # t2:n # . . . #

tn:n. Suppose now that the parent unfolding time data are

indeed iid; that is, C(T1, . . ., Tn) ¼ C(T1 # t1)C(T1 #

t2). . .C(T1 # tn), where C(t) is their common cdf, and c (t1,

FIGURE 6 (a and b) Q-Q plots of the unfolding times for single S2 domain versus the unfolding times for tandem S2–S2, generated by ‘‘mixing’’ the first

and second order statistics pdfs via 1=2f1:2ðtÞ11=2f2:2ðtÞ (Eq. 5) for the ordered unfolding times t1:2 and t2:2, obtained at f ¼ 66 pN (a) and f ¼ 88 pN (b).

(c and d) Q-Q plots of the unfolding times for single S1 domain versus the unfolding times for tandem S2–S1, generated by mixing the first and second order

statistics pdfs for t1:2 and t2:2, obtained at f ¼ 66 pN (c) and f ¼ 88 pN (d).
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. . ., tn) ¼ c (t1)c (t2). . .c (tn), where c (t) ¼ dC(t)/dt is their

common pdf. This factorization implies that if the parent data

were iid, then the order statistics, t1:n # t2:n # . . . # tn:n, could

have had resulted from any permutation of the original data

with equal probability. For example, the parent sample t1, t2,

. . ., tn could have resulted in t1:n # t2:n # . . . # tn:n with equal

probability as the sample t1, t3, . . ., tn or the sample tn, t3, . . .,
t1, and so on. The order in which the n-tuple (t1, . . ., tn) is

arranged is irrelevant because all n! permutations of the n
parent data points are equally likely to be observed, since

they are independent realizations of the same distribution. Let

us generalize the above arguments to M measurements.

Suppose M ordered n-tuples, t
ðiÞ
1:n#t

ðiÞ
2:n# . . . #t

ðiÞ
n:n; are ob-

served, i¼ 1, . . ., M. If the parent unfolding time data were iid,

the unfolding time order statistics obtained in the ith experi-

ment, t
ðiÞ
1:n#t

ðiÞ
2:n# . . . #t

ðiÞ
n:n; could have had resulted from any

permutation of the parent data with equal probability. For

each i¼ 1, . . ., M, all n! permutations of the n data points are

equally likely to be the parent sample of the observed order

statistics. This leads to the following algorithm for testing

pairwise independence:

Step 1. For each experiment i ¼ 1, . . ., M, randomly

permute the n-tuples of the recorded unfolding time

order statistics and let ðtðibÞ1 ; t
ðibÞ
2 ; . . . ; t

ðibÞ
n Þ be the b-th

permuted order statistics, where b is a permutation

number. Store the result in matrix Tb ¼ ðtb
ijÞ of dimension

M 3 n, where tb
ij ¼ t

ðibÞ
j ; i ¼ 1; . . . ;M; j ¼ 1; . . . ; n:

Step 2. Repeat Step 1 B times, i.e., b ¼ 1, . . ., B to obtain

matrices T1, . . ., TB.

Step 3. For b ¼ 1, . . ., B, carry out ð n
2
Þ pairwise tests for

independence of all pairs of the n columns of Tb at a

fixed significance level. Compute and store the fraction

of rejections of the null hypothesis of independence.

In Step 3, both Spearman’s rank correlation and Hoeffd-

ing’s D statistic should be used so that most types of de-

pendence are checked for (23–25). Both measures are based

on test statistics with known asymptotic distributions, which

allow the computation of the p-values for testing indepen-

dence. If the parent unfolding time data are independent, the

test for independence in Step 3 will not be significant. An

illustration of the algorithm is given in Appendix B.

Application of the algorithm to the ordered unfolding times
of S2–S2

Table 3 summarizes the results of the application of the

permutation algorithm to the ordered unfolding times for

tandem S2–S2. The entries are the fractions of p-values

.0.05 over 500 replicates (B ¼ 500). We used a 5% cutoff,

i.e., we assumed that if the obtained p-value # 0.05, then

there exists statistically significant dependence among the

parent unfolding times for domains S2. At f ¼ 66 pN,

Hoeffding’s test rejected independence only 100 � 99.6 ¼
0.4% of the time, thus providing strong support for the in-

dependence of unfolding times for the first S21 domain (t1)

and second S22 domain (t2) in tandem S2–S2. The Spearman

rank correlation coefficient also detected independence 100%

of the time (Table 3). At f ¼ 88 pN, the fraction of the

p-values exceeding 0.05 for the Hoeffding’s test is 0. That is,

all 500 p-values for testing independence were highly sig-

nificant, i.e., below the 5% cutoff, providing strong evidence

for lack of independence between the parent unfolding times

for the first S21 domains (t1) and the second S22 domain (t1) in

tandem S2–S2. Thus, the permutation test for independence,

applied to iid and did unfolding times for tandem S2–S2,

recovers the results of the preliminary data analysis.

