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ABSTRACT We present, to our knowledge, a new theory that takes internal dynamics of proteins into account to describe
forced-unfolding and force-quench refolding in single molecule experiments. In the current experimental setup (using either
atomic force microscopy or laser optical tweezers) the distribution of unfolding times, P(t), is measured by applying a constant
stretching force fS from which the apparent fS-dependent unfolding rate is obtained. To describe the complexity of the under-
lying energy landscape requires additional probes that can incorporate the dynamics of tension propagation and relaxation of
the polypeptide chain upon force quench. We introduce a theory of force correlation spectroscopy to map the parameters of the
energy landscape of proteins. In force correlation spectroscopy, the joint distribution P(T, t) of folding and unfolding times is
constructed by repeated application of cycles of stretching at constant fS separated by release periods T during which the force
is quenched to fQ , fS. During the release period, the protein can collapse to a manifold of compact states or refold. We show
that P(T, t) at various fS and fQ values can be used to resolve the kinetics of unfolding as well as formation of native contacts.
We also present methods to extract the parameters of the energy landscape using chain extension as the reaction coordinate
and P(T, t). The theory and a wormlike chain model for the unfolded states allows us to obtain the persistence length lp and
the fQ-dependent relaxation time, giving us an estimate of collapse timescale at the single molecular level, in the coil states of
the polypeptide chain. Thus, a more complete description of landscape of protein native interactions can be mapped out if
unfolding time data are collected at several values of fS and fQ. We illustrate the utility of the proposed formalism by analyzing
simulations of unfolding-refolding trajectories of a coarse-grained protein (S1) with b-sheet architecture for several values of fS,
T, and fQ ¼ 0. The simulations of stretch-relax trajectories are used to map many of the parameters that characterize the energy
landscape of S1.

INTRODUCTION

Several biological functions are triggered by mechanical force.

These include stretching and contraction of muscle proteins

such as titin (1,2), rolling and tethering of cell adhesion mol-

ecules (3–6), V. Barsegov, D. Klimov, and D. Thirumalai,

unpublished), translocation of proteins across membranes

(7–10), and unfoldase activity of chaperonins and protea-

somes. Understanding these diverse functions requires our

probing the response of biomolecules to applied external

tension. Dynamical responses to mechanical force can be

used to characterize in detail the free energy landscape of

biomolecules. Advances in manipulating micron-sized beads

attached to single biomolecules have made it possible to

stretch, twist, unfold, and even unbind proteins using forces

on the order of tens of picoNewtons (11–13). Single mole-

cule force spectroscopy on a number of different systems has

allowed us to obtain a glimpse of the unbinding energy

landscape of biomolecules and protein-protein complexes

(14–17). In atomic force microscopy (AFM) experiments,

used to unfold proteins by force, one end of a protein is

adsorbed on a template and a constant or a time-dependent

pulling force is applied to the other terminus (18–24). By

measuring the distribution of forces required to completely

unfold proteins and the associated unfolding times, the global

parameters of the protein energy landscape can be estimated

(25–30). These insightful experiments when combined with

theoretical studies (31–33) can give an unprecedented pic-

ture of forced-unfolding pathways.

Current experiments have been designed primarily to

obtain information on forced-unfolding of proteins and do

not probe the reverse folding process. Although force-clamp

AFM techniques have been used recently to probe (re)fold-

ing of single ubiquitin polyprotein (23), the lack of theo-

retical approaches has made it difficult to interpret these

pioneering experiments (34,35). Secondly, the resolution of

multiple timescales in protein folding and refolding requires

not only novel experimental tools for single molecule ex-

periments but also new theoretical analysis methods. Min-

imally, unfolding of proteins by a stretching force, fS, is

described by the global unfolding time tU(fS), timescales for

propagation of the applied tension, and the dynamics de-

scribing the intermediates or protein-coil states. Finally, if

the external conditions (loading rate or the magnitude of fS)

are such that these processes can occur on similar timescales,

then the analysis of the data requires new theoretical ideas.

For forced unfolding, the variable conjugate to fS, namely,

the protein end-to-end distance X, is a natural reaction co-

ordinate. However, X is not appropriate for describing
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protein refolding which, due to substantial variations in the

duration of folding barrier crossing, may range from milli-

seconds to few minutes. To obtain statistically meaningful

distributions of unfolding times, a large number of complete

unfolding trajectories must be recorded, requiring repeated

application of the pulling force. The inherent heterogeneity

in the duration of folding and the lack of correlation between

evolution of X and (re)folding progress creates initial state

ambiguity when force is repeatedly applied to the same

molecule. As a result, the interpretation of unfolding time

data is complicated, especially when the conditions are such

that the reverse folding process at the quenched force fQ can

occur on a long timescale, tF(fQ).

Motivated by the need to assess the effect of the multiple

timescales on the energy landscape of folding and unfolding,

we develop a new theoretical formalism to describe corre-

lations between the various dynamical processes. Our theory

leads naturally to a new class of single molecule force ex-

periments, namely, the force correlation spectroscopy (FCS),

which can be used to study both forced unfolding as well

as force-quenched (re)folding. Such studies can lead to more

detailed information on both kinetic and dynamic events

underlying unfolding and refolding. In the FCS, cycles of

stretching (fS) are separated by periods T of quenched force

fQ , fS, during which the stretched protein can relax from its

unfolded state XU to coil state XC or even (re)fold to the

native basin of attraction (NBA) state. The two experimental

observables are X and the unfolding time t. The central

quantity in the FCS is the distribution of unfolding times

P(T, t) separated by recoil or refolding events of duration T.

The higher order statistical measure embedded in P(T, t) is

readily accessible by constructing a histogram of unfolding

times for varying T and does not require additional technical

developments. The crucial element in the proposed analysis

is that P(T, t) is computed by averaging over final (unfolded)

states, rather than initial (folded) states. This procedure

removes the potential ambiguity of not precisely knowing

the initial distribution of conformations in the NBA. Despite

the uniqueness of the native state there are a number of con-

formations in the NBA that reflect the fluctuations of the

folded state. The proposed formalism is a natural extension

of unbinding-time data analysis. Indeed, P(T, t) reduces to

the standard distribution of unfolding times P(t) when T
exceeds protein (re)folding timescale tF(fQ).

The complexity of the energy landscape of proteins de-

mands FCS and the theoretical analysis. Current single mol-

ecule experiments on poly-Ub or poly-Ig27 (performed in

the T / N regime) show that in these systems unfolding

occurs abruptly in an apparent all-or-none manner or through

a dominant intermediate (31). On the other hand, refolding

upon force-quench is complex, and surely occurs though an

ensemble of collapsed coiled states (23). A number of time-

scales characterize the stretch-release experiments. These

include besides tF(fQ), the fS-dependent unfolding time, and

the relaxation dynamics in the coiled states fCg upon force-

quench td(fQ). In addition, if we assume that X is an appro-

priate reaction coordinate, then the location of the NBA, fCg,

the transition state ensembles, and the associated widths are

required for a complete characterization of the underlying

energy landscape. Most of these parameters can be extracted

using the proposed FCS experiments and the theoretical

analysis presented here.

In a preliminary study (36), we reported the basics of the

theory used to propose a new class of single molecule force

spectroscopy methods for deciphering protein-protein inter-

actions. This article is devoted to further developments in

the theory, with application to forced-unfolding and force-

quench refolding of proteins. In particular, we illustrate the

efficacy of the FCS by analyzing single unfolding-refolding

trajectories generated for a coarse-grained model (CGM)

protein S1 with b-sheet architecture (37,38). We showed

previously that forced-unraveling of S1, in the limit of

T / N, can be described by an apparent two-state kinetics

(38,39). The thermodynamics and kinetics observed in S1 is

a characteristic of a number of proteins where folding/

unfolding fits well two-state behavior (40). Thus, S1 serves

as a useful model to illustrate the efficacy of the FCS. Here,

we show that by varying T and the magnitude of the

stretching (fS or fQ), the entire dynamical processes, starting

from the NBA to the fully stretched state, can be resolved. In

the process we establish that P(T, t), which can be measured

using AFM or laser optical tweezer (LOT) experiments,

provides a convenient way of characterizing the energy

landscape of biomolecules in detail.

