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Multidimensional spectroscopic probes of single molecule fluctuations
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Single photon counting time distributions obtained from single molecule photon arrival trajectories
are employed in the theoretical study of multistate kinetics coupled to a two-state jump bath. The
bath time scale may be extracted from statistical analysis of one- and two-point time-domain optical
measurements. The amplitude and shape of the distribution of interphoton arrival times reflects bath
correlations. A slow bath~relative to the kinetics! results in broad distributions of arrival times
reflecting bath memory. For a fast bath, the arrival time distributions narrow around shorter times,
similar to motional narrowing in frequency domain spectroscopy. The variance of either kinetic rates
or equilibrium population of bath states results in asymmetry of the distribution of two photon
arrival times. © 2002 American Institute of Physics.@DOI: 10.1063/1.1515321#
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I. INTRODUCTION

Single molecule~SM! measurements provide detailed i
formation on the entire distributions of physical quantities,
contrast to bulk measurements which only yield th
averages.1–3 SM observables have distinct stochastic sig
tures of coupling to bath degrees of freedom.4–7 They have
been used to gain information on molecular motions, e
intermolecular rotation in charge conducting peptides,8,9 pro-
tein folding,10,11electron transfer in DNA,9 spectral diffusion
in glasses at low temperatures~terrylene in
polyethilene!,12–18 kinetics in enzymatic systems~cholester-
ole oxidase binding kinetics!,5 and conformational relaxation
in biomolecules~DNA, tRNA!.19–23

In many optical SM experiments, a molecule is excit
by a strong continuous-wave~cw! monochromatic lase
field.12–15 The collected fluorescence photons are grou
into intervals ~bins! of a certain duration~binning time!.
Typical observables analyzed in a cw experiment include
chastic trajectories of fluorescence intensity,13,14 absorbtion
frequency peak position,14,17 and line shapes.16–18 Such data
have been used to probe spectral diffusion rates in the
regime between msec and sec.16–18An absorption frequency
trajectory on a time scale of seconds can be even anal
visually.14,17 From such a trajectory, the two-time frequen
autocorrelation function has been calculated.24

cw experiments on glasses at low temperatures,12–18

were the subject of intensive theoretical investigations.24–27

Reilly and Skinner used the Anderson–Kubo two state ju
model28,29 for the spectral diffusion of a single pentace
molecule transition frequency inp-terphenyl.24 Zhao et al.
computed the four-point correlation function and the th
order response of a chromophore coupled to either a
state jump or a Brownian oscillator bath.30 Barkai, Silbey,
and Zumofen studied fluctuations of line shapes of SMs
teracting with randomly distributed two-level systems
computing the distribution of moments and cumulants.26 The
same group used the two state jump model to establish
relation between line shape fluctuations of a molecule un
going spectral diffusion and a four point correlation functi
9460021-9606/2002/117(20)/9465/13/$19.00

Downloaded 09 Dec 2002 to 128.151.176.185. Redistribution subject to 
r
-

.,

d

o-

e

ed

p

o

-

he
r-

of the dynamics.25,31 Fleury et al. performed single photon
counting ~no binning! cw measurements on terrylene mo
ecules in terphenyl crystals. Interphoton times between
consecutive photons were recorded and their histogram
used to construct the two-time fluorescence intensity au
correlation function. The binning time which limits the tim
resolution is adjusted to optimize signal-to-noise ratio and
recent experiments it has been as short asms.12

To observe faster fluctuations, a train of weak optic
pulses separated by the timets has been recently applied t
excite the molecule. A sequence of chronological (t) and
single photon arrival times, i.e., delay times~t! between ex-
citation and emission events is then recorded~Fig. 1!. t is
typically in the nsec regime whereast can span a broad rang
of timescales from seconds down tomsec. The resulting
$t,t% data set forms aphoton arrival trajectory~PAT! in
which each detected photon represents a datapoint.19,32 The
separation timet is a control parameter which can be varie
by changing the pulse intensity and train period to capt
the characteristic bath time scale. Excitation typically occ
every 103 pulses of the train.

A PAT experiment is an analogue oftime domainmul-
tiple pulse techniques ubiquitous in nonlinear spectroscop33

In general, one can conduct ann-point measurement an
compute ann-time histogram of arrival timest1 ,...,tn sepa-
rated by timest1 ,...,tn21 yielding thenth order distributions
of arrival timesQn(t1 ,...,tn ;t1 ,...,tn21).19,34 As n is in-
creased,Qn contains gradually more detailed information o
the dynamics of correlations of bath variables which mod
late the time scale of the kinetic process under study.35 In this
paper, we limit our discussion to one- and two-point me
surements. In a one-point (n51) measurement, one record
a histogram of photon arrival timest’s. In a two-point (n
52) measurement, a set of the two photon arrival tim
(t1’s andt2’s) and their separation timet1 is recorded. This
carries information on bath dynamics on thet1 time scale.
Xie and co-workers19 employed this technique to probems
conformational relaxation of single DNA and tRNA mo
ecules through fluorescence resonant energy tran
~FRET!. Seidel and coworkers used the same technique
5 © 2002 American Institute of Physics
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probems conformational dynamics of the 20-mer oligonuc
otide strand of DNA.32

FRET experiments23,32 involve two chromophoresA and
B. A absorbs a photon and undergoes a transition from
groundu0& to the excitedu1& state. A photon is subsequent
emitted either fromA or from B, following energy transfer
@Fig. 2~a!#. In a previous work,34 we studied the arrival time
distributions for the model where kinetics was coupled to
stochastic bath diffusive coordinate. We showed how P
statistics for one- and two-point measurements of phot
emitted byA can be employed to probe bath jumps on t
time scale of separation times between the two emiss
events.

In this paper, we perform a similar analysis of emissi
from B for a two state jump bath to study both bath jum
and transfer kinetics@Fig. 2~a!#. If photon emission is faste
than both bath jumps and transfer kinetics, the statistics
emitted photons probes bath jump timescale and one
obtain information on the distribution of kinetic rates. Co
pling of kinetics to the bath makes PAT statistics no
Poissonian. By analyzing experimentally accessible P
data, we utilize deviations of arrival time distributions fro
Poissonian statistics to deduce the bath time scale.

Our model is presented in Sec. II. In Sec. III we intr
duce the distributions of photon arrival times accessible fr
one- and two-point measurements. In Sec. IV we comp
the arrival time distribution and in Sec. V we examine t
joint distribution of two photon arrival times and emplo
various statistical measures for probing the dynamics of b
correlations. Our results are summarized in Sec. VI.

II. THE MODEL: ENERGY TRANSFER COUPLED
TO A TWO STATE JUMP BATH

Consider reversible excitation transfer kinetics from t
absorbing chromophoreA to the emitting chromophoreB.
We assume that the system is coupled to a two state bat~a
andb!, which modulates its forwardKab

i and backwardKba
i

excitation transfer rates (i 5a,b). The bath evolution is no
affected by the kinetics.