An empirical test for inid versus dnid unfolding times

An empirical approach for deducing independence of the

parent inid and dnid unfolding times can be based on the

overlap fraction F(r, r 1 1;n), r ¼ 1, . . ., n � 1, defined as

the fraction of values shared by the r-th order statistic, tr:n,

and the (r 1 1)-st order statistic, tr11:n, in an heterogeneous

tandem (D1–D2)n/2 of length n. That is,

Fðr; r 1 1; nÞ ¼ ððnumber of values of tr 1 1:n # maxftr:ngÞ=
ðtotal number of values of tr 1 1:nÞÞ: (6)

If F(r, r 1 1;n) is smaller than a threshold value F*, then

the unfolding times for, say, domain D1, differ from the

unfolding times of domain D2 in a consistent fashion. Since

domains D1 and D2 have different (parent) pdfs, i.e.,

cD1
ðtÞ 6¼ cD2

ðtÞ; this would mean that unfolding of D1 do-

mains does not affect unfolding of D2 domains, and that these

domains unravel independently. For example, the forced un-

folding of domain S1 occurs on a faster timescale compared to

the unfolding of the S2 domain (Fig. 5). Hence, the first un-

folding transitions (t1:2) occur more frequently for domain S1 as

compared to the S2 domain, and the consecutive unfolding

transitions t1:2 and t2:2 are separated in time (uncorrelated). On

the other hand, large values of F(r, r 1 1;n), i.e., F(r, r 1 1;n) .

F* would indicate mixing among the unfolding times for do-

mains D1 and D2 and signify their dependence.

Application of the overlap fraction test to the ordered
unfolding times of S2–S1

We applied the overlap fraction test to assess independence

of the parent unfolding times for S21 domain (t1) and S12

domain (t2) in tandem S2–S1. We set the threshold value for

TABLE 3 Results of the permutation test for independence of

the parent unfolding times for domains S21 (t1) and S22 (t2) in

tandem S2–S2

f ¼ 66 pN f ¼ 88 pN

Test

% of p-values

.0.05 Test

% of p-values

.0.05

Hoeffding’s D 0.996 Hoeffding’s D 0

Spearman correlation 1 Spearman correlation 0
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the overlap fraction to F* ¼ 50%. For a heterogeneous tan-

dem of length n ¼ 2, the heuristic argument that led to this

choice follows along these lines: if there were perfect mixing,

that is the first order statistic originated with equal probability

from both domains, then the ordered pair ðt1:2 ¼ tD1
;

t2:2 ¼ tD2
Þ would be observed 50% of the time, and the or-

dered pair ðt1:2 ¼ tD2
; t2:2 ¼ tD1

Þ would be observed 50% of

the time as well, where tDi
denotes the unfolding time of

domain Di, i¼ 1, 2. This would lead to no separation between

the values of the two order statistics (they would fall in the

same range) and the overlap fraction would be close to one.

Lack of mixing would mean that, say, the pair ðt1:2 ¼ tD2
;

t2:2 ¼ tD1
Þ would be observed nearly always and the com-

plement pair ðt1:2 ¼ tD1
; t2:2 ¼ tD2

Þ would be observed al-

most never, so that the overlap fraction would be close to

zero. Of course, because of sampling variability, the overlap

fraction would never be exactly equal to zero or one but

rather close to either value. The closeness would depend on

the magnitude of correlations and the size of the sample. The

cutoff of 50% is simply the midpoint of the unit interval. In

principle, one can estimate the cutoff much more accurately

using resampling methods; here we simply use this subjective

cutoff. For this choice, values of F(1, 2;2) , 50% would

imply that one of the two domains S2 and S1 unfolds on a

faster timescale, compared to the other domain. In the op-

posite case, i.e., when F(1, 2;n) . 50%, we would conclude

that S2 and S1 domains unfold on a similar timescale and that

the unfolding times are correlated. We found that at f ¼ 66

pN, F(1, 2;n) ¼ 24% , 50%, and at f ¼ 88 pN, F(1, 2;n) ¼
61% . 50%. Hence, we recover the results of the preliminary

analysis for tandem S2–S1, namely that the parent unfolding

times for S2 and S1 domains in the tandem are independent at

f ¼ 66 pN, but dependent at f ¼ 88 pN.