MODELS AND METHODS

Theory of force correlation spectroscopy (FCS)

In single-molecule atomic force microscopy (AFM) experiments used to

unfold proteins by force, the N-terminus of a protein is anchored at the

surface and the C-terminus is attached to the cantilever tip through a polymer

linker. The molecule is stretched by displacing the cantilever tip and the

resulting force is measured. From a theoretical perspective it is more

convenient to envision applying a constant stretching force fS ¼ fSx in the

x-direction (Fig. 1). The free energy in the constant force formulation is

related to the experimental setup by a Legendre transformation. More

recently, it has become possible to apply a constant force in AFM or laser or

optical tweezer (LOT) experiments to the ends of a protein. With this setup

the unfolding time for the end-to-end distance X to reach the contour length

L can be measured for each molecule. For a fixed fS, repeated application of

the pulling force results in a single trajectory of unfolding times (t1, t2, t3, . . .,
Fig. 1) from which the histogram of unfolding times P(t) is obtained. The

fS-dependent unfolding rate KU is obtained by fitting a Poissonian formula

K�1
U exp [�KUt] to the kinetics of population of folded states pF, which is

related to P(t) as pFðtÞ ¼ 1 �
R t

0
dsPðsÞ.

Because KU is a convolution of several microscopic processes, it does not

describe unfolding in molecular detail. For instance, mechanical unfolding

of fibronectin domains FnIII involves the intermediate aligned state (26) with

partially disrupted hydrophobic core, which cannot be resolved by knowing

only KU. Even when the transition from the folded state F to the globally

extended state U (26) does not involve parallel routes as in Fig. 2, or mul-

tistate kinetics, the force-induced unfolding pathway must involve formation

of intermediate coiled states fCg. The subsequent transition from fCg
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results in the formation of the globally unfolded state U. The incomplete

time resolution prevents current experiments from probing the signature of

the collapsed states. To probe the contributions from the underlying fCg
states to global unfolding requires sophisticated experiments that can resolve

contributions from dynamic events underlying forced unfolding. We propose a

novel experimental procedure which, when supplemented with unfolding-time

data analysis described below, allows us to separately probe the kinetics of

native interactions and the dynamics of the protein coil (i.e., the dynamics

of end-to-end distance X when the native contacts are disrupted).

Consider an experiment in which stretching cycles (triggered by applying

fS) are interrupted by relaxation intervals T during which force is quenched

to fQ , fS. In the time interval T, the polypeptide chain can relax into the

manifold fCg or even refold to the native state F if T is long enough. If fS .
fC and fQ , fC where fC is the equilibrium critical unfolding force at the

specific temperature (see phase diagram for S1 in (38)), these transforma-

tions can be controlled by T. In the simplest implementation, we set fQ ¼ 0.

The crucial element in the FCS experiment is that the same measurements

are repeated for varying T. In the FCS the unfolding times are binned to

obtain the joint histogram P(T, t) of unfolding events of duration t generated

from the recoil manifold fCg or the native basin of attraction (NBA) or both,

depending on the duration of the relaxation time T. In the current ex-

periments, T / N. As a result, the dynamics of additional states in the

energy landscape that are explored during folding or unfolding are not

probed.

The advantages of P(T, t) over the standard distribution of unfolding

times P(t) are twofold. First, P(T, t) is computed by averaging over well-

characterized fully stretched states. This eliminates the problem of not

knowing the distribution of initial protein states encountered in current

experiments. Indeed, due to intrinsic heterogeneity of the protein folding

pathways, after the first unfolding event the protein may or may not refold

into the native conformation, which creates the initial state ambiguity in the

next (second, third, etc.) pulling cycle. Therefore, statistical analysis based

on averaging over final (stretched) states rather than initial (folded) states

allows us to overcome this difficulty. Secondly, statistical analysis of un-

folding data performed for different values of T allows us to separately probe

the kinetics of native interactions and the dynamics of X. In addition, the

entire energy landscape of native interactions can be mapped out when

stretch-quench cycles are repeated for several values of fS, fQ, and T.

Regime I ( T � tF)

In the simplest unfolding scenario, application of fS results in the disruption

of the native contacts (F / fCg) followed by stretching of the manifold

fCg into U (Fig. 2). When stretching cycles are separated by short T com-

pared to the protein folding timescale tF at fQ ¼ 0, P(T;t) is determined by

the evolution of the coil state. Then the unfolded state population pU(T;t) is

given by the convolution of protein relaxation (over time T) from the fully

stretched state XU � L, to an intermediate coiled-state X1, and stretching

FIGURE 1 (Top) A typical AFM setup: constant force f ¼ fS ¼ fSx
is applied through the cantilever tip linker in the direction x parallel to the

protein end-to-end vector X. Stretching cycles are interrupted by relaxation

intervals T during which the force is quenched, f ¼ fQ ¼ fQx (fS . fQ).

(Bottom) A single trajectory of forced unfolding times t1, t2, t3, . . ., separated

by fixed relaxation time T, during which the unfolded protein can either

collapse into the manifold of coiled states fCg if T is short or reach the native

basin of attraction (NBA) if T is long.

FIGURE 2 Schematic of the free energy profile of a protein (solid black

lines) upon stretching at constant force fS and force-quench fQ. (a) The

projections of energy landscape (dashed lines) is in the direction of X, which

is a suitable reaction coordinate for unfolding induced by force fS. The

average end-to-end distance in the native basin of attraction is ÆXFæ. Upon

application of fS, rupture of contacts that stabilize the folded state F results in

the formation of an ensemble of high energy extended (by DXF) confor-

mations fIg. Subsequently, transitions to globally unfolded state U (with

L – d # X # L) occurs. (b) Free energy profile for force-quench refolding,

which occurs in the order U / fCg / F. Refolding is initiated by

quenching the force fS / fQ , fC, where fC is the equilibrium critical force

needed to unfold the native protein. The initial event in the process is the

formation of an ensemble of compact structures. The mean end-to-end dis-

tance of fCg is ÆXCæ and the width is DXC, which is a measure of hetero-

geneity of the refolding pathways. These states may or may not end up in the

native basin of attraction (NBA) depending on the duration of T. We have used

X as a reaction coordinate during force-quench for purposes of illustration only.
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X1 into final state Xf over time t. Thus, P(T;t) is obtained from pU(T;t) by

taking the derivative with respect to t,

PðT � tF; tÞ ¼
d

dt
pUðT � tF; tÞ ¼

d

dt

1

NðTÞ

Z L

L�d

dXf4pX
2

f

3

Z L

0

dX14pX
2

1

Z L

0

dXU4pX
2

U

3GSðXf ; t;X1ÞGQðX1; T;XUÞPðXUÞ; (1)

where N(T) is the T-dependent normalization constant obtained by taking the

last integral in the right-hand side of Eq. 1 from Xf ¼ 0 to Xf ¼ L, and P(XU)

is the distribution of unfolded states. If X is well controlled, XU is expected to

be centered around a fixed value �XXU and PðXUÞ;dðXU � �XXUÞ. In Eq. 1,

GQ(X9, t;X) and GS(X9, t;X) are, respectively, the quenched and the stretching

force-dependent conditional probabilities to be in the coiled state X9 at time

t arriving from state X at time t ¼ 0. The integral over Xf is performed in

the range [L – d;L], with X ¼ L – d (Fig. 2) representing unfolding distance

at which the total number of native contacts Q is at the unfolding threshold,

Q � Q*. It follows that P(T;t) (Eq. 1) contains information on the dynamics

of X. By assuming a model for X and fitting P(T;t), obtained by differentiating

the integral expression appearing in Eq. 1, to the histogram of unfolding times,

separated by short T � tF, we can resolve the dynamics of the polypeptide

chain in the coil state, which allows us to evaluate the fQ-dependent coil

dynamical timescale td using single-molecule force spectroscopy. The fit of

Eq. 1 could be analytical or numerical depending on the model of X.