We model the bath evolution as a stochastic Mark
process and the system1bath kinetics is governed by th
stochastic Liouville equation29,36,37

Ṗa,a~ t !52(
bb

Maa,bbPb,b~ t !, ~1!

with the four-dimensional population vectorP(t)

FIG. 1. One- and two-pulse PAT experiment: Interphoton timest ’s and
arrival timest’s are obtained from time resolved single photon count
using a train of excitation pulses.
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P~ t !5S Pa~ t !
Pb~ t ! D5S Paa~ t !

Pab~ t !
Pba~ t !
Pbb~ t !

D ~2!

and

M5S Kab1R 2Kba

2Kab Kba1R1kD , ~3!

K , R, andk are 232 matrices in thea, b-space: they rep-
resent energy transfer, bath jump rates and radiative de
rates, respectively,

Kab5S Kab
a 0

0 Kab
b D , Kba5S Kba

a 0

0 Kba
b D ,

~4!

R5S Rab 2Rba

2Rab Rba
D , k5S kb 0

0 kb
D .

Our model has three basic time scales: character
time scale of the bath evolutiontB;1/R5(Rab1Rba)21,
kinetic time scaletK;max$(Kab

a 1Kba
a )21, (Kab

b 1Kba
b )21%,

and radiative lifetimetF;kb
21 .

The solution of equations~1! in Laplace domain

P̃~z![E
0

`

e2ztP~ t !dt, ~5!

reads

P̃~z!5@zI2M #21P~0!, ~6!

where I is 434 unit matrix, @¯#21 denotes inverse of a
matrix andP~0! is a vector representing the equilibrium di
tribution of statesua,a&, ua,b&, ub,a& and ub,b&.

The Laplace conjugate quantity corresponding to
bulk population vector̂P̃(z)& can be obtained fromP̃(z) by
averaging over initial realizations of the bath

^P̃~z!&51@zI2M #21P~0!, ~7!

where1 is a row vector whose elements are equal to un
The bath state dependent population vectorP(t) is obtained
by inverse Laplace transform of Eqs.~6! and ~7!.

Let us now consider some limiting cases of the dynam
of P(t). We first write the formal solution of Eq.~1! when
the system is initially in statea:

S Pa

Pb
D ~ t !5e2tMS Pa~0!

0 D5Ue2tlU21S Pa~0!

0 D , ~8!

wherel and U are, respectively, the matrix of eigenvalu
and eigenvectors ofM , U21 is inverse of matrixU and0 is
a row with zero entries.

The eigenvalues ofM are the roots of the secular dete
minant det(lI2M ). Using an identity for the determinant o
the square block matrix, we have38

det~lI2M !5detS lI2Kab2R 2Kba

2Kab lI2Kba2k2RD
5det~lI2Kab2R!3det~lI2Kba2k2R

2Kab@lI2Kab2R#21Kba!. ~9!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Let us assume that excitation return ratesKba are small com-
pared toKab andk. Then, Eq.~9! yields

det~lI2M !5det~lI2Kab2R!det~lI2k2R!. ~10!

When R!Kab ,k, the eigenvalues ofM are l15Kab
a ,

l25Kab
b andl35l45kb . In this case, Eqs.~1! for popula-

tions Paa(t), Pba(t), andPab(t), Pbb(t) for channela and
b ~see Fig. 2! are decoupled andPaa,ba(t), Pab,bb(t) evolve
independently. However, whenR;Kab and/or R;k, the
two channels are coupled andPaa,ba(t), Pab,bb(t) mix due
to bath jumps which modulates both energy transfer and p
ton emission rates, i.e.,Kab→Kab1R and k→k1R. Be-
cause the eigenvalues ofKab1R and k1R are larger than
the eigenvalues ofKab and k, respectively, populations
Pba(t) and Pbb(t) of site B evolve on a shorter time scal
and are peaked at shorter times. As a result, the distribu
of photon arrival timesQ(t1);kb(Pba(t1)1Pbb(t1)) ~see
Sec. III!, narrows at short times. Figure 2~b! in which we

FIG. 2. ~a! A two-site kinetic scheme for the creation of excitation in siteA
(u0&→u1& transition!, followed by the propagation fromA to B with for-
ward Kab

a,b and backwardKba
a,b kinetic rates and emission of a photon fro

site B with rateskba , kbb . These processes are coupled to the two-s
bath evolution with ratesRab andRba ; ~b! Ensemble average distributio
of photon arrival timeŝQ(t1)& vs t1 ~in units of 1027 s) for slow (k@K
@R, solid line!, intermediate (k@R@K , dashed line! and fast (R@k@K ,
dashed and dotted line! bath. Parameters used arekb51.03107 s21, Kab

a

543102kb , Kab
b 563102kb , Kba

a,b5kb ; Rab5Rba51022kb for slow,
Rab5Rba5kb for intermediate, Rab5Rba5103kb for fast bath. The
Laplace transform of the distribution of photon arrival times^Q(z)& for a
slow and fast bath is shown in the inset. Motional narrowing is seen for
fast bath.
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display the ensemble average photon arrival time distribu
for a slow (k@K@R), intermediate (k@R@K ) and fast
(R@k@K ) bath demonstrates that the arrival time distrib
tion showsmotional narrowing.29,36,37

In the following Sections we use the population traje
tory of siteB (P(t)) to compute the distributions of photo
arrival times for one- and two-point measurements.

III. SINGLE- AND TWO-POINT PAT OBSERVABLES

In this Section we introduce the quantities used in
statistical analysis of one- and two-point PAT data. To a
lyze one-point data, we define the 232 conditional distribu-
tion matrix Q(t1)5$Q(t1)% i j , where i 5ba,bb, j
5aa,ab, of observing a photon arriving att1 when the
system is in stateba or bb, given that at the time of exci-
tation t50 it is in stateaa or ab. This matrix can be con-
structed by taking a product of the matrixk of decay rates
and a 232 block of the 434 matrix @zI2M #21 of Green
functions corresponding to propagation of excitation fro
statesuaa&, uab& to statesuba&, ubb& during timet1 , i.e.,

Q̃i j ~z![kb$@zI2M #21% i j ~11!

where i 5ba,bb and j 5aa,ab. Q(t1) is obtained by in-
verse Laplace transformation ofQ̃(z).

Because the system can emit a photon from either s
ba or bb, we define the joint distribution vector of photo
arrival times,q(t1), a quantity directly accessible from
one-point PAT experiment.q(t1) can be computed by aver
agingQ(t1) over the initial realizations of bath states, i.e

q~t1!5S qba

qbb
D ~t1!5N1

21Q~t1!weq, ~12!

whereN1 is a normalization constant

N15E
0

`

dt1^̂ 1uQ~t1!uweq&&

[E
0

`

dt1~1 1!S Qba,aa~t1! Qba,ab~t1!