For tandems of length larger than two, if the tandem is fully

heterogeneous, i.e., all its domains are distinct, perfect mix-

ing is equivalent to all permutations of the n-tuple (t1:n, . . .,
tn:n) being equally likely, and the overlap fraction of any two

order statistics would be close to one. In particular, the

overlap fraction of any two consecutive order statistics, F(r,

r 1 1;n), would also be close to one. In the other extreme of

no mixing, the overlap fraction would be close to zero. Thus,

even when the tandem consists of more than two domains,

the midpoint cutoff of 50% can also be used. To conclude

independence, all overlap fractions F(r, r 1 1;n), r ¼ 1, . . .,
n � 1, must be smaller than the cutoff. We plan to examine

the more general case of tandems composed of a mix of the

same and distinct domains in a separate study.

Order statistics-based analysis of did and dnid
unfolding times

The application of the test for distributional equality to or-

dered unfolding times obtained at f ¼ 88 pN revealed a

pronounced time shift Dt � 0.5 3 106 integration steps for

tandem S2–S2 and Dt� 1 3 106 integration steps for tandem

S2–S1 (Fig. 6). As we argued before, the origin of Dt is a

tension drop in the tandem chain, which accompanies each

unfolding transition. As a result, every next unfolding tran-

sition (t2:n, t3:n, . . ., tn:n) after the first transition (t1:n) in a

tandem of length n is delayed by Dt. This builds up corre-

lations (dependence). However, the dependence structure,

defined by the time shift Dt, is trivial and affects only the

second (t2:n), third (t3:n), etc., unfolding transition, but does

not affect the first transition (t1:n). Therefore, for correlated

unfolding events characterized by did and dnid unfolding

times with such trivial dependence, the first order statistic t1:n

can be described by using the order statistics for iid and inid

unfolding times (Study 1) (19).

To illustrate our approach, here we use previously gener-

ated ordered time variates, i.e., the first unfolding times,

ftming ¼ ft1:2g, and second unfolding times, ftmaxg ¼ ft2:2g,
for tandems S2–S2 and S2–S1 of length n¼ 2, to analyze did

and dnid unfolding times for these tandems. Clearly, this

approach can be generalized to a homogeneous ((D)n) and

heterogeneous tandem ((D1–D2)n/2) of any length n. The first

order statistics pdfs, f1:2(t), for tandems S2–S2 and S2–S1 are

given by

f1:2ðtÞ ¼ 2ð1�CS2ðtÞÞcS2ðtÞ (7)

and

f1:2ðtÞ ¼ ð1�CS2ðtÞÞcS1ðtÞ1 ð1�CS1ðtÞÞcS2ðtÞ; (8)

respectively, where CS2(t) (cS2(t)) and CS1(t) (cS1(t)) repre-

sent the cdfs (pdfs) for domains S2 and S1 (19). To model

f1:2(t), we used the Gamma density (Eq. 1) with shape param-

eter a and unfolding rate k, which determine the most

probable unfolding time, t* ¼ (a � 1)/k, and the unfolding

timescale t ¼ G(a 1 1)/(G(a)k) for protein domains (see

below). We used Eqs. 7 and 8 to fit the theoretical pdf for the

first (min) order statistics, fmin(t)¼ f1:2(t), to the histograms

of the first unfolding time, tmin¼ t1:2, for tandems S2–S2 and

S2–S1, obtained at f ¼ 88 pN. The results of the fit are

displayed in Fig. 7, and the obtained values of the model

parameters are summarized in Table 4. In general, these agree

with the maximum likelihood estimations of the same quan-

tities for single domains S2 and S1 (Table 1). However, the

values of a are slightly longer and the values of k are

somewhat shorter for tandems S2–S2 and S2–S1, compared

to the same quantities for single S2 and S1 domains. The

same effect was observed in our previous study of forced

unfolding in trimers S2–S2–S2 and S2–S1–S2 (Study 1) (19).