Regime II ( T � tF)

When stretching cycles are interrupted by long relaxation periods, T � tF,

the coiled states refold to XF (Fig. 2). In this regime, the initial conformations

in forced-unfolding always reside in the NBA. In this limit, P(T;t) reduces to

the standard distribution of unfolding times P(T, t) / P(t). When T � tF,

P(T;t) is given by the convolution of the kinetics of rupture of native

contacts, resulting in protein extension DXF, and dynamics of X from state

XF 1 DXF to final state Xf,

PðT � tF; tÞ ¼ PðtÞ ¼ d

dt
pUðT � tF; tÞ

¼ d

dt

1

N9ðTÞ

Z L

L�d

dXf4p X
2

f

Z L

0

dXF4p X
2

F

Z t

0

dt9

3GSðXf ; t;XF 1DXF; t9ÞPFðt9;XF; fSÞ; (2)

where N9(T) is the normalization constant obtained as in Eq. 1, and

PF(t, XF;fS) is the probability of breaking the contacts over time t that

stabilize the native state XF. By assuming a model for PF(t, XF;fS) and employ-

ing information on the dynamics of X, obtained from the short T-experiment

(Eq. 1), we can probe the disruption kinetics of native interactions. By repeat-

ing long T-measurements at several values of fS, we can map out the energy

landscape of native interactions projected on the direction of the end-to-end

distance vector.

Regime III ( T ; tF)

In this limit, some of the molecules reach the NBA, starting from extended

states (X � L), whereas others remain in the basin fCg. The fraction of

folding events rF depends on T, during which X approaches the average

extension ÆXCæ facilitating the formation of native contacts. Thus, P(T; tF),

obtained in the intermediate T-experiment, involves contributions from both

fCg and F initial conditions and is given by a superposition,

PðT;tF; tÞ ¼ rFðTÞPðT � tF; tÞ1 rCðTÞPðT � tF; tÞ;
(3)

where the probability to arrive to F from fCg at time T is given by

rFðTÞ ¼
Z L

0

dX14pX
2

1

Z L

0

dXU4pX
2

UPCðT;X; fQÞ

3GQðX1; T;XUÞPðXUÞ; (4)

and the probability to remain in fCg is rC(T) ¼ 1 – rF(T). In Eq. 4, PC(T,

X;fQ) is the refolding probability determined by the kinetics of formation of

native contacts. Because the dynamics of X is weakly correlated with formation

of native contacts, X in PC is expected to be broadly distributed. Therefore, Eqs.

3 and 4 can be used to probe kinetics of formation of native interactions.

For Eqs. 1 and 2 to be of use, one needs to know the (re)folding timescale

tF. The simplest way to evaluate tF is to construct a series of histograms

P(Tn, t) (n¼ 1, 2, . . ., N) for a fixed fS and increasing relaxation time T1 , T2

, . . . , TN, and compare P(Tn, t) values with the distribution P(T*, t)
obtained for sufficiently long T* � tF. If T ¼ T*, then all the molecules are

guaranteed to reach the NBA. The difference

DðTnÞ ¼ jPðTn; tÞ � PðT�; tÞj (5)

is expected to be nonzero for Tn # tF and should vanish if Tn exceeds tF.

Statistically, as Tn starts to exceed tF, increasingly more molecules will

reach the NBA by forming native contacts. Then, more unfolding

trajectories will start from folded states, and when T � tF all unfolding

events will originate from the NBA. Therefore, D(Tn) is a sensitive measure

for identifying the kinetic signatures for forming native contacts. The utility

of D(Tn) is that it is a simple yet accurate estimator of tF, which can be

utilized in practical applications. Indeed, one can estimate tF by identifying

it with the shortest Tn at which P(Tn;t) � P(T*, t), i.e., Tn � tF. We should

emphasize that to obtain tF from the criterion that D(tF) � 0 no assumptions

about the distribution of refolding times have been made. Having evaluated

tF one can then use Eqs. 1 and 2 for short and long T-measurements to

resolve protein coil dynamics and rupture kinetics of native contacts.

Let us summarize the major steps in the FCS. First, we estimate tF by

using D(T) (Eq. 5). We next probe protein coil dynamics by analyzing

P(T � tF; t) obtained from short-T-measurements (Eq. 1). In the third step,

we use information on protein coil dynamics to resolve the kinetics of rupture

of native interactions contained in P(T � tF; t) of long-T-measurements

(Eq. 2). Finally, by employing the information on protein coil dynamics and

kinetics of rupture of native interactions, we resolve the kinetics of formation

of native contacts by analyzing P(T; tF;t) from intermediate T-measurements

(Eqs. 3 and 4).

The beauty of the proposed framework is that these experiments can be

readily performed using available technology. In the current AFM exper-

iments, T can be made as short as a few microseconds. Simple calculations

show that the relaxation of a short 50-amino-acid protein from the stretched

state, with L � 19 nm, to the coiled states fCg, with, say, X � 2 nm, occurs

on the timescale td � Dx2/D ; 10 ms, where Dx ¼ L � X � 17 nm and

D � 10�7 cm2/s is the diffusion constant. Clearly, the time of formation of

native contacts, which drives the transition from fCg to the NBA, prolongs

tF by a few microseconds to a few milliseconds or larger, depending on

folding conditions. In the experimental studies of forced unfolding and

force-quenched refolding of ubiquitin, tF was found to be of the order of

10–100 ms (23). Computer simulation studies of unzipping-rezipping tran-

sitions in short 22-nt RNA hairpin P5GA have predicted that tF is of the

order of a few hundreds of microseconds (34).

Model for the kinetics of native contacts

To interpret the data generated by FCS it is useful to have a model for the

time evolution of the native contacts and X. We first present a simple kinetic

model for rupture and formation of native contacts represented by proba-

bilities PF and PC in Eqs. 2 and 4, respectively, and a model for the dynamics

of X given by the propagator GS, Q(X9, t;X). To describe the force-dependent

evolution of native interactions we adopt the continuous-time-random-walk

(CTRW) formalism (41–45). In the CTRW model, a random walker,
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representing rupture (formation) of native contacts, pauses in the native

(coiled) state for a time t before making a transition to the coiled (native)

state. The waiting-time distribution is given by the function Ca(t) (a¼ r or f,

where r and f refer to rupture and formation of native contacts, respectively). We

assume that the probabilities PF(t, XF;fS) and PC(t, XC;fQ) are separable so that

PFðt;XF; fSÞ � PeqðXFÞPrðt; fSÞ;
PCðt;XC; fQÞ � PCðXCÞPfðt; fQÞ; (6)

where Peq(XF) is the equilibrium distribution of native states, PC(XC) is the

distribution of coiled states, and Pr(t;fS) and Pf(t;fQ) are the force-dependent

probabilities of rupture and formation of native contacts, respectively.

Factorization in Eq. 6 implies that application of force does not result in the

redistribution of states XF and XC in the NBA and in the manifold of coiled

states fCg, but only changes the timescales for NBA / fCg and fCg /
NBA transitions, and thus, the probabilities Pr and Pf. We expect the ap-

proximation in Eq. 6 to be valid provided the rupture of native contacts and

refolding events are cooperative.

During stretching cycles, for fS well above fC, we may neglect the reverse

folding process. Similarly, global unfolding is negligible during relaxation

periods with fQ , fC. Then, the master equations for Pr(t) is

d

dt
PrðtÞ ¼ �

Z t

0

dtFrðtÞPrðt � tÞ; (7)

where Fr(t) is the generalized rate for the rupture and formation of native

interactions. In the Laplace domain, defined by �ff ðzÞ ¼
RN

0
dtf ðtÞexp½�tz�,

Cr(t) is related to Fr(t) as

FrðzÞ ¼ zCrðzÞ½1 �CrðzÞ��1
: (8)

The structure of the master equation for Pf(t) is identical to Eq. 7, with the

relationship between Ff(t) and Cf(t) being similar to Eq. 8. The general

solution to Eq. 7 is

�PPrðzÞ ¼ ½z�FrðzÞ��1 �PPrð0Þ; (9)

where �PPrð0Þ ¼ 1 is the initial condition and the solution in the time domain

is given by the inverse Laplace transform, PrðtÞ ¼ L�1f �PPrðzÞg. The solution

for �PPfðzÞ is obtained in a similar fashion (see Eq. 9) with initial condition

of �PPfð0Þ ¼ 1.