Qbb,aa~t1! Qbb,ab~t1!
D S Paa

eq

Pab
eq D ~13!

andweq is the equilibrium population vector

weq5S Paa
eq

Pab
eq D 5S Paa~0!

Pab~0! D . ~14!

The macroscopic~‘‘bulk’’ ! distribution oft1 is

^Q~t1!&5N1
21^̂ 1uQ~t1!uweq&&. ~15!

A useful statistical measure of observed PAT is given
the ensemble averagedpth moment oft1 which can be com-
puted from the average histogram^Q(t1)&

^t1
p&5E

0

`

dt1t1
p^Q~t1!&. ~16!

Note that we can further construct a matrixmp of the pth
moments oft1 as mp5N1

21*0
`dt1t1

pQ(t1). Note that in
contrast to^t1

p& which can be accessed through bulk me
surements,mp can only be obtained from statistical analys
on SM PAT measurements.34

e
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We next turn to two-point information. Consider a pr
cess when chromophoreA is excited at time t50 and trans-
fer excitation to chromophoreB which emits a photon a
time t1 . Then, at later timet, A is excited again and trans
fers excitation toB which emits the second photon at timet2

after the second excitation. This process can be describe
the 232 conditional distribution matrix with element
Qi j (t1 ,t2 ;t), of observing a pair of photons arriving, re
spectively, att1 andt2 when the system is in the final sta
j 5ba,bb and separated by timet, given that initially~at t
50) it was in the statei 5aa,ab. The matrix can be com
puted by taking a product of conditional probability of bein
excited at timet50 and emitting the first photon at timet1

times the conditional probability representing bath evolut
for time t2t1 ~when chromophores are in the ground sta!
times the conditional probability for the second excitation
occur at timet followed by emission of the second photo
arriving at timet1t2 , i.e.,

Q~t1 ,t2 ;t !5Q~t2!G~ t2t1!Q~t1!, ~17!

whereG(t) is Green the function for our two state jump ba
given in Appendix A. The joint distribution vector
q(t1 ,t2 ;t), a quantity directly accessible from two-poin
PAT data, can be computed fromQ(t1 ,t2 ;t)

q~t1 ,t2 ;t !5N2~ t !21Q~t1 ,t1 ;t !weq, ~18!

whereN2(t) is the normalization factor

N2~ t !5E
0

`

dt1E
0

`

dt2^̂ 1uQ~t1 ,t2 ;t !uweq&&. ~19!

The distribution oft1 and t2 in a bulk measurement is ob
tained by averaging over initial and summing over final b
states, i.e.,

^Q~t1 ,t2 ;t !&5N2~ t !21^̂ 1uQ~t1 ,t1 ;t !uweq&&. ~20!

From the moments of the conditional probability matr
Q(t1 ,t2 ;t) we can also compute a matrix of correlatio
functions of two photon arrival timest1 ,t2 , i.e., Cn1 ,n2

(t)

5N2(t)21*0
`dt1*0

`dt2t1
n1t2

n2Q(t1 ,t2 ;t). This was done in
Ref. 34 and will not be considered here.

A useful statistical measure of dynamics of bath corre
tions is34,35

D~t1 ,t2 ;t !5^Q~t1 ,t2 ;t !&2^Q~t1!&^Q~t2!&. ~21!

This quantity depends on the separation timet which can be
varied in the two-point experiment to capture the bath ti
scale.

Another useful experimental quantity that can be utiliz
for probing the bath time scale is the conditional probabi
distribution of interphoton separation times,Q(t). This
quantity can be computed by integratingQ(t1 ,t2 ;t) overt1

andt2 , i.e.,

Q~ t !5E
0

`

dt1E
0

`

dt2Q~t1 ,t2 ;t !. ~22!

The joint distribution vector of interphoton timesq(t) is

q~ t !5E
0

`

dt1E
0

`

dt2q~t1 ,t2 ;t !, ~23!
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and the ensemble averaged quantity^Q(t)& is obtained from
^Q(t1 ,t2 ;t)& as

^Q~ t !&5E
0

`

dt1E
0

`

dt2^Q~t1 ,t2 ;t !&, ~24!

^Q(t)& directly probes the decay of bath correlations.
In the coming sections we present model calculations

the above introduced quantities.

IV. SINGLE-POINT MEASUREMENTS

In this section, we compute the one-point distributio
Q(t1), q(t1), and^Q(t1)& defined in Eqs.~11!–~15!. Let us
first study some limiting cases ofQ(t1) when the timescales
tK , tF and tB are well separated.

Case I: k@K@R. In this case populations of state
uaa&,uba& and uab&,ubb& evolve independently due to ab
sence of bath jumps, and the off-diagonal termsQba,ab and
Qbb,aa are negligible. Expressions for the diagonal eleme
are presented in Eqs.~B1! and ~B2! in Appendix B.

Case II:K@k@R. As in case I, due to absence of ba
jumps, populations of statesuaa&,uba& and uab&,ubb&
evolve independently. Expressions for the diagonal terms
Q(t1) are given by same Eqs.~B1! with Eq. ~B1!.

When the bath is slow, the amplitude of the diagon
elements ofQ(t1) is determined in case I by transfer kinetic
(Kab

a , Kab
a ) when tF!tK and in case II by fluorescence de

cay (kb) when tF@tK . Decay rates ofQ(t1) are dominated
by fluorescence decay rate constantskba and kbb in case I
and a sum of forward and backward kinetic ratesKab

a 1Kba
a

and Kab
b 1Kba

b in case II. In the square roots in the expre
sions ~B2! and ~B3! for z1,2

a and z1,2
a , the cross terms

kb(Kba
a 2Kab

a ) and kb(Kba
b 2Kab

b ) represent coupling be
tween transfer kinetics and fluorescence decay. The dyn
ics of the distribution of photon arrival times does not d
pend on the slow bath.

Case III: k@R@K . The bath undergoes jumps whic
mix channelsa and b. As a result,Q(t1) has off-diagonal
elements. Note that due to presence of factors (exp@2z1t1#
2exp@2kbt1#) and (exp@2z2t1#2exp@2kbt1#) the time profile
is determined now by the competition between fluoresce
decay and bath dynamics@see Eqs.~B5!#. Also, in the square
roots in the expressions~B5! for z1 , z2 , a cross term (Rab

2Rba)(Kab
a 2Kab

b ) stands for coupling between transfer k
netics and dynamics of the bath.

Case IV:K@R@k. As in case III,Q(t1) contains the
nonvanishing off-diagonal terms originating from the ba
frequent jumps@see Eqs.~B6!#.