The increased (decreased) values of a (k), inferred from

the order statistics pdf f1:2(t) for domains S2 and S1 in tan-

dems S2–S2 and S2–S1 are due to the presence of a short

linker, which tends to prolong the forced unfolding times of

protein domains in tandems. We estimated the effect of

linkers on the unfolding timescale for domains S2 in tandem

S2–S2 by taking the difference between the average unfold-

ing times tdimer
S2 for domain S2 in tandem S2–S2 and the av-

erage unfolding time tS2 for single S2 domain, i.e.,
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DtS2 ¼ t
dimer

S2 � tS2 ¼
1

k
dimer

S2

Gðadimer

S2 1 1Þ
Gðadimer

S2 Þ
� 1

kS2

GðaS2 1 1Þ
GðaS2Þ

;

(9)

where the values of kS2 and aS2ðkdimer
S2 and adimer

S2 ) were taken

from Table 1 (Table 4). Applying Eq. 9 yields DtS2� 8.3 ns.

Although for the models of protein dimers connected by a

short linker of five Gly residues this time is negligible

compared to the average unfolding time of S2 domain in

the dimer tdimer
S2 � 0:13 ms and for a single S2 domain tS2 �

0.08 ms, the effect of linkers may become more pronounced

in long protein tandems, especially at a low force and/or for

longer linkers. In force-clamp AFM experiments on a protein

tandem of length n, the influence of linkers on the unfolding

kinetics can be estimated by comparing the average first

unfolding time (first order statistics) for a linker of a shorter

length l1, t1:n(l1), and a longer length l2 . l1, t1:n(l2). The

ratio (t1:n(l2) � t1:n(l1))/(l2 � l1) can then be used as an

estimate for the unfolding time delay per unit length of the

linker.

Let us now calculate the error in the estimates of the shape

parameter, a, and unfolding rate, k, we would make if we

were using the iid assumption in the analysis of did unfolding

times for tandem S2–S2 obtained at f ¼ 88 pN. When the

unfolding times are iid, the parent unfolding time pdf, c(t), is

obtained by pulling all unfolding times into a single histo-

gram, i.e., cðtÞ[f1:1ðtÞ ¼ +n

r¼1
fr:nðtÞ=n (Eq. 6 in Study 1)

(19). For n ¼ 2, c(t) ¼ f1:2(t)/2 1 f2:2(t)/2. By fitting the

Gamma density (Eq. 1) to the histogram of combined first and

second unfolding times (t1:2 and t2:2), we obtain aS2 ¼ 2.4

and kS2 ¼ 2.2 3 106. The relative difference in the shape

parameter aS2 and the unfolding rate kS2 between the esti-

mates, obtained by using order statistics (aS2 ¼ 2.55, kS2 ¼
2.85 3 10�6 (Table 4)) and by using the iid assumption, is

small, ;6% for aS2, but fairly large, �23%, for kS2. This

comparison indicates that employing the iid assumption

when the data are not iid may result in substantial estimation

error of the forced unfolding rate.

DISCUSSION AND CONCLUSION

In our previous work (Study 1) (19), we proposed what to our

knowledge is a new theory for describing the forced un-

folding transitions in wild-type protein tandems and en-

gineered polyproteins, available from force-clamp AFM

experiments. The theory is inspired by the experimental

AFM setup, in which only the ordered, i.e., first, second,

etc., unfolding times in a tandem D1–D2– . . . –Dn of length n
are recorded. Given the stochastic nature of unfolding, it is

not possible to tell which domain Di (i ¼ 1, 2, . . ., n) has

unfolded at any given time, t1:n, t2:n, . . ., tn:n. Order statistics

overcomes this difficulty by analyzing ordered variates, and

because the distributions of ordered unfolding times, f1:n,

f2:n, . . ., fn:n, depend on the parent distributions for protein

domains, cD1
;cD2

; . . . ;cDn
; the order statistics-based theory

can be used to infer the parent pdfs (c) from the order sta-

tistics pdfs (f).

We showed in Study 1 (19) that the iid assumption, that the

(parent) unfolding times are independent (uncorrelated) and

identically distributed (iid), may or may not hold depending

FIGURE 7 Probability density functions for the first order (min) statistic,

t1:2 ¼ tmin, for tandems S2–S2 (a) and S2–S1 (b), obtained at f ¼ 88 pN.

The histograms (bars) of tmin are superimposed with the theoretical pdfs,

fmin(t) [ f1:2(t) (Eqs. 7 and 8). The parameter values, obtained from the fit,

are given in Table 4.