Model for the polypeptide chain

In the extended state, when the majority of native interactions that stabilize

the folded state are disrupted, the molecule can be treated roughly as a

fluctuating coil. Simulations and analysis of native structures (46) suggest

that proteins behave as wormlike chains (WLCs). For convenience we use a

continuous WLC description for the coil state whose Hamiltonian is

H ¼ 3kBT

2lp

Z L=2

�L=2

ds
@rðs; tÞ
@s

� �2

1
3lpkBT

8

Z L=2

�L=2

ds
@

2rðs; tÞ
@s

2

� �2

1
3kbT

4

@rð�L=2; tÞ
@s

� �2

1
@rð�L=2; tÞ

@s

� �2
" #

1 fS;Q

Z L=2

�L=2

ds
@rðs; tÞ
@s

� �
; (10)

where lp is the protein coil persistence length. A large number of force-

extension curves obtained using mechanical unfolding experiments in

proteins, DNA, and RNA have been analyzed using a WLC model. In Eq.

10, the three-dimensional Cartesian vector r(s, t) represents the spatial

location of the sth protein monomer at time t. The first two terms describe

chain connectivity and bending energy, respectively. The third term rep-

resents fluctuations of the chain free ends and the fourth term corresponds to

coupling of r to fS, Q. The end-to-end vector is computed as X(t) ¼ r(L/2, t) –

r(– L/2, t).

We need a dynamical model in which X is represented by the propagator

G(X, t;X0). Although bond vectors of a WLC are correlated, the statistics of

X can be represented by a large number of independent modes. It is therefore

reasonable, at least in the large L limit, to describe GS, Q(X, t;X0) by a

Gaussian,

GS;QðX; t;X0Þ ¼
3

2pÆX2æS;Q

 !3=2

1

ð1 � f
2

S;QðtÞÞ
3=2

3 exp � 3ðX � fS;QðtÞX0Þ2

2ÆX2æS;Qð1 � f
2

S;QðtÞÞ

" #
; (11)

specified by the second moment ÆX2æS, Q and the normalized correlation

function f(t)S, Q ¼ ÆX(t)X(0)æS, Q/ÆX2æS, Q. Calculations of ÆX2æS, Q and f(t)S,

Q are given in the Appendix (46,47). In the absence of force, we obtain

ÆXðtÞXð0Þæ0 ¼ 12kBT +
N

n¼1

1

zn

c
2

nðL=2Þe�znt=g
;

n ¼ 1; 3; . . . ; 2q1 1; (12)

where cn(X) and zn are the eigenfunctions and eigenvalues of the modes of

the operator that describe the dynamics of r(s, t) (see Eq. A1). To construct

the propagator GS, Q(X, t;X0) for fS, Q, Eq. A1 is integrated with fS, Q added

to random force. We obtain ÆX2æS;Q ¼ ÆX2æ01f2
S;Q+

N
n¼1

c2
nðL=2Þ=z2

n, where

n¼ 1, 3, . . ., 2q1 1. We analyze the distributions of unfolding times P(T, t)

for the model sequence S1 (Fig. 3) obtained using simulations, the CTRW

model for evolution of native interactions (Eqs. 6–9), and Gaussian statistics

of the protein coil (Eq. 11).

Simulations of model b-sheet protein

The usefulness of FCS is illustrated by computing and analyzing the

distribution function P(T;t) for a model polypeptide chain with b-sheet

architecture. Sequence S1, which is a variant of an off-lattice model introduced

sometime ago (37), is a coarse-grained model (CGM) of a polypeptide chain,

in which each amino acid is substituted with a united atom of appropriate mass

and diameter at the position of the Ca-carbons (38,39). The S1 sequence is

modeled as a chain of 46 connected beads of three types—hydrophobic B,

hydrophilic L, and neutral N—with the contour length L¼ 46a, where a� 3.8

Å is the distance between two consecutive Ca-carbon atoms. The coordinate

of the jth residue is given by the vector xj with j ¼ 1, 2, . . ., N.

The potential energy U of a chain conformation is

U ¼ Ubond 1Ubend 1Uda 1Unb; (13)

FIGURE 3 Native structure of the model protein S1. The model poly-

peptide chain has a b-sheet architecture of the native state. The b-strands of

the model chain are formed by native contacts between hydrophobic

residues (given by blue spheres). The hydrophilic residues are shown (red

spheres) and the residues forming the turn regions are given (gray spheres).
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where Ubond, Ubend, and Uda are the energy terms, which determine local

protein structure, and Unb corresponds to nonlocal (nonbonded) interactions.

The bond-length potential Ubond, which describes the chain connectivity,

is given by a harmonic function

Ubond ¼
kb

2
+

N�1

j¼1

ðjXj � xj11j � aÞ2
; (14)

where kb ¼ 100eh/a2 and eh (� 1.25 kcal/mol) is the energy unit roughly

equal to the free energy of a hydrophobic contact. The bending potential

Ubend is

Ubend ¼ +
N�2

j¼1

ku
2
ðuj � u0Þ2

; (15)

where ku ¼ 20eh/rad2 and u0 ¼ 105�. The dihedral angle potential Uda,

which is largely responsible for maintaining proteinlike secondary structure,

is taken to be

Vda ¼ +
N�3

i¼1

½Aið11 cosfiÞ1Bið11 cos3fiÞ�; (16)

where the coefficients Ai and Bi are sequence-dependent. Along the

b-strands, trans-states are preferred and A ¼ B ¼ 1.2Eh. In the turn regions

(i.e., in the vicinity of a cluster of N residues), A ¼ 0, B ¼ 0.2Eh. The

nonbonded 12-6 Lennard-Jones interaction Unb between hydrophobic res-

idues is the sum of pairwise energies

Unb ¼ +
i, j12

Uij; (17)

where Uij depends on the nature of the residues. The double summation in

Eq. 17 runs over all possible pairs excluding the nearest-neighbor residues.

The potential UBB
ij between a pair of hydrophobic residues B is given by

UBB
ij ðrÞ ¼ 4leh½ða=rÞ12 � ða=rÞ6�, where l is a random factor unique for

each pair of B residues (39) and r ¼ jxi � xjj. For all other pairs of residues

Uij
ab is repulsive (39).

Although an off-lattice CGM drastically simplifies the polypeptide chain

structure, it does retain important characteristics of proteins, such as chain

connectivity and the heterogeneity of contact interactions. The local energy

terms in S1 provide accurate representation of the protein topology. The

native structure of S1 is a b-sheet protein that has a topology similar to the

much-studied immunoglobulin domains (Fig. 3). When the model sequence

is subject to fS or fQ, the total energy is written as Utot ¼ U � faX (a ¼ S or

Q), where X is the protein end-to-end vector, and fS, Q ¼ (fS,Q, 0, 0) is

applied along the x-direction (Fig. 1).

The dynamics of the polypeptide chain is assumed to be given by the

overdamped Langevin equation—which, in the absence of fS or fQ, is

h
d

dt
xj ¼ �@Utot

@xj

1 gjðtÞ; (18)

where h is the friction coefficient and gj(t) is a Gaussian white noise, with the

statistics

ÆgjðtÞæ ¼ 0; ÆgiðtÞgjðt9Þæ ¼ 6kBThdijdðt � t9Þ: (19)

Equation 18 is integrated with a step size dt ¼ 0.02tL, where tL ¼
(ma2/eh)1/2 ¼ 3 ps is the unit of time and m � 3 3 10�22g is a residue mass.

In Eq. 18, the value of h ¼ 50 m/tL corresponds roughly to water viscosity.

RESULTS

Simulations of unfolding and refolding of S1

For the model sequence S1 we have previously shown that

the equilibrium critical unfolding force is fC � 22.6 pN (38)

at the temperature Ts ¼ 0.692eh/kB below the folding tran-

sition temperature TF ¼ 0.7eh/kB. At this temperature 70% of

native contacts are formed (see the phase diagram in (38)).