In contrast to cases I and II, a fast bath in cases III a
IV modulates both the amplitude and a time profile of t
elements ofQ(t1) by factors that involve the forward an
backward bath jump ratesRab andRba and exponential fac-
tors exp@2(Kab

a 1Kba
a )t1# and exp@2(Kab

b 1Kba
b )t1#, respec-

tively. For a fast bath, the distribution of arrival times b
comes dependent on bath jump timescale, (Rab1Rba)21

@Eqs. ~B6!#. As we shall demonstrate below, this results
shorter arrival times.

We present numerical studies of modelsM1, M3, M5,
andM7 of a slow bath withk@K (M1, M3, case I! and with
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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K@k (M5, M7, case II!, as well as modelsM2, M4, M6
and M8 of a fast bath withk@K (M2, M4, case III! and
with K@k (M6, M8, case IV!. The parameters for all mod
els are given in Table I. In modelsM1, M2, M5 andM6, the
bath is at high temperature (Rab5Rba) and stateb of the
bath facilitates faster kinetics (Kab

b .Kab
a ). In modelsM3,

M4, M7, andM8, the bath is at arbitrary temperature wi
Rab,Rba , but stateb facilitates faster kinetics. We assum
that Kba

a 5Kba
b 5Kba .

Simulated conditional distribution matrix elemen
Qba,aa(t1), Qba,ab(t1), Qbb,aa(t1), and Qbb,ab(t1) @see
Eq. ~11!# for modelsM1 –M8 are presented in Figs. 3 and

TABLE I. Numerical values of parameters used in simulations for mod
M1 –M14.

Model Rab , s21 Rba , s21 Kab
a , s21 Kab

b , s21 Kba , s21 k, s21

M1 1.0•105 1.0•105 1.0•107 1.0•108 1.0•107 1.0•109

M2 2.5•108 2.5•108 1.0•107 1.0•108 1.0•107 1.0•109

M3 1.0•105 9.0•105 1.0•107 1.0•108 1.0•107 1.0•109

M4 2.0•107 1.8•108 1.0•107 1.0•108 1.0•107 1.0•109

M5 1.0•105 1.0•105 1.0•109 1.0•1010 1.0•109 1.0•108

M6 2.5•108 2.5•108 1.0•109 1.0•1010 1.0•109 1.0•108

M7 1.0•105 9.0•105 1.0•109 1.0•1010 1.0•109 1.0•108

M8 2.0•107 1.8•108 1.0•109 1.0•1010 1.0•109 1.0•108

M9 8.0•105 2.0•105 5.0•107 1.0•107 1.0•107 1.0•109

M10 5.0•105 5.0•105 1.0•107 5.0•107 1.0•107 1.0•109

M11 2.0•105 8.0•105 5.0•107 1.0•107 1.0•107 1.0•109

M12 8.0•106 2.0•106 5.0•109 1.0•109 1.0•109 5.0•107

M13 5.0•106 5.0•106 1.0•109 5.0•109 1.0•109 5.0•107

M14 2.0•106 8.0•106 5.0•109 1.0•109 1.0•109 5.0•107

FIG. 3. From top to bottom: elementsQaa,ba(t1), Qaa,bb(t1), Qab,ba(t1)
andQab,bb(t1) of the photon arrival time densityQ(t1) vs t1 ~in units of
1027 s) for modelsM1 andM2 ~right panels!, and modelsM3 andM4
~right panels!. Solid ~dashed! lines correspond to modelsM1, M3 (M2,
M4) of a slow~fast! bath.
Downloaded 09 Dec 2002 to 128.151.176.185. Redistribution subject to 
We first study the conditional distributionQ(t1) for cases I
and III ~Fig. 3!. When a slow bath is at high temperature a
one of the two bath states facilitates faster kinetics (Kab

b

.Kab
a , modelM1), the ‘‘diagonal’’ pathsaa→aa andbb

→bb dominate over the off-diagonal pathsaa→bb and
bb→aa, and the diagonal elementsQba,aa(t1) and
Qbb,ab(t1) contribute primarily to the distributionQ(t1)
~solid lines in right panels in Fig. 3!. Here, the contribution
from single-transition evolution pathsaa→bb, ab→ba to
the off-diagonal elements ofQ(t1) are negligible~compare,
e.g., the magnitude ofQba,ab andQbb,aa with the magnitude
of Qba,aa and Qbb,ab). However, since stateb of the bath
facilitates faster kinetics,Qbb,ab has greater amplitude com
pared toQba,aa . When the bath is fast,~model M2), its
jumps become more probable and a share of the off-diag
elements originating from single-transition paths grows
the expence of the diagonal ones~dashed lines in right panel
in Fig. 3!.

When a fast bath is at arbitrary temperature (Rab

,Rba), but stateb facilitates faster kinetics (Kab
b .Kab

a ,
model M3), contributions from the off-diagonal paths b
come negligible and the distributionQ(t1) is maximized by
a single elementQbb,ab representing the bath evolution in
volving stateb ~solid lines in left panels in Fig. 3!. As in M1,
a share of the off-diagonal elementsQba,ab , Qbb,aa is small
~bath jumps are still rare!. However, when bath is fast~model
M4), jumps occur more often, and a share of the o
diagonal elements grows~dashed lines in left panels in Fig
3!. In contrast to modelM2, Qba,ab of modelM4 has greater
magnitude compared toQbb,aa , since pathaa→bb be-

s

FIG. 4. From top to bottom: elementsQaa,ba(t1), Qaa,bb(t1), Qab,ba(t1)
andQab,bb(t1) of the photon arrival time densityQ(t1) vs t1 ~in units of
1027 s) for modelsM5 andM6 ~right panels!, and modelsM7 andM8
~right panels!. Solid ~dashed! lines correspond to modelsM1, M3 (M2,
M4) of a slow~fast! bath.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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comes probabilistically more favorable than pathab→ba.
The conditional distributionQ(t1) for cases II and IV is

displayed in Fig. 4. We see that the corresponding elem
of the distributionQ(t1) computed, respectively, for mode
M5, M6 ~right panels! and M7, M8 ~left panels! exhibit
similar tendencies as those of modelsM1, M2 andM3, M4
namely, negligible~models M5, M7) and almost equa
~modelsM6, M8) contributions from the off-diagonal ele
mentsQba,ab andQbb,aa compared to their diagonal coun
terpartsQba,aa andQbb,ab . Notice, however, that the distri
bution Q(t1) of models M5, M6, M7, and M8 are
characterized by shorter most probable photon arrival tim

The quantities defined in Eqs.~12!–~15!, can be com-
puted from a histogram of arrival time obtained from expe
mental PAT data and can be further utilized to construct s
eral quantities sensitive to bath dynamics. For example, if
characteristic bath time scale excedest, one obtains a single
PAT from a single one-point experiment on a SM, resulti
in just one element (qba or qbb) of the joint probability
vector q(t1). If PAT data are collected from many exper
mental runs on many molecules, one obtains the macrosc
~‘‘bulk’’ ! distribution oft1 .