TABLE 4 Numerical values of the shape parameter, a, and

unfolding rate, k, (in units of integration steps) for domains

S21 and S22 in tandem S2–S2, and domains S21 and S12

in tandem S2–S1

Parameters

aS21
aS22

kS21
kS22

S2–S2 2.5 2.6 2.8 3 10�6 2.9 3 10�6

Parameters

aS21
aS12

kS21
kS12

S2–S1 2.6 9.4 2.9 3 10�6 3.3 3 10�5

Values are obtained from the fit of the first order (min) statistics pdf, f1:2(t)¼
fmin(t) to the histograms of the ordered unfolding times, t1:2, obtained at

f ¼ 88 pN (Fig. 7).
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on the tandem composition, the presence of interdomain in-

teractions, and the magnitude of applied force. For example,

in the heterogeneous tandems (D1–D2)n the unfolding times

of nonidentical domains D1 and D2 are expected to be non-

identically distributed. Also, the domain stabilization effect,

observed in the heterogeneous tandems of I27–I28 repeats of

titin, in tandems of FnIII domains (20,21), and in the ho-

mogeneous tandems of fibrinogen, makes the forced un-

folding transitions strongly correlated. We showed that in

tandems with no interdomain interactions, such as the model

trimers S2–S2–S2 and S2–S1–S2 (Study 1, (19)) and dimers

S2–S2 and S2–S1, analyzed here, the dynamic competition

between tension propagation along the tandem chain and

forced unfolding may couple the consecutive unfolding

transitions at an elevated force level (f ¼ 88 pN). As we ar-

gued in Study 1, in force-clamp AFM experiments on protein

tandems, the forced unfolding transitions can be character-

ized by four different types of unfolding times, namely iid,

inid, did, or dnid unfolding times (Table 5 in Study 1) (19).

Only when the parent unfolding times are iid, which is not

known a priori, can conventional unfolding data analyses, in

which the unfolding times are pooled together into a single

histogram, be used. However, when the parent unfolding

times are correlated and/or nonidentically distributed, i.e.,

when the unfolding data are did, inid, or dnid, this approach is

inappropriate. To illustrate the latter, we showed that the use

of iid assumption in analyzing dependent unfolding times

results in large estimation errors for the forced unfolding rate.

To take advantage of the proposed formalism, the un-

folding times must be first classified as iid or inid or did or

dnid unfolding times. In this study, we developed statistical

tests for assessing the independence of parent unfolding

times and their distributional equality. These tests allow one

to gain information on the unobserved (parent) unfolding

times for individual domains by analyzing the observed or-

dered unfolding times. The tests can be used in statistical

analysis of unfolding data available from force-clamp AFM

measurements to assess the validity of the iid assumption and

to classify the forced unfolding transitions. We assessed the

performance of these tests against the results of computer

simulations of forced unfolding for the model dimers S2–S2

and S2–S1. We recovered the results of preliminary analysis,

namely that the parent unfolding times for the homogeneous

dimer S2–S2 are iid at f ¼ 66 pN and did at f ¼ 88 pN,

whereas the parent unfolding times for the heterogeneous

dimer S2–S1 are inid at f ¼ 66 pN and dnid at f ¼ 88 pN,

which validates the order statistics-based theory. Although in

our studies we employed the dimers (n2 ¼ 2) and single

domains (n1 ¼ 1) to represent protein tandems of longer and

shorter length, the tests can be used to assess the validity of

the iid assumption and to classify the forced unfolding tran-

sitions for tandems of arbitrary lengths n1 and n2 . n1. The

monomers and dimers serve as prototypes for tandems of

short and long lengths as observed in force-clamp AFM

probes on a protein tandem, (D)N, where unfolding data are

available for tandems of different length, 1 , n , N. For the

convenience of the reader, in Fig. 8 we outline the main steps

for testing the distributional equality of the parent unfolding

times and their mutual independence. We also give reference

to the relevant Eqs. 3 and 10 presented in Study 1 (19), and

Eqs. 7 and 8 in this study, which can be used to model the

parent unfolding time distributions.