To simulate the stretch-relax trajectories, the initially folded

structures in the NBA were equilibrated for 60 ns at Ts. To

probe forced unfolding of S1 at T ¼ Ts, constant pulling

force fS ¼ 40 pN and 80 pN was applied to both terminals of

S1. For these values of fS, S1 globally unfolds in t ¼ 90 ps

and 50 ps, respectively. Cycles of stretching were interrupted

by relaxation intervals during which the force is abruptly

quenched to fQ ¼ 0 for various durations of T. Unfolding-

refolding trajectories of S1 have been recorded as a time-

series of X and the number of native contacts Q.

In Fig. 4 we present a single unfolding-refolding trajectory

of X and Q of S1, generated by stretch-relax cycles.

Stretching cycles of constant force fS ¼ 80 pN applied for

30 ns are interrupted by periods of quenched force relaxed

over 90 ns. A folding event is registered if it results in

the formation of 92% of the total number of native contacts

QF ¼ 106, i.e., Q $ 0.92 QF for the first time. An unfolding

time is defined as the time of rupture of 92% of all possible

contacts for the first time. With this definition, the unfolded

state end-to-end distance is X $ XU � 36a. In Fig. 4, folded

(unfolded) states correspond to minimal (maximal) X and

maximal (minimal) Q. Inspection of Fig. 4 shows that re-

folding events are essentially stochastic. Out of 36 relaxation

periods only nine attempts resulted in refolding of S1. Both X
and Q show that refolding of S1 occurs though an initial

collapse to a coiled state with the end-to-end distance XC/a�
15 (Q � 20), followed by the establishment of additional

native contacts (Q � 90) stabilizing the folded state with

XF/a � (1–2).

We generated ;1200 single unfolding-refolding trajecto-

ries and monitored the time-dependent behavior of X and Q.

In the first set of simulations we set fS ¼ 40 pN and used

several values of T ¼ 24, 54, 102, 150, and 240 ns. In the

second set, fS ¼ 80 pN, and T ¼ 15, 48, 86, 120, and 180 ns.

Each trajectory involves four stretching cycles separated by

three relaxation intervals in which fQ ¼ 0. Typical unfolding-

refolding trajectories of X and Q for fS ¼ 40 pN, fQ ¼ 0, and

T ¼ 102, 150, and 240 ns are displayed in Figs. 5–7,

respectively. Due to finite duration of stretching cycles (90

ns), unfolding of S1 failed in few cases—which were not

included in the subsequent analysis of unfolding times. Only

first stretching cycles in each trajectory are guaranteed to

start from the NBA, and for T ¼ 102 ns (Fig. 5), relatively

few relaxation intervals result in refolding (with large Q).

This implies that the distribution of unfolding times P(T, t)
obtained from these trajectories are dominated by contribu-

tions from the coiled states, with the kinetics of formation of

the native contacts playing only a minor role. Not unexpect-

edly, refolding events are more frequent when T is increased

to 150 ns and 240 ns. At T¼ 150 ns, Q reaches higher values

(�65–75) and the failure to refold is rare (Fig. 6). This im-

plies that as T starts to exceed the (re)folding time tF, the
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distribution of unfolding events, parameterized by P(T, t), is

characterized by diminishing contribution from the coiled

states fCg and is increasingly dominated by the folded con-

formations in the NBA. Note that failed refolding events are

observed even at T ¼ 240 ns (Fig. 7), which implies large

heterogeneity in the duration of folding barrier crossing events.

Figs. 5–7 suggest that the folding time tF at the temperature

TU is in the range 100–240 ns. Direct computations of the fold-

ing time tF from hundreds of folding trajectories starting with

the fully stretched states gives �ttF � 176 ns: The agreement

between �ttF and tF validates our stretch-release simulations.

Analysis of the distribution of unfolding times of S1

The theoretical considerations in our formalism suggest that

the T-dependent heterogeneous unfolding processes occur

not only from the NBA but also from the intermediate

coil fCg states. The T-dependent protein dynamics can be

FIGURE 5 Typical unfolding-refolding

trajectories of X/a (solid lines) and Q (dotted

lines) for S1 as functions of time t, simulated

by applying four stretch-quench cycles at

the pulling force fS ¼ 40 pN and quenched

force fQ ¼ 0. The duration of relaxation time

T ¼ 102 ns.

FIGURE 4 A single unfolding-refolding trajec-

tory of the end-to-end distance X/a (solid lines) and

the total number of native contacts Q (dotted lines)
as a function of time t for S1. The trajectory is ob-

tained by repeated application of stretch-quench

cycles with stretching force fS ¼ 80 pN and quenched

force fQ ¼ 0. The duration of stretching cycle and

relaxation period is 30 ns and 90 ns, respectively. The

first five unfolding events corresponding to large X/a

and smallQ are marked explicitly by numbers 1, 2, 3,

4, and 5. Force-stretch and force-quench for the

stretch-quench cycles 13, 14, 15, 16, and 17 (middle

panel) are denoted by solid and dash-dotted arrows.

Single Molecule Force Correlation Spectroscopy 3833

Biophysical Journal 90(11) 3827–3841



utilized to separately probe the coil dynamics of the poly-

peptide chain and the kinetics of formation/rupture of native

contacts (Q). We now utilize unfolding-refolding trajectories

of S1, simulated for short, intermediate and long T, to build

the histograms of unfolding times P(T, t). Using P(T, t) we

provide quantitative description of the polypeptide chain

dynamics in the coil state and the kinetics of rupture and

formation of native interactions by employing CTRW model

for Q and Gaussian statistics for X.

We computed P(T, t) using the distribution of unfolding

times obtained for fS ¼ 80 pN, T¼ 15, 48, and 86 ns (Fig. 8),

and fS ¼ 40 pN, T¼ 24, 54, and 102 ns (Fig. 9). In both cases

fQ ¼ 0. We excluded unfolding times corresponding to the

first stretch-quench cycle of each trajectory, which were used

FIGURE 6 Examples of unfolding-

refolding trajectories of X/a (solid lines)

and Q (dotted lines) for S1 as a function of

time t. The pulling force is fS ¼ 40 pN and

the quenched force is fQ ¼ 0. The duration

of relaxation time T ¼ 150 ns.

FIGURE 7 Same as Fig. 6, except

T ¼ 240 ns.
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to construct P(t) for the purposes of comparing P(t) with P(T,

t) for long T. Single peaked P(T, t) obtained for T ¼ 15 ns

(Fig. 8) and T ¼ 24 ns (Fig. 9), represent contributions to S1

unfolding from coil manifold fCg alone. When T is increased

to 48 ns (Fig. 8) and 54 ns (Fig. 9), position of the peak shifts

to longer times, i.e., from t � 2.5 ns to t � 5 ns (Fig. 8) and

from t � 6 ns to t � 10 ns (Fig. 9). Furthermore, P(T, t)
develops a shoulder at t � 10 ns and t � 25 ns, observed for

T ¼ 86 ns (Fig. 8) and T ¼ 102 ns (Fig. 9), which indicates a

growing (with T) contribution to unfolding from relaxation

trajectories that reach the NBA. At longer T ¼ 150 ns, when

most relaxation periods result in refolding of S1, contribution

from coiled states diminishes and at T ¼ 240 ns, P(T, t) is

identical to the standard distribution P(t) constructed from

unfolding times of the first stretch-quench cycle of each

trajectory. This implies that for fQ ¼ 0, tF � 240 ns and that

P(T, t) / P(t) for T. 240 ns. The distribution P(T, t) ¼ P(t)
constructed from unfolding times separated by T ¼ 300 ns is

presented in Figs. 8 and 9 (top left panel).
We use the CTRW formalism to analyze the histograms of

unfolding times P(T, t) from which the parameters that

characterize the energy landscape of S1 can be mapped. We

describe the kinetics of rupture and formation of native con-

tacts by the waiting-time distributions Cr, Cf,

CrðtÞ ¼ Nrt
vr�1

e
�kr t

; CfðtÞ ¼ Nf t
vf�1

e
�kf t

; (20)

