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Multitime correlation functions for single molecule kinetics
with fluctuating bottlenecks
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Stochastic trajectories in single molecule kinetics coupled to several Gaussian Markovian
coordinates are analyzed using a generating function obtained by solving the multidimensional
Smoluchowski equation. Multitime correlation functions are computed and used to identify direct
signatures of non-Poissonian kinetics resulting from coupling to slow coordinates. Effects of various
degrees of correlation between collective coordinates with multiple time scales are studied. ©2002
American Institute of Physics.@DOI: 10.1063/1.1446433#
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I. INTRODUCTION

The last decade witnessed considerable advances in
rescence detection and microscopy of processes invol
single molecules and quantum dots in condensed ph
environments.1–16 Compared to highly averaged bulk me
surements, single molecule spectroscopy~SMS! reveals de-
tailed microscopic information on both the molecule und
study and its environment. For example, SMS can pr
slow motions compared to the characteristic relaxation tim
of the molecule, which is not possible using bulk techniqu

SMS signals exhibit stochastic behavior originating fro
translational and rotational diffusion,17–19 spectral
fluctuations,9 conformational motions,20 and chemical
changes and trapping causing fluorescence blinking.21,22 A
statistical analysis of the observed stochastic trajectories
vides detailed information on these molecular processes

When all environment degrees of freedom are fast co
pared with the kinetic time scale, ordinary rate equatio
provide a simple and intuitive framework for studyin
chemical dynamics. In this case SMS carries no new in
mation since stochastic trajectories obey Poissonian stati
governed by the macroscopic rate constants. However, w
kinetic rates are coupled to slow degrees of freedom,
ordinary kinetic scheme no longer holds and stochastic
jectories do provide new microscopic information about
system. The non-Poissonian statistics of stocha
trajectories23 shows up, e.g., in long tails in distributions o
dynamical quantities.24–27

Multitime correlation functions of the distributions o
time periods for a single molecule to be in various states
interesting quantities characterizing the slow bath motio
For example, the active site of cholesterol oxidase invol
flavin adenine dinucleotide, which is only fluorescent in
oxidized form. This allows the study of a single choleste

a!Electronic mail: mukamel@chem.rochester.edu
4240021-9606/2002/116(10)/4240/12/$19.00
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oxidase binding kinetics by measuring a fluorescence sig
of these ‘‘on’’ and ‘‘off’’ states.9,22 Kinetic data obtained
from statistical analysis of single molecule trajectories c
then be used to calculate correlation functions of the dis
butions of on- and off-time periods. These functions can
turn be used for calculating various measures of correla
of variables of the environment such as the joint distribut
of several on- or off times.2,9,21,22,24,28These provide usefu
information on how slow dynamics of the environme
modulates the single molecule kinetics.

Several stochastic models have been proposed for S
kinetics.23–26,29–31 Xie,9,18 and Barbara and co-workers21

have described the time evolution of the survival probabi
of a single molecule to remain in a certain state using
kinetic equation where the rate depends on two states. U
a two-conformational-channel model, the joint probabil
distribution of two adjacent on- and off-time events w
computed and showed memory effects due to conformatio
fluctuations of a protein.9,18 Geva and Skinner presented
method of evaluating the interconversion rates between
two conformational states using weights of the lifetimes a
function of the acquisition time.32 Berezhkivskiiet al. stud-
ied biexponential fluorescence decay of a SM modeled b
two-state system and obtained an expression for the p
ability density of the decay amplitudes.33 They have also
extended their analysis to describing fluorescence deca
an SM undergoing multistate conformational dynamics34

Cao applied a similar modulated N-conformational-chan
reactive model.24 The required numerical effort of this ap
proach grows rapidly with the number of conformers of r
actants and products.

In this paper we consider continuous~rather than dis-
crete! model for conformational change in both reactants a
products and model the fluctuations as Gaussian Brown
coordinates, described by a generalized Langevin
Smoluchowski equation.23,35–38Zwanzig used this model to
predict nonexponential decay curves for the passage
0 © 2002 American Institute of Physics
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4241J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 Multitime correlation functions
molecule through a fluctuating bottleneck and describe
binding of a ligand to myoglobin, assuming that the rate
proportional to the area of the bottleneck~quadratic sink!.37

Eizenberg and Klafter studied molecular motions throug
one-dimensional series of uncorrelated and correlated bo
necks and investigated the decay profile of the avera
ligand concentration.38 Effects of finite ligand size were in
cluded as well.39 Wang and Wolynes have used path integr
to extend the analysis of Zwanzig to study a stretched ex
nential correlation function of the bottleneck radius fluctu
tions. They obtained a closed expression for the tim
resolved survival probability23 and computed the
‘‘intermittency ratio,’’ a quantitative measure of the memo
effects induced by the slow coordinate. Bicout and Szab25

have extended Zwanzig’s model by modeling the bottlen
radius as a sum of several Gaussian Markovian variable

We shall calculate stochastic trajectories for the fluctu
ing bottleneck model and analyze the statistics of sing
molecule three- and two-state kinetics. The formalism furt
allows us to compute multitime correlation functions of re
evant physical quantities to any order, utilizing a generat
function for the distribution of jumps between the vario
states. The present analysis extends the earlier stoch
studies of single-molecule kinetics23,24since it describes sys
tems with several collective coordinates with arbitrary d
grees of correlations undergoing fluctuations over multi
time scales.