qba andqbb and ^Q(t1)& for modelsM1 –M8 are dis-
played in Fig. 5. The dynamics of various elements of
distribution Q(t1) is reflected in a time profile of the join
distribution componentsqba andqbb ~left and middle panels
in Fig. 5! for modelsM3, M4 ~top panels!, M1, M2 ~upper
middle panels! and modelsM7, M8 ~lower middle panels!,
M5, M6 ~bottom panels!. Since stateb facilitates faster ki-

FIG. 5. From top to bottom: Componentsqba(t1) ~left panels!, qbb(t1)
~middle panels! of the joint disitribution vectorq(t1) and the ensemble
average distribution̂Q(t1)& ~right panels! vs t1 ~in units of 1027 s) for
modelsM3, M4 ~top panels!, M1, M2 ~upper middle panels!, M7, M8
~lower middle panels! and M5, M6 ~bottom panels!. Solid lines represent
modelsM1, M3, M5, andM7 of a slow bath; dashed lines correspond
modelsM2, M4, M6, andM8 of a fast bath.
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netics,qbb has shorter most probable arrival time compar
to qba in modelsM1 –M4 where transfer kinetics is the rat
determining step. This effect is less pronounced for mod
M5 –M8 where emission of a photon determines the ove
rate of a process. Due to this coupling of kinetics to the b
evolution, paths involving stateb are kinetically more favor-
able, and modelsM2, M4, M6, M8 of a fast bath all have a
decreased share ofqba and an increased share ofqbb com-
pared to modelsM1, M3, M5, M7 of a slow bath.

The ensemble-averaged distribution of arrival tim
^Q(t1)& for modelsM1 –M8 is presented in the right col
umn in Fig. 5. Detailed microscopic information on cont
butions from various evolution paths to the distributio
Q(t1) is completely lost in the bulk quantitŷQ(t1)&, and
we are left with a highly averaged picture. Although a fa
bath hardly changes the peak position of the most proba
arrival time ~compared to a slow bath!, it eliminates long
tails of ^Q(t1)& by putting more weight on shorter arriva
times. In analogy with frequency domain spectroscopy, d
to coupling of transfer kinetics to the bath, the distribution
photon arrival times exhibits motional narrowing.

V. TWO-POINT MEASUREMENTS

In the previous section we found that whenR!K , the
joint distribution vectorq(t1) corresponding to a one-poin
measurement is not sensitive to the bath dynamics@see Eqs.
~B1!–~B3!, cases I and II#. This is when two-point measure
ments become most valuable. In this section, we comp
the joint distributions Q(t1 ,t2 ;t), q(t1 ,t2 ;t) and
^Q(t1 ,t2 ;t)& of two-photon arrival times.

Let us first analyze the contributions to the joint dist
bution vectorq(t1 ,t2 ;t) from various evolution paths. Al-
though this quantity depends explicitly on the final state
the system when the second photon is emitted,q(t1 ,t2 ;t)
involves contributions from 16 pathsi→ j→k→ l , where
i ,k5aa,ab and j ,l 5ba,bb. Here i is state of the system
when it absorbs the first photon,j is a state when the firs
photon is emitted,k is a state of the system corresponding
the second excitation andl denotes a state corresponding
emission of the second photon. These paths are summa
in Table II.

There are two ‘‘diagonal’’ paths 1 and 2, six single
transition paths 3–8, six two-transition paths 9–14 and t
three-transition paths 15 and 16. Depending on the bath e
lution timescaletB and separation timet, the time profile of
elements of the distributionq(t1 ,t2 ;t) as well as the aver-
age quantitŷ Q(t1 ,t2 ;t)& is determined by the interplay o
weighted contributions from the most dominant paths.

We shall study the evolution of correlations of bath va
ables and present the joint distribution of two photon arri
times only for models of a slow bath~cases I and II! with
kinetics~modelsM9, M10, andM11) and decay of fluores
cence~modelsM12, M13, andM14) as a rate limiting step
In modelsM10 andM13, the bath is at high temperature an
stateb facilitates faster kinetics. In modelsM9, M12, M11,
andM14 the bath is at arbitrary temperature. In modelM9,
M12 stateaa is less equilibrium populated but facilitate
faster kinetics. In modelsM11 andM14 stateaa is both
more equilibrium populated and facilitating faster kinetics
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In Fig. 6 we present three-dimensional plots of the co
ponentsqba(t1 ,t2 ;t) ~left panels! andqbb(t1 ,t2 ;t) ~middle
panels! of the distributionq(t1 ,t2 ;t) for model M9 for
three values of separation timet: ~a! When bath jumps are
improbable,t!tB , ~b! few bath jumps,t;tB and ~c! many
jumps~bath is in equilibrium!, t@tB . Corresponding contou
plots are presented, respectively, in Fig. 7. The same ca
lations are repeated for modelM10 ~Figs. 8 and 9! and for
modelM11 ~Figs. 10 and 11!.

Because in modelM9, stateaa is less populated bu
facilitates faster kinetics and because individual pho
emission events are controlled byQba,aa andQbb,ab of Eqs.
~B1! directly proporional to, respectively,Kab

a and Kab
a and

no jump occur during separation timet!tB ~top panels!, qba

TABLE II. System evolution paths contributing to the joint distribution
Q(t1 ,t2 ;t), q(t1 ,t2 ;t) and ^Q(t1 ,t2 ;t)&.

Path i j k l

1 aa ba aa ba
2 ab bb ab bb
3 aa ba aa bb
4 aa ba ab bb
5 aa bb ab bb
6 ab bb ab ba
7 ab bb aa ba
8 ab ba aa ba
9 aa ba ab ba

10 aa bb aa bb
11 aa bb ab ba
12 ab bb aa bb
13 ab ba ab bb
14 ab ba aa bb
15 ab ba ab ba
16 aa bb aa bb

FIG. 6. The joint probability distribution:qba(t1 ,t2 ;t) ~left panels!,
qbb(t1 ,t2 ;t) ~middle panels! and^Q(t1 ,t2 ;t)& ~right panels! vs t1 andt2

~in units of 1027 s) for modelM9 of case I fort53.031027 s21 ~top!, t
51.031028 s21 ~middle! and t51.031029 s21 ~bottom!.
Downloaded 09 Dec 2002 to 128.151.176.185. Redistribution subject to 
-

u-

n

andqbb are dominated by the diagonal paths 1 and 2, resp
tively. As a result,qba is larger thanqbb ~Fig. 6! and shorter
most probable arrival times. Since fort!tB the first and
second photon emission events are strongly correla
~memory, non-Poissonian signatures!, contour plots forqba

and qbb ~Fig. 7! are symmetric with respect to the inte
change oft1 andt2 .