where kr (dependent on fS) and kf (dependent on fQ) are the

rates of rupture and formation of native interactions, respec-

tively, Nr, f ¼ kr, f/G(vr, f) are normalization constants (G(x) is

g-function), and vr, f $ 1 are phenomenological parameters

quantifying the deviations of the kinetics from a Poissonian

process. For instance, vr, f ¼ 1 implies Poissonian process and

corresponds to standard chemical kinetics with constant rate

kr, f. We assume that both the folded and the unfolded states

are sharply distributed around the mean native and unfolded

end-to-end distance ÆXFæ and ÆXUæ, respectively (Fig. 2),

PeqðXFÞ ¼ dðX � ÆXFæÞ; and PðXUÞ ¼ dðX � ÆXUæÞ;
(21)

where ÆXUæ/a ¼ 36 residues corresponds to the definition

of unfolded state. For S1 the contour length L/a ¼ 46. Thus,

S1 is unfolded if X/a exceeds ÆXUæ, which implies d/a ¼ 10

residues (see Fig. 2 and the lower limit of integration in

Eq. 1). We describe the distribution of states fCg before

the transition to the NBA by a Gaussian,

PCðXÞ ¼ e
�ðX�ÆXCæÞ2

=2DX
2
C ; (22)

with the width, DXC, centered around the average distance,

ÆXCæ.
We performed numerical fits of the histograms presented

in Figs. 8 and 9 using Eqs. 1–4. By fitting the theoretical

curves to P(T, t) constructed from short T¼ 15 ns and T¼ 48

ns simulations (Fig. 8) and T ¼ 24 ns and T ¼ 54 ns (Fig. 9),

we first studied the dynamics of X to estimate the dynamical

timescale td, i.e., the longest relaxation time corresponding

to the smallest eigenvalue zn (Eq. 12), and persistence length

lp of S1 in the coil states fCg. By using the values of td and

lp, we used our theory to describe P(T, t) constructed from

long T ¼ 300 ns simulations. This analysis allows us to

estimate the parameters characterizing the rupture of native

contacts kr, vr, ÆXFæ, and DXF. Finally, the parameters kf, vf,

ÆXCæ, and DXC, characterizing formation of native contacts,

were estimated using td, lp, kr, vr, ÆXFæ, and DXF, and fitting

Eqs. 3 and 4 to P(T, t) for intermediate T¼ 86 ns (Fig. 8) and

T ¼ 102 ns (Fig. 9).

Extracting the energy landscape parameters of S1

There are a number of parameters that characterize the en-

ergy landscape and the dynamics of the major components in

the NBA / U transition. The numerical values of the model

parameters are summarized in Table 1. The values of vr ¼ 6.9

FIGURE 8 Histograms of forced un-

folding times P(t) and the joint distri-

butions of unfolding times separated by

relaxation periods of the quenched

force P(T, t). The distribution functions

are constructed from single unfolding-

refolding trajectories of S1 simulated in

stretch-quench cycles of fS ¼ 80 pN and

fQ ¼ 0 for T ¼ 15 ns, 48 ns, and 86 ns.

Simulated distributions are shown by

shaded bars with the contribution to

global unfolding events from coiled

conformations fCg indicated by an ar-

row for T ¼ 86 ns. The results of the

numerical fits obtained by using Eqs.

1–4 are represented by solid lines. The

energy landscape parameters of S1 are

summarized in Table 1.
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for fS ¼ 40 pN and vr ¼ 5.1 for fS ¼ 80 pN indicate that

rupture of native contacts is highly cooperative, especially at

the lower fS ¼ 40 pN. This agrees with the previous findings

on kinetics of forced unfolding of S1 (38), which were based

solely on unfolding S1 by applying a constant force. In con-

trast, the formation of native contacts is characterized by

vf � 1, implying an almost-Poissonian distribution for the

kinetics of formation of native contacts. The structural

characteristics of the coil states are obtained using the

relaxation of the polypeptide chain upon force-quench from

stretched states. The value of the persistence length lp, which

should be independent of fQ provided fQ/fC � 1, is found to

be ;4.8 Å (Table 1). This value is in accord with the results

of the recent experimental measurements based on kinetics

of loop formation in denatured states of proteins (48).

Upon rupture of native contacts, the chain extends by DXF/

a ¼ 6.4 (for fS ¼ 40 pN) and DXF/a ¼ 6.7 (for fS ¼ 80 pN).

This distance separates the basins of folded states with ÆXFæ/a
¼ 4.5 at fS ¼ 40 pN and ÆXFæ/a¼ 4.6 at fS ¼ 80 pN from high

free-energy states when the polypeptide chain is stretched in

the direction of fS (Fig. 2 a). Because these high free-energy

states are never populated, we expect that forced-unfolding

of S1 must occur in an apparent two-step manner when

T / N. Explicit simulations of S1 unfolding at constant fS
(�69 pN) shows that mechanical unfolding occurs in a single

step (see Fig. 2 in (38)).

From the refolding free-energy profile upon force-quench

(see Fig. 2 b) we infer that the initial stretched conformation

must collapse to an ensemble of compact structures fCg.

From the analysis of P(T;t) using the CTRW formalism we

find that the average end-to-end distance ÆXCæ for the man-

ifold fCg is close to ÆXFæ (see Table 1), which suggests that

the ensemble of the fCg/ NBA transition states is close to

the native state. There is a broad distribution of coiled states

fCg, which is manifested in the large width DXC/a ¼ 2.2.

Due to the broad conformational distribution, there is sub-

stantial heterogeneity in the refolding pathways. This feature

is reflected in the long tails in P(T, t) (see Figs. 8 and 9). As

a result, we expect the kinetic transition to be sharp. The

estimated timescale (;1/kf) for forming native contacts for

FIGURE 9 Histograms of forced un-

folding times P(t) and P(T, t) constructed

from single unfolding-refolding trajecto-

ries for S1. The stretch-quench cycles

were simulated with fS ¼ 40 pN and

fQ ¼ 0 for T¼ 24 ns, 54 ns, and 102 ns.

Simulated distributions are shown by

shaded bars with the contribution to

global unfolding events from coiled con-

formations fCg indicated by an arrow

for T¼ 102 ns. The results of numerical

fit obtained by using Eqs. 1–4 are

represented by solid lines. The values

of the parameters are given in Table 1.

TABLE 1 Energy landscape parameters for S1 extracted from FCS

fS, pN* lp/ay td, nsz kr, 1/ns§ nr
{ ÆXFæ/ak DXF/a** kf, 1/nsyy nf

zz ÆXCæ/a§§ DXC/a{{

40 1.2 19.6 0.02 6.9 4.5 6.4 0.26 1.1 4.8 2.2

80 1.1 15.2 0.11 5.1 4.6 6.7 0.25 1.1 4.7 2.2

*fS is the magnitude of the stretching force.
ylp is the persistence length of S1 in the coiled state (Eq. 10) measured in units of a (�Å).
ztd is the fQ-dependent longest relaxation time in the coil state (Eq. 12).
§kr (kf) is the rate of rupture (formation) of native interactions (Eq. 20) and is a function of fS (fQ).
{nr (nf) quantifies deviations of the native contacts rupture (formation) kinetics from the Poisson process.
kÆXFæ (ÆXCæ) is the average end-to-end distance of S1 in the NBA (manifold fCg) (Fig. 2 b, Eqs. 21 and 22).

**DXF is the extension of the chain before rupture of all native contacts (Fig. 2 a and Eq. 2).
yykr (kf) is the rate of rupture (formation) of native interactions (Eq. 20) and is a function of fS (fS).
zznr (nf) quantifies deviations of the native contacts rupture (formation) kinetics from the Poisson process.
§§ÆXFæ (ÆXCæ) is the average end-to-end distance of S1 in the NBA (manifold fCg) (Fig. 2 b, Eqs. 21 and 22).
{{DXC is the width of the distribution of coiled states of S1 (Eq. 23), a measure of the refolding heterogeneity.
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S1 is shorter than the coil dynamical timescale td (for the

values of fS used in the simulations). This indicates that the

dynamical collapse of S1 from the stretched state XU � L and

equilibration in the coiled manifold fCg constitutes a sig-

nificant fraction of the total folding time (� td1k�1
f ). From

the analysis of folding of S1 (P(T;t) at intermediate T) we

also infer that the transition state ensemble for fCg / N
must be narrow.