In Sec. II we introduce our model for a reaction d
scribed by a bottleneck which depends quadratically on s
eral slow variables. In Sec. III we use the Greens’ function
the multidimensional Smoluchowski equation to calcul
multitime correlation functions and the generating functi
for the distribution of jumps among states in ann-state ki-
netic scheme. We introduce a hierarchy of averaged phys
quantities containing increasingly higher level of informati
which allows a complete statistical analysis of the stocha
trajectories. This formalism is then used in Sec. IV to stu
the statistics of a three-state sequential kinetics when fl
tuations of both bottlenecks have various degrees of corr
tions and to compute the joint probability distribution of tw
jumps. In Sec. V we consider two-state reversible kine
with two collective coordinates and calculate the probabi
distribution for on-time events and the joined probability d
tribution function for adjacent on–off-time events. Technic
details are given in the Appendices.

II. THE SURVIVAL PROBABILITY IN IRREVERSIBLE
KINETICS

Consider a kinetic two-state model

u1&→u2&. ~1!

We use the Zwanzig’s model for a passage through a flu
ating bottleneck where the kinetic rateK12 depends quadrati
cally on a collective stochastic variableX,37 i.e.,

K125k12X
2. ~2!

We representX as a sum ofm uncorrelated Gaussian Ma
kovian coordinatesxj ,25
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j 51

m

ujxj5uTx, ~3!

whereuj ’s are fixed coefficients,uT is the transpose of the
vectoru, anduTu51. The dynamics ofx is described by the
m-dimensional stochastic equation

ẋ~ t !52Gx~ t !1F~ t !. ~4!

xj ’s are thus taken to be uncorrelated variables with u
variance so that̂xxT&51 where^¯! denotes ensemble av
eraging and1 is the unit matrix.G is the m3m matrix of
decay rate constantsg i j describing fluctuations inx. F(t) is a
Gaussian noise with

^F~ t !&50, ^F~ t !F~ t8!&52Dd~ t2t8!. ~5!

The m3m matrix of correlation ofx is

D~ t !5^x~ t !xT~0!&5exp$2Gt%, ~6!

and the correlation functionC(t)5^X(t)X(0)& is related to
D(t) by

C~ t !5uTD~ t !u5uTexp$2Gt%u. ~7!

Combining Eqs.~2! and ~3!, we obtain

K125xTK1→2x, ~8!

whereK1→2[k12uuT.
The model has two types of time scales; the kinetic ti

and a characteristic time scale ofxj . If xj ’s are fast com-
pared to the kinetics, they can be averaged out and the
vival probability of stateu1& assumes a simple exponenti
form, exp$2^K12&t%, ^K12& being the ensemble averaged k
netic rate. However, in the opposite limit a single molecu
‘‘sees’’ how these coordinates modulate its dynamics a
SMS directly probes fluctuations of slow bath variabl
which determine the decay rate.

We assume that the system starts att5t0 in state u1&
with the collective coordinatesx0 . Its probability to remain
in state u1& at time t with the collective coordinatesx,
P11(x,t;x0 ,t0), satisfies the multivariable Smoluchows
equation

]

]t
P11~x,tux0 ,t0!5

]

]x
GxP11~x,tux0 ,t0!

1
]

]x
D

]

]x
P11~x,tux0 ,t0!

2K12P11~x,tux0 ,t0!, ~9!

where 2D5G1GT.
In Appendix A we present the solution to Eq.~9! in the

absence of a chemical reaction~i.e., settingK1250!. The
solution to Eq.~9! with K12 included is given in Appendix B
@Eq. ~B8!# and will be used for constructing the multitim
correlation functions in the next section.

III. MULTITIME CORRELATION FUNCTIONS
FOR N-STATE IRREVERSIBLE KINETICS

We now consider a sequential one-dimensional kine
involving n states
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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u1&→u2&→u3&→¯→un&, ~10!

whereKi ,i 11 is the kinetic rate of thei th reaction governed
by the bottleneck coordinateXi

Ki ,i 115ki ,i 11Xi
25xTK i→ i 11x, ~11!

and K i→ i 115ki ,i 11uuT, i 51,2,. . . ,n21. The survival
probabilities associated with the transitionsu i & to u i 11& for
i 51,2,. . . ,n21 now form a vector

P~x,tux0 ,t0!5S P11

P22

¯

Pn21,n21

D ~x,tux0 ,t0!, ~12!

whose time evolution is governed by the coupled Smo
chowski equations

]

]t
P~x,tux0 ,t0!5

]

]x
GxP~x,tux0 ,t0!

1
]

]x
D

]

]x
P~x,tux0 ,t0!

2KP~x,tux0 ,t0!. ~13!

Here,K is then3n rate matrix andKi ,i52( iKi ,i 11 .40,41

We shall use the Green function solution of Eq.~13! for
the survival probabilityPi ,i give in Appendix B to calculate
multitime correlation functions for this model. Of primar
interest is the joint probability for the system to jump fro
state u i & to stateu i 11& at time t5t0 when the collective
coordinate isx0 , followed by transition to stateu i 12& at
time t f when the collective coordinate isxf

Pi→ i 11→ i 12~xf ,t f ux0 ,t0!

[
1

N2
Ki ,i 11~x0!Pi ,i~xf ,t f ux0 ,t0!Ki 11,i 12~xf !, ~14!

whereN2 is a normalization factor (t[t f2t0)

N2[E
0

`

dtE
2`

`

dx0E
2`

`

dxf Ki ,i 11~x0!

3Pi ,i~xf ,t f ux0 ,t0!Ki 11,i 12~xf !. ~15!

Using Eq.~B8!, Eq. ~14! can be recast in the form
Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to 
-

Pi→ i 11→ i 12~xf ,t f ux0 ,t0!

5
1

N2

]2

]f i 11]f i 12
H S 1

2p D m/2S 1

det@Y~ t f2t0!# D
1/2

3expH Tr@G#

2
~ t t2t0!J expH 2

1

2
xf

T@ f1~ t f2t0!

22f i 11K i→ i 11#xf1xf
Tf2~ t f2t0!x0J

3expH 2
1

2
x0

T@ f3~ t f2t0!