When t;tB ~middle panels!, few bath jumps occur and
correlations between emission events decay.qba andqbb are
dominated by single-transition paths 3–8, respectively.
cause of this,qba is controlled by a process when the fir
and the second photon is emitted from statebb and ba,
respectively, whereasqbb is controlled by a process when th
first and the second photon is emitted from stateba andbb.
As a result, the amplitude ofqba (qbb) decays~grows!, and
a time profile ofqba andqbb is now longert1-shortert2 and
shortert1-longer t2 , respectively. As the joint probability
grows along thet1- andt2-axes at the expence of the dia

FIG. 7. Contour plots of the calculations of Fig. 6.

FIG. 8. The joint probability distribution:qba(t1 ,t2 ;t) ~left panels!,
qbb(t1 ,t2 ;t) ~middle panels! and^Q(t1 ,t2 ;t)& ~right panels! vs t1 andt2

~in units of 1027 s) for modelM10 of case I fort53.031027 s21 ~top!,
t51.031028 s21 ~middle! and t51.031029 s21 ~bottom!.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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onal features, contour lines become more convex inward
dicating decay of bath correlations. Whent@tB ~bottom pan-
els!, this is even more pronounced.

In modelM10, statesaa andab are equally populated
but stateab facilitates faster kinetics. Here,qba is of negli-
gible amplitude compared toqbb ~Fig. 8! for t!tB , because
a contribution from path 2 dominates over that of path 1, a
a time profile ofqba (qbb) is longt1 ,t2 ~shortt1 ,t2). When
t;tB , due to coupling of kinetics to the bath, as in mod
M9 single-transition paths dominate bothqba andqbb . The
amplitude ofqba therefore grows at the expense ofqbb , and
asqba (qbb) is controlled by shorter first and longer seco
~longer first and shorter second! photon emission, a time pro
file of qba andqbb becomes shortert1-longert2 and longer
t1-shortert2 , respectively. As we go to the limit of long
separation time, this tendency becomes more promin
When t@tB , qba andqbb are of comparable amplitude, an

FIG. 9. Contour plots of the calculations of Fig. 8.

FIG. 10. The joint probability distribution:qba(t1 ,t2 ;t) ~left panels!,
qbb(t1 ,t2 ;t) ~middle panels! and^Q(t1 ,t2 ;t)& ~right panels! vs t1 andt2

~in units of 1027 s) for modelM11 of case I fort53.031027 s21 ~top!,
t51.031028 s21 ~middle! and t51.031029 s21 ~bottom!.
Downloaded 09 Dec 2002 to 128.151.176.185. Redistribution subject to 
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contour plots for bothqba andqbb become convex in, signi-
fying decay of correlations between the first and second p
ton emission processes~see Fig. 9!.

In model M11 stateab is now both more populated a
equilibrium and facilitates faster kinetics. As a result,qbb

dominates overqba for all separation times~compare, e.g.,
the magnitude ofqbb and qba in Fig. 10! as contributions
from evolution paths involving statesaa and ba become
negligible. Note that time profile of bothqba and qbb does
not change witht and is longert1 ,t2 for qba , while shorter
t1 , t2 for qbb .

Let us now turn to modelsM12 ~Fig. 12!, M13 ~Fig. 13!,
and M14 ~Fig. 14!. We have simulated three-dimension
plots ofqba(t1 ,t2 ;t) ~left panels! andqbb(t1 ,t2 ;t) ~middle
panels! of the distributionq(t1 ,t2 ;t) for two values of sepa-

FIG. 11. Contour plots of the calculations of Fig. 10.

FIG. 12. Three-dimensional plots~top and upper middle panels! and contour
plots ~lower middle and bottom panels! of the joint probability distribution:
qba(t1 ,t2 ;t) ~left panels!, qbb(t1 ,t2 ;t) ~middle panels! and^Q(t1 ,t2 ;t)&
~right panels! vs t1 andt2 ~in units of 1027 s) for modelM12 of case II for
t51.031027 s21 ~top and lower middle panels! andt52.031028 s21 ~up-
per middle and bottom panels!.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ration time, whent!tB and t@tB ~top and upper middle
panels!. The contour plots corresponding to these models
presented in lower middle and bottom panels.

In contrast to modelsM9, M10, andM11, in models
M12, M13, andM14, the amplitude ofqba andqbb is de-

FIG. 13. Three-dimensional plots~top and upper middle panels! and contour
plots ~lower middle and bottom panels! of the joint probability distribution:
qba(t1 ,t2 ;t) ~left panels!, qba(t1 ,t2 ;t) ~middle panels! and^Q(t1 ,t2 ;t)&
~right panels! vs t1 andt2 ~in units of 1027 s) for modelM13 of case II for
t51.031027 s21 ~top and lower middle panels! andt52.031028 s21 ~up-
per middle and bottom panels!.

FIG. 14. Three-dimensional plots~top and upper middle panels! and contour
plots ~lower middle and bottom panels! of the joint probability distribution:
qba(t1 ,t2 ;t) ~left panels!, qbb(t1 ,t2 ;t) ~middle panels! and^Q(t1 ,t2 ;t)&
~right panels! vs t1 andt2 ~in units of 1027 s) for modified modelM14 of
case II for t51.031027 s21 ~top and lower middle panels! and t52.0
31028 s21 ~upper middle and bottom panels!.
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termined primarily byk @see Eqs.~B1! and ~B3!# and since
in our simulation we took equal radiative decay rate co
stants for both channelsa andb, the amplitude ofqba and
qbb is controlled by the weight of dominant paths contribu
ing to qba andqbb , determined by both equilibrium popula
tion of statesaa, ab as well as evolution of the bath durin
time t. For instance, in modelM12 qbb has larger amplitude
compared toqba for both t!tB and t@tB . Whent@tB , the
bath approaches equilibrium before the second excitation
curs, and the amplitude ofqba andqbb is determined solely
by the equilibrium population of statesaa and ab. As a
result,qba grows at the expense ofqbb . The latter is domi-
nated by a contribution from diagonal path 2 fort!tB but
involves contributions from paths 3–5 fort@tB . On the
other hand,qba is dominated by path 1 fort!tB and in-
volves contributions from paths 6–8. Because of this, ti
profile of qbb andqba is, respectively, longt1 ,t2 and short
t1 ,t2 for t!tB , but shorter t1-longer t2 and longer
t1-shortert2 for t@tB .

In modelM13, equilibrium populations of statesaa and
ab are equal, and the amplitudes ofqba andqbb are almost
same for botht!tB and t@tB . Since in this modelKab

a

,Kab
b , time profiles ofqba and qbb are reversed (qbb and

qba are shortt1 , t2-like and longt1 , t2-like for t!tB and
longer t1-shortert2 and shortert1-longer t2 for t@tB). In
model M14, because bothRba,Rab and Kab

a ,Kab
b , qbb

completely dominates overqba ~compare, e.g., the amplitud
of qba andqbb).