In tandems formed by the noninteracting domains, such as

domains S2 and S1 in dimers S2–S2 and S2–S1, the depen-

dence among the consecutive unfolding transitions can be

induced by the dynamic competition between the force-

induced tension propagation along the tandem chain and the

forced unfolding kinetics. It is likely that the dynamic cou-

pling between tension propagation and unfolding kinetics

occurs in wild-type tandems and engineered polyproteins as

well. As we showed in this study, in such a case the depen-

dence structure between the consecutive unfolding transi-

tions is rather trivial, namely that every next unfolding

transition after the first one in a tandem of length n, i.e., the

FIGURE 8 Flowchart for characterization (Steps
1 and 2) and modeling (Step 3) of the forced unfold-

ing times for a protein tandem.
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second (t2:n), third (t3:n), etc., are delayed by constant time Dt
of dropped tension. The test for distributional equality can be

used to estimate the timescale for tension propagation, tf.

This can be done, e.g., by comparing the parent unfolding

time pdfs, cn1
ðtÞ and cn2

ðtÞ; generated by using recurrence

relation (3) for tandems of different length n1 and n2 . n1 via

a Q-Q plot. Specifically, tf can be estimated from the time

shift, Dt, as tf � Dt/(n2 � n1). For the tandem S2–S2, we

found that tf� 0.5 ms for f¼ 66 pN and tf� 0.07 ms for f¼
88 pN. Hence, a moderate 33% change in applied force shifts

tf by an order of magnitude.

We showed that in protein tandems with no interdomain

interaction, yet characterized by the correlated unfolding

transitions with the constant time shift, the first unfolding

events (t1:n) are unaffected by the tension drop. Because of

this, the pdf of the first order statistic f1:n(t), can be still

described by the order statistics for independent random

variables (iid and inid, Study 1 (19)). To illustrate this point,

we modeled f1:2(t), for tandems S2–S2 and S2–S1 by using

Eqs. 3 and 10 of Study 1. The shape parameter, a, and un-

folding rate, k, obtained from the fit of f1:2(t) to the histo-

grams of the first unfolding times (t1:2) for tandems S2–S2

and S2–S1 (Table 4) agree with the same quantities obtained

for single domains S2 and S1 (Table 1), thus validating our

theory. We also showed that due to the presence of flexible

linkers, the unfolding times for domains S2 and S1 in the

model tandems S2–S2 and S2–S1 are slightly longer, as

compared to the unfolding times for single S2 and S1 do-

mains. This result corroborates our previous findings for

longer tandems S2–S2–S2 and S2–S1–S2 (Study 1) (19). In

wild-type protein tandems, the tension drop in the tandem

chain and the presence of flexible linkers could slow down

the protein unfolding kinetics, especially for large proteins

and/or long linkers at a low stretching force. Here, we showed

how the order statistics-based approach can be used to access

the dynamics of tension propagation in the tandem chain and

to estimate the effect of linkers.

The advantage of the order statistics-based approach is that

it can be used to describe correlated as well as uncorrelated

unfolding transitions in both homogeneous tandems (D)n of

identical repeats (Ds) and heterogeneous tandems D1–D2–

. . . –Dn formed by nonidentical domains (D1, D2, . . ., Dn).

Hence, the proposed formalism offers a unified framework

for analyzing the forced unfolding transitions in protein

tandems and polyproteins probed in force-clamp AFM ex-

periments. Recent AFM probes on tandems of immuno-

globulin I27–I28 repeats (20), heterogeneous tandem of FnIII

domains (21), and homogeneous tandems of fibrinogen do-

mains (22) show enhanced domain stabilization possibly due

to intra- and/or interdomain interactions. In these tandems,

the unfolding transitions are strongly correlated and the de-

pendence structure is most likely nonmonotonic. Develop-

ment of the order statistics-based theory for analyzing intra-

and interdomain interactions in protein tandems is under

way.

APPENDIX A: HOEFFDING’S D STATISTIC

Hoeffding’s D statistic is a measure of the distance between the joint cdf of

the two variables, C(t1, t2), and the product of their marginal cdfs,

C1(t1)C2(t2). When t1 and t2 are independent, C(t1, t2) ¼ C1(t1)C2(t2). In

practice, the test is implemented as follows. Let (x1, y1), . . ., (xn, yn) be a

random sample from the joint pdf f (x, y), n $ 5. To test the hypothesis that X

is independent of Y, let ri denote the rank of xi in the sample x1, . . ., xn, let si be

the rank of yi in the sample y1, . . ., n, and let ci denote the number of sample

pairs (xa, ya) for which both xa , xi and ya , yi. That is,

ci ¼ +
n

a¼1

nðxa; xiÞ nðya; yiÞ; i ¼ 1; . . . ; n;