22f i 12K i 11→ i 12#x0J J U
f i 115f i 1250

, ~16!

where we have used the identity, det@M #5exp$Tr@ ln M #%.
Note that in the numerical implementation of Eq.~16!, taking
the derivative with respect tof i 11 evaluated at the poin
f i 1150 is equivalent to multiplying the expression on th
right-hand side with the ratio (exp$xf

Tf i 11K i→ i 11xf%21)/
f i 11 .

Equation ~16! can be directly extended for calculatin
multitime correlation functions. Formally, it is convenient
evaluate first the joined probability for a different mod
with a Gaussian~rather than quadratic! dependence of the
rate on the collective coordinates, i.e.,Ki ,i 11 ( x )
5exp$xTfK i→ i 11x%. A similar approach was adopted fo
computing multitime correlation functions for nonlinea
spectroscopy.42,43 We then define the following auxiliary
quantity representing the joined probability of observi
n-jumps weighed by the equilibrium distribution ofx0 ,
Peq(x0) ~see Appendix B!

Q[n]~x0 ,t0 ,f0 ,x1 ,t1 ,f1 , . . . ,xf ,t f ,fn21!

[
1

Nn
K12~x0!P11~x1 ,t1ux0 ,t0!K23~x1!

3P22~x2 ,t2ux1 ,t1!K34~xf !3 . . .

3Pn21,n21~xf ,t f uxn21 ,tn21!Kn21,n~xf !Peq~x0!.

~17!

Equation~17! is a generalization of Eq.~14!. Closed expres-
sions forQ[n] andNn are given in Appendix E.Q[n] carries
all the relevant information on the dynamics;Qs of higher
order in the number of jumps (@n#) contain information on
higher order correlations, i.e., correlations among m
evolution periods~individual state u i &- and stateu i 11&-
time events on a single molecule trajecto
$(1,x1 ,t1),(2,x2 ,t2), . . . ,(n,xn ,tn)%.

We next define the generating function42–44

S[n] (t1 ,t2 , . . . ,tn21) for the probability distribution of
n-jumps which occur at the end (t i) of each time interval
t i5t i2t i 21 , i 51,2,. . . ,n21
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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S[n]~t1 ,t2 , . . . ,tn21!

[E
2`

`

dxf¯E
2`

`

dx1E
2`

`

dx0 Q[n]

3~x0 ,t0 ,f0 ,x1 ,t1 ,f1 , . . . ,xf ,t f ,fn21!. ~18!

Using Eq. ~E1! and carrying out the integration ove
x0 ,x1 , . . . ,xf in Eq. ~18!, we obtain a closed expression fo
the generating function

S[n]~t1 ,t2 , . . . ,tn21!

5
1

N S 1

2p D ~1/2! nm

)
i 5n21

i 51 F S 1

det@Y~t i !#
D 1/2

3expH Tr@G#

2
~t i !J

3S 2p

det@M ~t i ,t i 11 , . . . ,tn21!# D
1/2G , ~19!

whereM is anm3m matrix with elements

M ~t i ,t i 11 , . . . ,tn21!5f1~t i !22f iK
i→ i 11,

for i 5n21 ~20!

and

M ~t i ,t i 11 , . . . ,tn21!

5f1~t i !22f iK
i→ i 111f3~t i !

2f2~t i !
TM ~t i 11 , . . . ,tn21!21f2~t i !,

for i 5n22, n23, . . . ,0. ~21!

The first two factors in the product overi 5n21, . . . ,1
in Eq. ~19! represent the probability distribution for the sy
tem to be in a certain state during the time intervalt i . The
third factor ~inversely proportional to the matrixM ! repre-
sents time evolution of correlations among various stateu i &-
and/or stateu i 11&-time events,i 51,2,. . . ,n, of duration
t i , . . . ,tn21 . Because of the slow variables, this fact
shows interesting dynamics resulting in non-Poissonian
tistics with specific signatures in the distributions of releva
physical quantities. This will be illustrated in the comin
sections.

Using the generating function we can readily comp
various observables which measure correlations of slow
ordinates. First, the probability distribution of observin
n-jumps with time intervalst i ( i 51,2,. . . ,n21) is obtained
by taking thenth derivative of the generating function wit
respect to the parametersf0 ,f1 ,f2 , . . . ,fn21 and then set-
ting f05f15f25 . . . 5fn2150

F [n]~t1 ,t2 , . . . ,tn21!

5
]n

]fn21¯]f2]f1]f0

3@S[n]~t1 ,t2 , . . . ,tn21!#f05f15f25¯5fn2150 .

~22!
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We shall compute the distribution ofn jumps in the follow-
ing sections. The joined probability distribution function fo
states . . . ,u i r&, . . . ,u i s&, . . . -time events of interest can b

calculated fromF [n] (t1 ,t2 , . . . ,tn21) by integrating out the
intermediate periods, i.e.,

R~ . . . ,t r , . . . ,ts , . . . !

5¯E
0

`

dt r 21E
0

`

dt r 11¯E
0

`

dts21E
0

`

dts11¯

3F [ l ]~t1 ,t2 , . . . ,t l 21!. ~23!

Finally, the probability distribution of observingn-jumps
during timet is given by

P[n]~ t !5E
0

t

dtn21E
0

tn21
dtn22¯E

0

t2
dt1

3F [n]~t1 ,t2 , . . . ,tn21!. ~24!

Note that these quantities are only accessible from stocha
SM trajectories; bulk measurements only provide quanti
averaged over the distribution of initial conditions.