From the rates of rupture of native contacts kr at the two

fS values and assuming the Bell model for the dependence

of kr on fS,

krðfSÞ ¼ k
0

r e
sfS=kBT

; (23)

we estimated the force-free rupture rate k0
r and the critical

extension s, at which folded states of S1 become unstable.

We found that k0
r ¼ 8310�4 ns�1 is negligible compared to

the rate of formation of native contacts, kf ¼ 0.25 ns�1. The

location of the transition state of unfolding X ¼ ÆXFæ 1 s is

characterized by s ¼ 1.5 a � 0.03 L. The value of s is short

compared to DXC, which is a measure of the width of the fCg
manifold. Small s implies that the major barrier to unfolding

is close to the native conformation. A similar values of s was

obtained in the previous study of S1 by using an entirely dif-

ferent approach (38). These findings are consistent with AFM

experiments (49) and computer simulations (50), which show

that native structures of proteins appear to be brittle upon

application of mechanical force.

The parameter td is an approximate estimate of the col-

lapse time, tc, from the stretched to the coiled state. Using

direct simulations of the decay of the radius of gyration, Rg,

starting from a rodlike conformation, we obtained tc � 80 ns

(see the Supplementary Information in (51)). The value of td

(� 20 ns) is in reasonable agreement with the estimate of tc.

This exercise shows that reliable estimates of timescales of

conformational dynamics, which are difficult to obtain, can

be made using FCS. To ascertain the extent to which the

estimate of KU agrees with independent calculations, we

obtained the KU by applying a constant force to unfold S1.

The value of KU, obtained by averaging over 200 trajecto-

ries, is ;90 ns at fS ¼ 40 pN, which is in rough accord with

KU � td1k�1
r � 70 ns: This further validates the efficacy of

FCS in obtaining the energy landscape of proteins. We also

estimated K0
U from the value of KU obtained by direct

simulation and the Bell model. The fS-dependent unfolding

rate KU � td1k�1
r increases with fS in accord with Eq. 23.

The prefactor (K0
U) is ;10-fold smaller than k0

r : The

difference may be either due to the failure of the assumption

that k0
r ¼ K0

U; or to the breakdown of the Bell model (52).

DISCUSSION

In this section we summarize the main steps for practical

implementation of the proposed force correlation spectros-

copy (FCS) to probe the energy landscape of proteins using

forced unfolding of proteins.

Step 1: Evaluating the (re)folding timescale tF

In the first phase of the FCS experiments, one needs to

collect a series of histograms P(Tn, t), n ¼ 1, 2, . . ., N of

unfolding times for increasing relaxation time T1 , T2 , . . .
, TN by repeated stretch-release experiments. This can be

done by discarding the first unfolding time t1 in the sequence

of recorded unfolding times ft1, t2, . . ., tMg for each Tn to

guarantee that all the unfolding events are generated from the

stretched states with the distribution P(XU) (see Eq. 1). This

is a crucial element of the FCS methodology since it enables

us to perform the averaging over the final (stretched) states.

It is easier to resolve experimentally the end-to-end distance

X � L, rather than the initial (folded) states in which a

number of conformations belong to the NBA. The histo-

grams are compared with P(T*, t) obtained for sufficiently

long T* � tF. To ensure that T* exceeds tF, T* can be as

long as a few tens of minutes. The time at which D(Tn), given

by Eq. 5, is equal to zero can then be used to estimate tF.

Notice that our estimate of tF does not hinge on whether

P(T / N;t) [ P(t) is Poissonian or not! Clearly, the choice

of T* depends on the protein under the study, and prior

knowledge or bulk measurements of unfolding times observed

under the influence of temperature jump or denaturing agents

can serve as a guide to estimate the order of magnitude of T*.

Step 2: Resolving the dynamics of the
polypeptide chain

To this end we have determined the ensemble average

(re)folding time, tF. In the second phase of the FCS, we

perform statistical analysis of the distribution of unfolding

times collected at T � tF, i.e., P(T � tF;t) (see Regime I,

above). This allows us to probe the dynamic properties of the

polypeptide chain, such as the protein persistence length,

lp, and the protein dynamical timescale, td (see Table 1).

Indeed, by assuming a reasonable model for the conditional

probability, G(X9, t;X), of the protein end-to-end distance and

the distribution of the stretched states, P(XU), the values lp
and td can be determined from the fit (either analytically or

numerically) of the unfolding time distribution, P(T � tF;t),
given by Eq. 1, to the histogram of unfolding times collected

for T � tF. To illustrate the utility of the FCS, in this work

we assumed a Gaussian profile for GS, Q(X9, t;X) (see Eq. 11)

and the wormlike chain model for the polypeptide chain. The

general formulae (1) allow for the use of more sophisticated

models of X, should it become necessary. Recent single

molecule FRET experiments on proteins (53,54), dsDNA,

ssDNA, and RNA (55) show, surprisingly, that the charac-

teristics of unfolded states obey wormlike chain models.

Moreover, all the data in forced unfolding of proteins have

been analyzed using WLC models. Thus, the analysis of FCS

data using WLC dynamics for unfolded polypeptide chains to a

large extent is justified. The values GS(X9, t;X) and GQ(X9,
t;X) can be measured in the current AFM and LOT experiments
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by computing the frequency of occurrence of the event X after

the forced-stretch (f ¼ fS) or force-quench (f ¼ fQ) from the

well-controlled partially stretched state X or the fully stretched

state X � L of the chain, respectively, over time t (� tF).

Step 3: Probing the kinetics of rupture of the
protein native contacts

Having resolved the dynamics of the protein in extension-

time regime, where the number of native interactions that

stabilize the native state is small, we can resolve the kinetics

of forced rupture of native interactions stabilizing the NBA

(see Regime II, above). In the third part of the FCS we

analyze the distribution of unfolding times for T� tF, given

by Eq. 2. We use the knowledge about the propagator GS(X9,
t9;X, t), appearing in the right-hand side of Eq. 2, obtained in

Step 2 to perform analytical or numerical fit of the

distribution P(T � tF;t) to the histogram of unfolding times

collected for T � tF. The new information, gathered in Step

3, sheds the light on the kinetics of native interactions sta-

bilizing the NBA, which is contained in the probability

PF(t;fS, XF) (see Eq. 2). For convenience, we used the

continuous time random walk (CTRW) model for PF(t;fS,

XF), which is summarized in Eqs. 7–9, and the assumption of

separability, given by Eq. 6. CTRW reduces to the Poissonian

kinetics with the rate constants when the waiting-time distri-

bution function for the rupture of native contacts, Cr(t), is an

exponential function of t. The CTRW probes the possible

deviations of the kinetics of PF(t;fS, XF) from the Poisson

process and allows us to test different functional forms for

Cr(t). In the simplest implementation of CTRW utilized in

this work, Cr(t) is assumed to be an algebraic function of t,
given by Eq. 20, which allows us to estimate the rate of

rupture of native interactions, kr, and parameter vr quantify-

ing the deviations of the rupture kinetics from a Poissonian

process. Furthermore, by repeating Step 3 for different values of

the stretching force, fS, and assuming the Bell model for kr(fS),

given by Eq. 23, we can also estimate the force-free rupture

rate, k0
r ; and the critical extension s, which quantifies the

distance from the NBA to the transition state along the direction

of fS. We also obtain the average end-to-end distance in the

folded state, ÆXFæ from the distribution of the native states,

Peq(XF).

Step 4: Resolving the kinetics of formation
of native interactions

In the final step the distributions P(T � tF;t) and P(T �
tF;t), analyzed in Steps 2 and 3, respectively, are used to

form a linear superposition (see Eq. 3 in Regime III, above).