Let us now turn to the ensemble-averaged quan
^Q(t1 ,t2 ;t)&. Clearly, since this is an equilibrium popula
tion weighted superposition ofqba andqbb , it contains more
averaged information on elementary processes invol
~right panels in Figs. 6, 8, 10, and 12–14!. For example,
^Q(t1 ,t2 ;t)& carries information on the most probable pa
of arrival times$t1 ,t2% and allows to compute the two-tim
correlation function oft1 andt2

^tn1~0!tn2~ t !&[E
0

`

dt1E
0

`

dt2t1
n1t2

n2^Q~t1 ,t2 ;t !&.

~25!

By comparing contour plots of̂Q(t1 ,t2 ;t)& for several
separation times, we gain an insight into dynamics of b
correlations~lower middle and bottom panels in Figs. 7,
11, and 12–14!. At shorter separation times, in mode
M9 –M11 with kinetics controlling the overall rate of emis
sion of a photon, contour lines are straight whereas con
inward at longer times. This implies that due to coupling
kinetics to the bath, at shorter separation times when b
jumps are rare, emission events of the first and second p
ton are correlated~memory effect!, and^Q(t1 ,t2 ;t)& is dif-
ferent from a product of individual distributions, i.e
^Q(t1 ,t2 ;t)&2^Q(t1)&^Q(t2)&Þ0 ~non-Poissonian signa
ture!. When t@tB , as the bath approaches equilibrium a
loses memory of its initial state, correlations between em
sion events are irretrievably lost implying their statistical i
dependence, i.e., the joint distribution of arrival times b
comes bi-Poissonian~i.e., Poissonian with respect to botht1

andt2).
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Indeed, using the properties ofG(t) for a two-state jump
bath given in Appendix A, one can show that whent
@(Rab1Rba)21, ^Q(t1 ,t2 ;t)& is factorized

^Q~t1 ,t2 ;t !&→^Q~t1!&^Q~t2!&. ~26!

This limiting property allows us to study the dynamics
correlations in variables of the bath by defining statisti
measures sensitive to the characteristic bath time scale@see,
e.g., Eq.~21!#.

In contrast to modelsM9 –M11, ^Q(t1 ,t2 ;t)& of mod-
els M12–M14 does not change witht ~compare, e.g., the
amplitude of surfaces in the right panels in Figs. 12–14
t!tB and t@tB) and contour lines remain straight at a
times, indicates absence of bath correlations. Indeed, in m
els M12–M14 radiative decay is not coupled to the ba
rendering evolution paths ending in stateba indistinguish-
able from those ending in statebb.

We have simulatedD(t1 ,t2 ;t) @Eq. ~21!# for models
M9 –M11. Because the two-dimensional surfaces and c
tour plots ofD(t1 ,t2 ;t) for these models and various sep
ration times look qualitatively similar, in Fig. 15 we prese
surfaces and contour plots only for modelM9 for t!tB . As
t increases, the amplitude ofD(t1 ,t2 ;t) decays implying
decay of bath correlations~not shown!. Convex contour lines
indicate the presence of correlations between the first
second photon emission events. The contour plots arenot
symmetric with respect to the interchange oft1 and t2 ,
since the lines of equal probability are stretched more al
t1-axis compared tot2-axis. This can be rationalized by re
calling that in this model kinetics is a rate determining s
and that stateaa is more frequently visited~equilibrium
populated!, whereas stateab facilitates faster transfer kinet

FIG. 15. Top: Three-dimensional plot~left! and contour plot~right! of the
differenceD(t1 ,t2 ;t) vs t1 andt2 ~in units of 1027 s) for modelM9 for
t53.031027 s21. Bottom: ^Q(t)& for models M10 ~left panel!, M9
~middle panel! andM11 ~right panel!. Parameters used for a slow bath~solid
lines! are accumulated in Table I. Parameters used for a fast bath mo
M98, M108, and M118 ~dashed lines! are same as those for a slow ba
except thatRab andRba have been multiplied by a factor of ten.
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ics. Because of this, the first photon is emitted~on average!
from stateba and is emitted faster compared to the seco
photon emitted~on average! from statebb.

We have simulated̂Q(t)& for modelsM9 –M11 for a
slow and fast bath. The normalized quantity^Q(t)&/^Q(0)&
is presented in Fig. 15~bottom panels!. For all models a fast
bath curve lies below a corresponding slow bath curve. D
to more frequent jumps in modelsM9 andM11, correlations
live shorter compared to modelM10.

VI. CONCLUSIONS

In this paper we studied the distribution of kinetic rat
in a system where energy transfers between the siteA in
which excitation is created by weak optical pulse and the
B from which a fluorescence photon is emitted. The trans
kinetics is coupled to a two-state jump bath which is n
affected by kinetics.

We have demonstrated how the bath evolution and
distribution of kinetic rates may be studied using one- a
two-point PAT data. A statistical analysis yields physic
quantities related to the dynamics of bath correlations: T
photon arrival time distribution which is directly accessib
through analysis of one-point PAT data was computed,34 the
distributions of arrival times for two photons, etc. The
quantities can be obtained from experimental histograms
PAT data. Using one-and two-photon arrival time distrib
tions, we examined several measures that can be empl
in the statistical analysis of one- and two-point PAT data
probe dynamics of bath correlations and extract the cha
teristic bath evolution time scale.

The arrival time distribution provides information on th
distribution of kinetic rates; the joint distribution of arriva
times of two adjacent photons probes both the distribution
kinetic rates and stochastic bath jumps on the time scal
separation time. Similar information can be obtained
looking at emission from chromophoreA. However, the
present study of emission fromB is a good starting point for
an extended kinetic model where excitation transfers am
n chromophoresA1 ,A2 , . . . ,An . This model may apply to
electron transfer in DNA,8 or hole transfer in peptides.9

Due to coupling of the excitation transfer process to
bath, the arrival time distributions exhibit interesting types
static and dynamic behaviors, caused by changing weigh
the relevant bath evolution paths. This can only be obser
through SM measurements; simulated bulk quantities~corre-
sponding to optical measurements on the bulk! yield a highly
averaged picture where the entire spectrum of static and
namic behaviors is averaged out.

Coupling of the kinetics to a slow~compared to kinetic
timescale and radiative lifetime! bath results in longer~on
average! photon arrival times. The distribution of arriva
times exhibits long tails indicating the presence of ba
memory to its initial state. However, when the kinetics
coupled to a fast bath, the arrival time distribution narro
~loss of memory! and arrival times become short. Thistime
domaineffect is quite similar to motional narrowing in th
frequency domain.