IV. STATISTICS OF TRAJECTORIES
IN A THREE-STATE KINETICS

We have applied the generating function formalism
study the three-state irreversible single molecule kinetics

u1&→u2&→u3&, ~25!

with kinetic ratesK12 andK23, controled by bottleneck vari-
ablesX1 and X2 respectively, with an arbitrary degree o
correlations.X1 and X2 are described by two collective co
ordinatesxa andxb , i.e.,

X15u1axa1u1bxb ,
~26!

X25u2axa1u2bxb ,

with the equilibrium correlations

^X1
2&5u1a

2 1u1b
2 ,

^X2
2&5u2a

2 1u2b
2 , ~27!

^X1X2&5^X2X1&5u1au2a1u1bu2b .

We takek125k2351 and assume that the decay of co
relations^X1(t)X2(t8)& is slow compared tok12 andk23.

We considered three cases:~i! positively correlated
bottlenecks~PC, ^X1X2&.0!, we set u115u125u215u22

51/A2 and decay rate constantg115g125g215g2251.0 for
both transitions;~ii ! negatively correlated bottlenecks~NC,
^X1X2&,0), we setu115u1251/A2, u215u22521/A2 and
g115g125g215g2251.0 for both transitions and~iii ! uncor-
related bottlenecks~UC, ^X1X2&50), we setu1151.0, u12

50, g1151.0, g225g125g2150 for the k12 transition and
u2150, u2151.0, g2251.0, g115g125g2150 for the k23

transition. In all calculations the time variables are given
units of 1/g8 @see Eqs.~D3!#.

In Fig. 1 we display the joint distributionF [2] (t1 ,t2) of
undergoingu1&→u2& and u2&→u3& transitions during times
t1 and t2 for the three cases. Both three-dimensional pl
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. The joined probability distribution functionF(t1 ,t1) of observing transitionu1&→u2& during timet1 andu2&→u3& during timet2 for the models UC
~top!, PC ~middle!, NC ~bottom!. Two-dimensional surfaces~left column! and contour plots~right column!.
t
e

a
o

ime
d
ol-

tive
ran-
~left column! and contour plots~right column! are shown.
For the UC caseF [2] (t1 ,t2) simply factorizes into a produc
of distributions associated with each state and a bottlen
variable ~i.e., X1 and X2 control transitionsu1&→u2& and
u2&→u3&, respectively!

F~t1 ,t2!5F~t1!F~t2!. ~28!

In the PC case we observe a sharp decay ofF [2] (t1 ,t2). In
the NC case, the situation is different;F [2] is zero at early
times, suddenly increases at later times, followed by a sh
decrease to zero. These two qualitatively different types
Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to 
ck

rp
f

behavior can be easily rationalized. In the PC model, at t
t5t0 the second gateX2 is open when the first gate is, an
X1 , X2 cooperate to increase the rate. This allows the m
ecule to rapidly pass from stateu1& to stateu3& through the
intermediate stateu2&. For this reasonF [2] in the PC model
is maximized att5t0 . For the NC case, theX2 gate is ini-
tially closed whereas theX1 gate is open andX1 , X2 coop-
erate to reduce the rate. Here, the molecule makes au1&
→u2& transition and waits at the second gate for the nega
correlations to decay before it can undergo the second t
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4245J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 Multitime correlation functions
sition from stateu2& to u3&. Because of this,P[2] in the NC
model reaches its maximum at later times, aroundt
;1/g12.

Contour plots ofF [2] (t1 ,t2) contain distinct signature
of correlations among collective coordinates. The plot for
UC ~PC! case is concave~convex! along the diagonalt1

5t2 . For the NC case, the contour lines are convex bef
F [2] reaches the maximum when the bottleneck variables
still correlated. AfterF [2] passes through the maximum th
contour lines become concave, indicating the loss of co
lations.

V. STATISTICS OF ON–OFF TRAJECTORIES IN TWO-
STATE REVERSIBLE KINETICS

We next turn to multitime correlation functions for th
two-state reversible kinetic model

u1&
u2&, ~29!

where the kinetic rates for the forward and backward re
tions K12 andK21 are given by Eq.~2!.

Usually, a stochastic SMS trajectory is followed b
monitoring the fluorescence signal associated with the
evant states. Ideally, one of these states is fluorescent~state
‘‘on’’ ! the other is not~state ‘‘off’’ !,2,9 and deviations from
Poissonian statistics can be evaluated by studying var

FIG. 2. Top panel: the joined probability distribution function of on-tim
eventsF [2] (t) for the models S~long tail curve,g1850.1) and F~short tail
curve,g185100). Bottom panel: the diagonal sectiont15t2 of the differ-
ence functionD(t,t) for the models S~curve attaining minimum,g18
50.1) and F (g185100). D(t,t) is normalized byD(0,0).
Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to 
e

e
re

e-

-

l-

us

distributions of on- and off-time periods. The multitime co
relation function is given in Eq.~C1!. Closed expressions fo
the generating functions for the distribution of two, thre
and four jumps for this model~on-, on–off and on–off–on–
time events distribution functions! with a single collective
coordinate are given in Appendix D.