The T-dependent weights are given by the probabilities rC(T)

and rF(T) ¼ 1 – rC(T), respectively. This superposition is

used to fit the histogram of unfolding times, P(T ; tF;t),
collected for T ; tF. The estimated probability rF(T) should

then be matched with the probability obtained by performing

double integration in Eq. 4. This allows us to probe the

kinetics of formation of native contacts, PC(T;X, fQ), for the

known propagator GQ(X9, T;X) analyzed in Step 2. As in

the case of PF(t;fS, XF), we assumed separability condition

for PC(t;fQ, XC) (Eq. 6) and CTRW for the kinetics of for-

mation of native contacts contained in Pf(t;fQ) (see Eqs. 7–9).

A simple algebraic form for the waiting-time distribution

function, Cf(t), given by Eq. 20, allows us to estimate the

force-free rate of formation of native interactions, kfðfQ ¼ 0Þ
¼ k0

f : Moreover, the heterogeneity of the protein-folding

pathways can be assessed by analyzing the width, DXC, of the

distribution of coiled protein states, PC(X), centered around

the average end-to-end distance, ÆXCæ (see Eq. 22). Similar to

the analysis of rupture kinetics, Step 4 could be repeated

for the two values of the quenched force, fQ, to yield the

force-free rate of formation of native contacts, stabilizing the

native fold, and the distance between ÆXCæ and the transition

state for the formation of native contacts. For the purposes of

illustration, in this work we used fQ ¼ 0.

At the minimum FCS can be used to obtain model-

independent estimate of tF. By assuming a WLC description

for coiled states, which is justified in light of a number of

FRET and forced unfolding experiments, estimates of col-

lapse times and their distribution as well as persistence length

can be obtained. If CTRW model is assumed, then estimates

of timescale for rupture and formation of native contacts can

be made. The utility of FCS for S1 illustrates the efficacy

of the theory. The potential of obtaining hitherto unavailable

information makes FCS extremely useful.

CONCLUSIONS

In this article, we have developed a theory to describe the

role of internal relaxation of polypeptide chains in the

dynamics of single-molecule force-induced unfolding and

force-quench refolding. To probe the effect of dynamics of

the chain in the compact manifold of states that are populated

in the pathways to the NBA starting from the stretched

conformations, we propose using a series of stretch-release

cycles. In this new class of single-molecule experiments,

referred to as force correlation spectroscopy (FCS), the dura-

tion of release times (T) is varied. FCS is equivalent to

conventional mechanical unfolding experiments in the limit

T / N. By applying our theory to a model b-sheet protein

we have shown that the parameters that characterize the

energy landscape of proteins can be obtained using the joint

distribution function of unfolding times P(T;t).
The experimentally controllable parameters are fS, fQ, and

T. In our illustrative example, we used values of fS that are

;2–4 times greater than the equilibrium unfolding force. We

set fQ ¼ 0, which is difficult to realize in experiments. From

the schematic energy landscape in Fig. 1 it is clear that the

profiles corresponding to the positions of the manifold fCg,

the dynamics of fCg, and the transition state location and

barrier height depend on fQ. The simple application, used
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here for proof-of-principle purposes only, already illustrates

the power of FCS. To obtain the energy landscape of S1 by

using FCS that covers a broader range of fS and fQ, a com-

plete characterization of the landscape can be made. The

experiments that we propose based on the new theoretical

development can be readily performed using presently avail-

able technology. Indeed, the pioneering experimental setup

used by Fernandez and Li (23), who utilized force to initiate

refolding, can be readily adopted to perform single molecule

FCS.

It is known that even for proteins that fold in an apparent

two-state manner the energy landscape is rough (21). The

scale of roughness DE can be measured in conventional

AFM experiments by varying temperature. The extent to

which the internal dynamics of proteins is affected by DE,

whose value is between 2 and 5 kBT (56,57), on the force-

quenched refolding is hard to predict. These subtle effects of

the energy landscape can be resolved (in principle) using

FCS in which temperature is also varied.

APPENDIX: CALCULATION OF hX(T)X(0)i
In this Appendix we outline the calculation of ÆX(t)X(0)æ and ÆX2æ for the

force-free propagator G0(X, t;X0). By using Eq. 10 (without the last term) and

applying the least-action principle to WLC Lagrangian equation, L ¼ m=2R L=2

�L=2
dsð@r=@tÞ2 � H, we obtain mð@2=@t2Þrðs; tÞ1eð@4=@s4Þrðs; tÞ � 2n

ð@2=@s2Þrðs; tÞ ¼ 0, where m is the protein segment mass and e ¼ 3lpkBT/4,

n ¼ 3kBT/2lp. Dynamics of the media is taken into account by including a

stochastic force f(s, t) with the white noise statistics, Æfa(s, t)æ ¼ 0,

Æfa(s, t)fb(s9, t9)æ ¼ 2gkBTdabd(s – s9)d(t – t9), where a ¼ x, y, z, and g is the

friction coefficient per unit coil length. In the overdamped limit, the equation

of motion for r(s, t) is (46,47)

g
@

@t
rðs; tÞ1 e

@
4

@s4rðs; tÞ � 2n
@

2

@s2rðs; tÞ ¼ fðs; tÞ; (A1)

with the boundary conditions

2n
@

@s
rðs; tÞ � e

@
3

@s
3rðs; tÞ

� �
6L=2

¼ 0;

2n0

@

@s
rðs; tÞ1 e

@
2

@s2rðs; tÞ
� �

6L=2

¼ 0; (A2)

where n0 ¼ 3 kBT/4. We solve Eq. A1 by expanding r(s, t) and f(s, t) in a

complete set of orthonormal eigenfunctions fcn(s)g, i.e.,

rðs; tÞ ¼ +
N

n¼0

jnðtÞcnðsÞ and fðs; tÞ ¼ +
N

n¼0

fnðtÞcnðsÞ:

(A3)

Substituting Eq. A3 into Eq. A1 and separating variables, we obtain

e
d

4

ds4cnðsÞ � 2n
d

2

ds2cnðsÞ ¼ zncnðsÞ and

g
d

dt
jnðtÞ1 znjnðtÞ ¼ fnðtÞ; (A4)

where zn is the nth eigenvalue. The second expression in Eq. A4 for

j(t) is solved by

jnðtÞ ¼
1

g

Z t

�N

dt9fnðt9Þexp �ðt � t9Þzn

g

� �
; (A5)

and the eigenfunctions cn(s) are

where cn values are the normalization constants and an and bn are

determined from Eq. A2,

and the parameters an and bn are related as b2
n � a2

n ¼ ð1=l2pÞ. The

eigenvalues zn are given by zn ¼ ea4
n12na2: Using Eqs. A3 and A5,

we obtain Ærðs; tÞrðs9; tÞæ ¼ 3kBT+
N
n¼0

ð1=znÞcnðsÞcnðs9Þe�znt=g . Then,

c0 ¼
ffiffiffiffiffiffiffiffi
1=L

p
cnðsÞ ¼

ffiffiffiffiffiffiffiffiffi
cn=L

p an

cos½anL=2�sin½ans�1
bn

cosh½bnL=2�sinh½bns�
� �

; n ¼ 1; 3; . . . ; 2q1 1

cnðsÞ ¼
ffiffiffiffiffiffiffiffiffi
cn=L

p
� an

sin½anL=2�cos½ans�1
bn

sinh½bnL=2�cosh½bns�
� �

; n ¼ 2; 4; . . . ; 2q; (A6)

an sin½anL=2�cosh½bnL=2� � b
3

n cos½anL=2�sinh½bnL=2� � 1

lp
ða2

n 1b
2

nÞcos½anL=2�cosh½bnL=2� ¼ 0;

n ¼ 1; 3; . . . ; 2q1 1

ancos½anL=2�sinh½bnL=2�1b
3

nsin½anL=2�cosh½bnL=2�1 1

lp
ða2

n 1b
2

nÞsin½anL=2�sinh½bnL=2� ¼ 0;

n ¼ 2; 4; . . . ; 2q; (A7)
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ÆXðtÞXð0Þæ ¼ ÆrððL=2Þ; tÞrððL=2Þ; 0Þæ 1 Ærð�ðL=2Þ; tÞrð�ðL=2Þ; 0Þæ �
ÆrððL=2Þ; tÞ rð�ðL=2Þ; 0Þæ� Ærð�ðL=2Þ; tÞrððL=2Þ; 0Þæ, which yields Eq. 12.
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