where n(a, b)¼ 1 if a , b; 0 otherwise. Hoeffding’s D statistic is defined by

D ¼ A� 2ðn� 2ÞB 1 ðn� 2Þðn� 3ÞC
nðn� 1Þðn� 2Þðn� 3Þðn� 4Þ ; (A1)

where A ¼ +n

i¼1
riðri � 2Þðsi � 1Þðsi � 2Þ; B ¼ +n

i¼1
ðri � 2Þðsi � 2Þci; and

C ¼ +n

i¼1
ciðci � 1Þ: If D $ d(a, n), X and Y are found to be statistically

significantly dependent at level b. The critical values of d(a, n) can be

obtained from Table A.25 in Hollander and Wolfe (25). In the free access

statistical software R (36), the package Hmisc computes the test statistic and

associated p-values for testing that two variables are independent.

APPENDIX B: ILLUSTRATION OF THE
PERMUTATION TEST

Suppose we collect unfolding time data from a protein tandem of size n ¼ 3

and repeat the experiment two times (M ¼ 2). Suppose that the observed

values of the first sample are t
ð1Þ
1:3 ¼ 5 ms, t

ð1Þ
2:3 ¼ 7 ms, and t

ð3Þ
3:3 ¼ 15 ms. If the

unfolding times were iid, the observed ordered times could have had

originated from any of the following six observations with equal probability

1/6: (t1¼ 5 ms, t2¼ 7 ms, t3¼ 15 ms), or (t1¼ 7 ms, t2¼ 5 ms, t3¼ 15 ms), or

(t1¼ 7 ms, t2¼ 15 ms, t3¼ 5 ms), or (t1¼ 15 ms, t2¼ 7 ms, t3¼ 5 ms), or (t1¼
15 ms, t2¼ 5 ms, t3¼ 7 ms), or (t1¼ 5 ms, t2¼ 15 ms, t3¼ 7 ms). Suppose now

that the observed ordered unfolding times of the second sample are t
ð2Þ
1:3 ¼ 2 ms,

t
ð2Þ
2:3 ¼ 10 ms and t

ð2Þ
3:3 ¼ 11 ms. Similarly, they could have had originated from

any of the following six observations with equal probability 1/6: (t1 ¼ 2 ms,

t2¼ 10 ms, t3¼ 11 ms), or (t1¼ 10 ms, t2¼ 2 ms, t3¼ 11 ms), or (t1¼ 10 ms,

t2 ¼ 11 ms, t3 ¼ 2 ms), or (t1 ¼ 11 ms, t2 ¼ 10 ms, t3 ¼ 2 ms), or (t1 ¼ 11 ms,

t2¼ 2 ms, t3¼ 10 ms), or (t1¼ 2 ms, t2¼ 11 ms, t3¼ 10 ms). The permutation

algorithm, applied to this example, would involve the following steps:

Step 1. Suppose the first permutation (b ¼ 1) of the first and second

samples resulted in the following observations, (t
ð1bÞ
1 ¼ 5 ms, t

ð1bÞ
2 ¼

15 ms, t
ð1bÞ
3 ¼ 7 ms), and (t

ð2bÞ
1 ¼ 11 ms, t

ð2bÞ
2 ¼ 2 ms, t

ð2bÞ
3 ¼ 10 ms),

where b is the permutation number. Store the result in matrix Tb ¼ T1

of order M 3 n ¼ 2 3 3 ¼ 6,

T1 ¼ t
ð11Þ
1 ¼ 5 ms t

ð11Þ
2 ¼ 15 ms t

ð11Þ
3 ¼ 7 ms

t
ð21Þ
1 ¼ 11 ms t

ð21Þ
2 ¼ 2 ms t

ð21Þ
3 ¼ 10 ms

� �
:

Step 2. Repeat Step 1 B times, i.e., b ¼ 1, . . ., B, to obtain matrices T1,

. . ., TB.

Step 3. For b¼ 1, . . ., B, carry out ð 3
2
Þ ¼ 3 pairwise tests for independence

of all pairs of the three columns of matrix Tb at a fixed level b. For

b ¼ 1, compute Hoeffding’s D statistic and Spearman’s rank correla-

tion for the unfolding time pairs (5 ms, 15 ms) and (15 ms, 2 ms), (5 ms,

15 ms) and (5 ms, 11 ms), and (15 ms, 2ms) and (5 ms, 11 ms), and record

the p-values of the three tests for independence.
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