We have studied the two-state reversible kinetics wh
the collective coordinates fluctuations involve multiple tim
scales andk125k2151. In all calculations the time variable i
given in units of 1/g8 @see Eqs.~D3!#. We have calculated
the probability distribution functions of on-time even
F [2] (t) and the joined probability distribution function o
adjacent on–off-time eventsF [3] (t1 ,t2) for a model with a
single collective coordinate, and for two collective coord
nates with different correlation decay rate constants. Anal
cal expressions for these quantities are too lengthy and
not be given here.F [2] (t) for the model of a single slow~S!
(g50.1) and a single fast~F! (g5100) collective coordinate
as well as slow (g150.1) plus fast (g25100) ~SF!, two fast
(g15g25100) ~FF!, and two slow (g15g250.01) ~SS!
collective coordinates is shown in Figs. 2 and 3~top!. The

FIG. 3. Top: the joined probability distribution function of on-time even
F [2] (t) for the models SS~lower curve in the region between intersectio
points!, g185g2850.1), SF~middle curve,g1850.1 andg285100), and FF
~upper curve,g185g285100). Bottom: the diagonal sectiont15t2 of the
difference functionD(t1 ,t2) for the models SS~lower curve attaining mini-
mum, g185g2850.1), SF~middle curve reaching a plateau,g1850.1 andg28
5100), and FF~upper curve,g185g285100). D(t,t) is normalized by
D(0,0).
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. Left column: contour plots of
the joined probability distribution
function of the adjacent on–off-time-
eventsF [3] (t1 ,t2) for the models S
~bottom, g1850.1) and F ~top, g18
5100). Right column: contour plots
of the difference functiond[3] (t1 ,t2)
for the models S~bottom, g1850.1)
and F~top, g185100).
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Poissonian kinetics for fast environment (g→`) serves as
convenient reference. In this case,

F [2]~t!5k12exp~2k12t !. ~30!

All curves ~S, F, SS, SF, FF! start from the same poin
F [2] (t50) and eventually decay exponentially to zer
However, distributions for the environment involving a slo
coordinate have slower decay initially~compared with the
fast environment!, faster decay at intermediate times a
long time tails, reflecting deviations from Poissonian sta
tics. Thus, compared with a fast environment, in a slow
vironment shorter and longer times are more pronoun
compared with the characteristic time of the decay of fl
tuations at the expense of the intermediate~kinetic! region.

The points of intersection of the curves in Figs. 2 and
naturally partition the kinetics into the three regimes.~a! For
short times (t!g18

21), the molecule maintains its memory o
the initial conditions~non-Markovian behavior!. In this re-
gime, dominated by the environment dynamics, a slow en
ronment has a longer memory of the initial condition as co
pared with a fast environment, and thus a single molec
with a slow environment has a higher probability to rema
in its initial state. Right after the first intersection point, t
molecule enters~b! the intermediate (g18

21;t!g1
21) time

regime, where its memory of the initial conditions is d
stroyed~‘‘kinetic regime’’! due to the presence of interactio
with the environment (fK1→2x2). Note that the intersection
point is unique~no memory!, i.e., a single molecule with an
~slow or fast! environment will pass through this point. In th
kinetic regime, evolution is strongly dominated by the kin
ics @the third ‘‘loss’’ term in Eq.~4!# in the case of a slow
environment, and is a competition between the dynamics~the
Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to 
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first two ‘‘gain’’ terms! and kinetics for the fast environmen
Because of this, in the kinetic regimeF [2] (t) decays faster
for a slow environment. This is also the reason why in~c!
long (t;g1

21) time regime, following the chemical transfo
mation (u1&→u2&), the distribution of on-time events with
slow environment shows a long tail. Here, the gain ter
compete with the loss terms. In the long time limit the ga
terms lose the day and the distribution decays to zero.

For the two collective coordinates, the SF model li
between the SS and the FF curves. Thus, as far asF [2] (t) is
concerned, the single molecule kinetics with slow and f
collective coordinates can be reconstructed by superpo
kinetics with fast and slow environments. Note that due
the dynamics of each coordinate, the curves intersec
shorter times compared with the single coordinate mode

In Figs. 4 and 5 we display contour plots of the dist
bution of adjacent on–off-time eventsF [3] (t1 ,t2) for the
same models. In all cases, the overall pattern is a t
dimensional exponential decay with respect tot1 and t2 .
Here, in any direction passing throught15t250 and bisect-
ing a contour plot we observe the same features as
F [2] (t): slower initial decay ofF [3] (t1 ,t2) in region~a! for
a slow environment as compared with a fast environme
faster decay in the kinetic regime and long tails. Thus, qu
tatively the decay profile does not depend on the numbe
jumps separating the periods of interest. Comparing the
cay profile ofF [3] (t1 ,t2) for the S, F, SS, and SF model
we see that the decay ofF [3] (t1 ,t2) is faster in the presenc
of an additional coordinate~in SS and SF models!.

An interesting feature ofF [3] (t1 ,t2) is the entanglemen
of t1 andt2 . Comparing the contour plots ofF [3] (t1 ,t2) for
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the SF model with those for the SS and FF models, we n
that for slow coordinates the contour lines are shifted
wards longert1 and shortert2 compared with fast environ
ments where the contour plots are symmetric with respec
the interchange oft1 andt2 . This entanglement is a signa
ture for the non-Poissonian character ofF [3] (t1 ,t2). Indeed,
for a fast environment the on- and off-time events are unc
related ~independent! and F [3] (t1 ,t2) factorizes @see Eq.
~28!# Thus, longer on-time durations facilitate shorter o
times.

To further illustrate the non-Poissonian character
F [3] (t1 ,t2), we also display the difference functio
D(t1 ,t2)

D~t1 ,t2!5F [3]~t1 ,t2!2F [2]~t1!F [2]~t2!. ~31!

Since for a fast environmentF [3] (t1 ,t2)5F [2] (t1)F [2] (t2)
and D(t1 ,t2)50, the time evolution and the magnitude
D(t1 ,t2) yields the two-dimensionalt1 ,t2 time correlation
profile of on- and off-time periods. Contour plots o
d(t1 ,t2) for models S, F, SS, SF, FF are depicted in Figs
and 5. Overall,D(t1 ,t2) shows a decay of correlations b
tween adjacent on- and off-time periods@see, e.g., the con

FIG. 5. Left column: contour plots of the joined probability distributio
function of the adjacent on–off-time-eventsF [3] (t1 ,t2) ~left column! for
the models SS~bottom, g185g2850.1), SF ~middle, g1850.1 and g18
5100), and FF~top, g185g285100). Right column: contour plot of the
difference functionD [3] (t1 ,t2) ~right column! for the models SS~bottom,
g185g2850.1), SF ~middle, g1850.1 andg185100), and FF~top, g185g28
5100). Color code is the same as in Fig. 4.
Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to 
te
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tour plots for the fast environment in Figs. 4 and 5; here,
for F [3] (t1 ,t2) contour plots are symmetric with respect
the interchanget1↔t2)]. However, for slow coordinates
correlations after an initial decay reappear at later times
lowed by an eventual decay to zero.

We have examined the time evolution of correlatio
between adjacent on- and off-time periods by calculating
diagonal section (t15t2) of the difference functionD(t,t)
for the various cases. The results are presented in Figs. 2
3 ~bottom!. The time profile ofD(t,t) for the SS and FF
models is qualitatively similar to the S and F models, t
presence of an additional coordinate with the same time s
does not bring any new feature to the kinetics. However,
additional fast collective coordinate complicates the dyna
cal correlations between adjacent on- and off-time perio
Because of slow and fast coordinates in the SF model
environment is both faster in region~a! and slower in region
~c!, and in the kinetic region~b! the decay of correlations is
suppressed. In this case of a slow environment, the on
transitions are thus more likely to occur either at shorter o
longer times. In the SF case, although the amplitude of
deviations of the distributions of jumps from Poissonian s
tistics is lowered at longer times, these deviations do
vanish in the kinetic regime. This implies that the on–o
transitions are less likely to occur at longer times and m
frequently occur in the intermediate time scale. Thus, for
environment described by collective coordinates with no
bly different decay rates, a quiet period separating interv
of sudden bunching on a single molecule trajectory may
come shorter.

The present approach is practical provided the corre
tion function of fluctuations@Eq. ~7!# can be represented as
sum of few exponentials. For other~e.g., stretched exponen
tial! forms a path integral representation should be more
equate. A different kinetic model can be obtained by repl
ing the quadratic dependence of the rate Eq.~2! with K(X)
5d(X2X0), i.e., assuming that the process occurs at a cu
crossing region. Forn slow coordinates this corresponds
ann21-dimensional region. Assuming a single slow coor
nate (n51), we recover the Marcus rate theory. In this ca
we need to compute the probability distribution at the cu
crossing point and the problem can be mapped into a c
tinuous time random walk.28,45 It will be interesting to com-
pare the statistical properties of SM trajectories for the cu
crossing and fluctuating bottleneck models.
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APPENDIX A: THE MULTIDIMENSIONAL
SMOLUCHOWSKI EQUATION

In the absence of a chemical reaction, the evolution
the probability density of finding a slow coordinate atx at
time t provided it started off atx0 at timet0 can be described
by Eq. ~9! with K1250
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



-

he

-

f

4248 J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 Barsegov, Chernyak, and Mukamel
]

]t
P~x,tux0 ,t0!5

]

]x
GxP~x,tux0 ,t0!

1
]

]x
D

]

]x
P~x,tux0 ,t0!. ~A1!

The Green’s function solution of this equation is25

G0~xf ,t f ux0 ,t0!5H 1

~2p!mdet@12D~t!DT~t!#J
1/2

3expH 2
1

2
@xf2D~t!x0#T

3@12D~t!DT~t!#21@xf2D~t!x0#J ,

~A2!

wheret5t f2t0 . The Green’s function for the collective co
ordinateX can be evaluated as

F0~Xf ,t f uX0 ,t0!5E E dx0 dx d~uTx2Xf !

3G0~xf ,t f ux0 ,t0!

3d~uTx02X0!Peq~x0!, ~A3!

wherePeq(X0) is given by

Peq~X0!5E
2`

`

dx d~uTx2X0!Peq~x!, ~A4!

and

Peq~x!5 lim
t f→`

G0~xf ,t f ux0 ,t0!5~2p!2m/2exp$2 1
2 xTx%

~A5!

in Eq. ~3!. A chemical reaction~1! has been included by
adding a sink termKi ,i 11 for the transitionu i &→u i 11& into
the Smoluchowski equation~A1!.

APPENDIX B: GREEN’S FUNCTION
FOR THE SMOLUCHOWSKI EQUATION

In this Appendix we present the Green’s function of t
Smoluchowski equation~9! for the survival probability
P11(xf ,t f ux0 ,t0) for the reaction stepu1&→u2&. The survival
probability Pi ,i(xf ,t f ux0 ,t0) for the reaction step u i &
→u i 11& can be constructed in a similar way.

We assume that initially our system~a single molecule
and collective coordinates of the environment! is in equilib-
rium in stateu1&. The Smoluchowski equation~9! can be
solved by using the following ansatz:25,37,43,44

P11~xf ,t f ux0 ,t0!5S 1

2p D m/2

exp$2g~ t f2t0!%

3exp$2 1
2 xf

Tf1~ t f2t0!xf

1xf
Tf2~ t f2t0!x02 1

2 x0
Tf3~ t f2t0!x0%,

~B1!
Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to 
with the initial conditions f1(0)5f2(0)5f3(0)51 and
g(0)50. Substituting Eq.~B1! into Eq. ~3!, we obtain the
following ordinary differential equations for the time
dependent parametersf1(t), f2(t), f3(t), andg(t):

ḟ1522f1Df11f1G1GTf112K1→2,

ḟ25
1

2
~ f2G1GTf2!22f1Df2

~B2!
ḟ3522f2Df2

ġ5Tr@Df12G#.

The first equation~B2! can be solved by introducing two
auxiliary matricesY andZ, such thatf15ZY21, whereY21

denotes an inverse of matrixY.25,46Then, by substituting this
back into Eq. ~B2!, we obtain the following system o
coupled matrix ordinary differential equations:

Ẏ52GY12DZ,

Ż52K1→2Y1GTZ, ~B3!

with the initial conditionsY(0)5Z(0)51. The solution of
Eqs.~B3! is @see Eqs.~11! and ~12!#

S Y
Z D5exp$tQ%S 1

1D , ~B4!

where

Q5S 2G 2D

2K1→2 GTD . ~B5!

With the solution~B4! for Y andZ, f2 , f3 , andg(t) can
now be calculated. Forg(t) we obtain

g~ t !5Tr$ 1
2 ~ ln@Y#2G~ t !!%, ~B6!

and

f1~ t f2t0!5Z~ t f2t0!Y21~ t f2t0!,

f2~ t f2t0!5expH E
t0

t f
dt~G22f1~ t !D!J 1, ~B7!

f3~ t f2t0!5122E
t0

t f
dt f2~ t !Df2~ t !.

We obtain

P11~xf ,t f ux0 ,t0!5S 1

2p D m/2S 1

det@Y~ t f2t0!# D
1/2

3expH Tr@G#

2
~ t t2t0!J

3expH 2
1

2
xf

Tf1~ t f2t0!xf

1xf
Tf2~ t f2t0!x02

1

2
x0

Tf3~ t f2t0!x0J .

~B8!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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APPENDIX C: MULTITIME CORRELATION FUNCTIONS
FOR TWO-STATE REVERSIBLE KINETICS

We consider the model given by Eq.~29!. To obtain the
joint probability to jump from stateu1& to stateu2& at the
time t5t0 when the collective coordinate isx0 followed by
transition back to stateu1& at time t5t f when the collective
coordinate is xf , P1→2→1(xf , f f ux0 ,t0), we substitute
K2→3→K2→1 in Eqs.~14! and ~15!. We obtain:

P1→2→1~xf ,t f ux0 ,t0!

5
1

N2

]2

]f1]f1
H S 1

2p D m/2S 1

det@Y~ t f2t0!# D
1/2

3expH Tr@G#

2
~ t t2t0!J exp$2 1

2 xf
T@ f1~ t f2t0!

22f1K1→2#xf1xf
Tf2~ t f2t0!x0%

3exp$2 1
2 x0

T@ f3~ t f2t0!22f2K2→1#x0%J U
f15f250

.

~C1!

Similarly, in order to obtainQ for this model, in the
irreversible model~10! we need to identify statesi of odd
order, i 51,3,2l 21 with stateu1& and states of even orde
i 52,4,2l with state u2&. This amounts to substituting
Ki ,i 11→K12 for i 51,3,. . . ,2l 21 and Ki ,i 11→K21 for i
52,4,. . . ,2l in Eqs.~17! and ~E1!. For instance, for a pro
cess involvingn jumps between statesu1& and u2& ~n-even!,
the expression for Q then becomes

Q1
2
[n] ~x0 ,t0 ,f0 ,x1 ,t1 ,f1 , . . . ,xf ,t f ,fn21!

5
1

Nn
1
2 S 1

2p D nm/2

)
i 51

i 5n F S 1

det@Y~ t i2t i 21!# D
1/2

3expH Tr@G#

2
~ t i2t i 21!J expH 2

1

2
xi

T@ f1~ t i2t i 21!

22f iK
i→ i 11#xi1xi

Tf2~ t i2t i 21!xi 21J
3expH 2

1

2
xi 21

T @ f3~ t i2t i 21!

22f i 11K i 11→ i 12#xi 21J GPeq~x0!, ~C2!

with the normalization factor

Nn
1
25E

t1
¯E

tn

E
x0

E
x1

¯E
xf

K12~x0!P11~x1 ,t1ux0 ,t0!

3K21~x1!P22~x2 ,t2ux1 ,t1!

3K12~xf !¯P11~xf ,t f uxn21 ,tn21!K21~xf !Peq~x0!.

~C3!

Again, the generating function for the probability distr
bution ofn jumps is given by Eqs.~18!–~20! provided that a
Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to 
substitution K i→ i 115K1→2 for i 51,3,. . . 2l 21, and
K i→ i 115K2→1 for i 52,4,. . . ,2l have been made. Then, th
probability distribution function ofn jumps during time in-
tervalst i can be calculated using Eq.~21!, and the distribu-
tion of stateu1&- or stateu2&- and stateu1&- or stateu2&-time
events can be computed using Eq.~22!.

APPENDIX D: GENERATING FUNCTIONS
FOR A SINGLE COLLECTIVE COORDINATE

In this Appendix we derive closed-form expressions
the generating function of two, three, and four jumps for t
two-state reversible kinetics for the case when the envir
ment can be described by a single collective coordinate.
ting x5x, Eq. ~10! for the forward reaction reduces to

P11~xf ,t f ux0 ,t0!5S 1

2p
s f2~ t f2t0!exp$g~ t f2t0!% D 1/2

3exp$2 1
2 f 1~ t f2t0!xf

2

1 f 2~ t f2t0!xfx02 1
2 f 3~ t f2t0!x0

2%, ~D1!

where the functionsf 1(t f2t0), f 2(t f2t0), and f 3(t f2t0)
are given by

f 1~ t !5
s cosh@g8t#1sinh@g8t#

2sinh@g8t#
,

f 2~ t !5
1

2 sinh@g8~ t f2t0!#
, ~D2!

f 3~ t !5
s cosh@g8t#2sinh@g8t#

2 sinh@g8t#
,

andg85gs, with

s5~114k12/g!1/2. ~D3!

Here, we haveG5g, K1→25k12. In this case, the genera
ing function for the n jumps process becomes (t i5t i

2t i 21)

S[n]~t1 , . . . ,tn21!5 )
i 5n21

i 51 S f 2~t i !

M ~t i ,t i 11 , . . . ,tn21! D
1/2

3expH g

2
t i J , ~D4!

where

M ~t i ,t i 11 , . . . ,tn21!5 f 1~t i !22f iki j for i 5n21,
~D5!

and

M ~t i ,t i 11 , . . . ,tn21!

5 f 1~t i !22f iki j 1 f 3~t i !2
f 2

2~t i !

M ~t i 11 , . . . ,tn21!

for i 5n22, . . . ,0, ~D6!

with ki j 5k12 for i 51,3,. . . 2l 21, and ki j 5k21 for i
50,2,4,. . . ,2l .

For n52 ~on-time events!, the generating function is
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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S[2]~t!5S 1

2p D 1/2S s

2 sinh@g18t# D
1/2S S 1

f̃ 1~t!
D S 1

f̃ 3~t!112
f 2~t!2

f̃ 1~t!
D D 1/2

expH g

2
tJ . ~D7!

For n53 ~on–off-time events! the generating function becomes

S[3]~t1 ,t2!5S 1

2p D 1/2S S s1

2 sinh@g18t1# D S s2

2 sinh@g28t2# D D
1/2

expH g

2
~t11t2!J

3S S 1

f̃ 1~t2!
D S 1

f̃ 1~t1!1 f 3~t2!2
f 2~t2!2

f̃ 1~t2!
D S 1

f̃ 3~t1!112
f 2~t2!2

f̃ 1~t1!1 f 3~t2!2
f 2~t2!2

f̃ 1~t2!

D D 1/2

, ~D8!
ca
ity
where

f̃ k~t l !5 f k~t l !22f lki j , ~D9!

and

g185g~114k12/g!1/2,
~D10!

g285g~114k21/g!1/2.

One of the often-utilized measures in the statisti
analysis of single molecule kinetics is the joint probabil
distribution of adjacent on–off-time events~i.e., a joined
probability distribution of jumping from stateu1& to stateu2&
Downloaded 11 Mar 2002 to 128.151.176.185. Redistribution subject to 
l

at time t5t0 , evolving on stateu2& for the timet15t12t0

followed by jumping to stateu1& at the timet1 and then
propagating on stateu1& for the timet25t22t1 followed by
jumping to stateu2& at the timet2). With the help of the
three-jump generating function~D8!, the probability distribu-
tion function of on–off-time events can be computed as

F [3]~t1 ,t2!5
]3

]f2]f1]f0
@S[3]~t1 ,t2!#f05f15f250 .

~D11!

For n54 ~on–off-on-time events!, we get
ent
S[4]~t1 ,t2 ,t3!5S 1

2p S s1

2 sinh@g18t1# D S s2

2 sinh@g28t2# D S s1

2 sinh@g18t3# D D
1/2

expH g

2
~t11t21t3!J

3S S 1

f̃ 1~t3!
D S 1

f̃ 1~t2!1 f 3~t3!2
f 2~t3!2

f̃ 1~t3!
D S 1

f̃ 1~t1!1 f 3~t2!2
f 2~t3!2

f̃ 1~t2!1 f 3~t3!2
f 2~t3!2

f̃ 1~t3!

D D 1/2

3S 1

f̃ 3~t1!112
f 2~t1!2

f̃ 1~t1!1 f 3~t2!2
f 2~t3!2

f̃ 1~t2!1 f 3~t3!2
f 2~t3!2

f̃ 1~t3!

D 1/2

. ~D12!

Using the generating function~D12! of observing four jumps, the two-time probability distribution function of adjac
on–on-time events~i.e., a joined probability distribution of jumping from stateu1& to stateu2& at timet5t0 , evolving on state
u2& for the timet15t12t0 followed by jumping to stateu1& at the timet1 and then propagating on stateu1& for the time
t25t22t1 followed by jumping to stateu2& at the timet2 and evolving on stateu2& for the timet35t32t2 followed by
jumping to stateu1& at the timet5t3), is computed as

F [4]~t1 ,t3!5
]4

]f3]f2]f1]f0
F E

0

`

d2 S[4]~t1 ,t2 ,t3!G
f05f15f25f350

, ~D13!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



4251J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 Multitime correlation functions
where we have integrated out the intermediate off-time intervalt2 between the on-time events of durationst1 andt3 .

APPENDIX E: EXPRESSIONS FOR Q AND N FOR SEQUENTIAL KINETICS

We consider the model given by Eq.~10!. Substitution of Eq.~16! into Eq. ~17! yields:

Q[n]~x0 ,t0 ,f0 ,x1 ,t1 ,f1 , . . . ,xf ,t f ,fn21!5
1

Nn
S 1

2p D nm/2

)
i 51

i 5n F S 1

det@Y~ t i2t i 21!# D
1/2

expH Tr@G#

2
~ t i2t i 21!J

3exp$2 1
2 xi

T@ f1~ t i2t i 21!22f iK
i→ i 11#xi1xi

Tf2~ t i2t i 21!xi 21%

3exp$2 1
2 xi 21

T @ f3~ t i2t i 21!22f i 11K i 11→ i 12#xi 21%GPeq~x0!. ~E1!

The normalization factor for ann jumps process (t i5t i2t i 21 , i 51,2,. . . ,n) is

Nn5E
t1

. . . E
tn

E
x0

E
x1

¯E
xf

K12~x0!P11~x1 ,t1ux0 ,t0!K23~x1!P22~x2 ,t2ux1 ,t1!

3K34~xf !¯Pn21,n21~xf ,t f uxn21 ,tn21!Kn21,n~xf !Peq~x0!, ~E2!

Q[n] andNn are used to compute the generating functionS[n] in Sec. III.
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