The joint distributions of arrival times allows to stud
dynamics of correlations of bath variables. First, asy

els
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metry of contour plots implies asymmetic bath evoluti
paths, which in turn implies inequivalence of kinetic rat
associated with different bath state channels. Second, ch
in the amplitude~shape! of the two-dimensional surfaces~of
contour lines in the contour plots! for qba(t1 ,t2 ;t),
qbb(t1 ,t2 ;t) as well as the ensemble average quan
^Q(t1 ,t2 ;t)& for different separation timest1 and t2 signi-
fies a presence of bath correlations. As these correlat
decay, the amplitude decreases~contour lines change from
convex out to convex in when viewed along the diago
t15t2). n-point experiments considered here, can also
employed to study lineshape fluctuations.25

Finally we show how to use the one- and two-point d
tributions of photon arrival timesQ(t1) and Q(t1 ,t2 ;t) to
probe the characteristic bath evolution timescale. Using
factorization~17! for the conditional probabilityQ(t1 ,t2 ;t),
expression~20! for ^Q(t1 ,t2 ;t)& and algebra of the matrice
Geq andGneq presented in Appendix A, we obtain

S~ t1 ,t2![
^Q~t1 ,t2 ;t2!&2^Q~t2!&^Q~t1!&

^Q~t1 ,t2 ;t1!&2^Q~t2!&^Q~t1!&

5exp@2R~ t22t1!#, ~27!

Eq. ~27! is valid for the two-state jump model of the bat
arbitrary number of protein sites (A,B,...) partaking in ex-
citation transfer and a wide range of the relevant time sca
Equation~27! contains average quantities accessible from
experimental one- and two-point histograms of the pho
arrival times. Therefore, using the average distribution
arrival times^Q(t1)& obtained from one-point measureme
PAT data and the average joint distributions^Q(t1 ,t2 ;t1)&
and ^Q(t1 ,t2 ;t2)& obtained from two-point measureme
PAT data for only two interphoton separation timest2.t1 ,
we can find the bath time scaleR. We have verified the
validity of Eq. ~27! by computing the ratioS(t1 ,t2) for short
t151.0 ms and longt2510.0ms separation times and value
of arrival times t1 and t2 corresponding to maximum o
^Q(t)& for modelsM9 –M11 and obtained a good agre
ment betweenR used in simulation of one- and two-poin
measurement and the value ofR obtained from Eq.~27!.
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APPENDIX A: GREEN FUNCTIONS FOR THE
MULTI-STATE BATH EVOLUTION

In this section we derive the propagatorG(t) for two-
state jump bath used in Eq.~17!. In then-state model of the
bath the dynamics of a bath variableX is described by the
master equation

ẇi~ t !5(
i , j

Rji wj~ t !2Ri j wi~ t !, ~A1!
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wherewi , i 51,2,...n denote the probability density ofX to
be in stateX1 ,X2 ,...,Xn respectively;Ri j , are the rate con-
stants for interconversion from statei to state j . We solve
Eqs.~A1! by recasting it into a matrix form

Ẇ~ t !5RW~ t !, ~A2!

whereRi j 5Ri j and Rii 52( iÞ jRji . To calculate the prob-
ability densityW(t1) at time t1 , given the probability den-
sity is W(t0) at time t0 , we define the conditional probabil
ity density matrix

G~ t1 ,t0!5G~ t12t0,0!5G~ t !. ~A3!

Then,W(t) can be computed as

W~ t !5G~ t !W~0!, ~A4!

andG(t) is governed by the same master equations~A2! that
governW(t), i.e.,

Ġ~ t !5RG~ t !, ~A5!

Eq. ~A5! can be solved in the Laplace domain as

G̃~s!5~sI2R!21. ~A6!

Solving for the two-state model~see Fig. 2! with a ki-
netic rate matrix given by Eqs.~4!, we obtain matrixG(t) by
inverse Laplace transformation

G~ t !5~Geq1Gneqe2Rt!, ~A7!

whereR5Rab1Rba and the 232 matricesGeq and Gneq

are given by

Geq5R21S Rab Rab

Rba Rba
D ,

and

Gneq5R21S Rba 2Rab

2Rba Rab
D . ~A8!

Note thatGeq andGneq are orthogonal and idempotent m
trices, i.e.,

GeqGneq5GneqGeq50, GeqGeq5Geq,
~A9!

GneqGneq5Gneq,

where0 is a 232 matrix with zero entrees, and

Geq1Gneq50. ~A10!

The equilibrium population vectorweq is an eigenstate ofGeq

with the unit eigenvalue and in the kernel ofGneq

Geqweq5weq, Gneqweq50̄, ~A11!

where 0̄a zero column vector.

APPENDIX B: LIMITING CASES FOR k, K, AND R

In this section we present expressions for the element
conditional distribution matrixQ(t1)5$Q(t1)% i j defined in
Eq. ~11! for limiting cases I–IV discussed in Sec. IV.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Case I: Off-diagonal termsQba,ab and Qbb,aa are neg-
ligible and

Qba,aa~t1!5kbKab
a e2z1

at12e2z2
at1

~z2
a2z1

a!
,

~B1!

Qbb,ab~t1!5kbKab
b e2z1

bt12e2z2
bt1

~z2
b2z1

b!
,

where

z1,2
a 5 1

2 @kb6Akb
222kb~Kba

a 2Kab
a !#,

~B2!
z1,2

b 5 1
2 @kb6Akb

222kb~Kba
b 2Kab

b !#.

Case II: As in case I, the diagonal terms ofQ(t1) are
given by same Eqs.~B1! with

z1,2
a 5 1

2 @Kab
a 1Kba

a 6A~Kab
a 1Kba

a !222kb~Kba
a 2Kab

a !#,

z1,2
b 5 1

2 @Kab
b 1Kba

b 6A~Kab
b 1Kba

b !222kb~Kba
b 2Kab

b !#.
~B3!

Case III:

Qba,aa~t1!5kbS Kab
a ~z12Rba2Kab

b !~e2z1t12e2kbt1!

~kb2z1!~z12z2!

2
Kab

a ~z22Rba2Kab
b !~e2z2t12e2kbt1!

~kb2z2!~z12z2!
D ,

Qba,ab~t1!5kbS Kab
a Rba~e2z2t12e2kbt1!

~kb2z2!~z12z2!

2
Kab

a Rba~e2z1t12e2kbt1!

~kb2z1!~z12z2!
D ,

Qbb,aa~t1!5kbS Kab
b ~z12Rab2Kab

a !~e2z1t12e2kbt1!

~kb2z1!~z12z2!

2
Kab

b ~z22Rba2Kab
a !~e2z2t12e2kbt1!

~kb2z2!~z12z2!
D ,

Qbb,ab~t1!5kbS Kab
b Rab~e2z2t12e2kbt1!

~kb2z2!~z12z2!

2
Kab

b Rab~e2z1t12e2kbt1!

~kb2z1!~z12z2!
D , ~B4!

where

z1,25
1
2@~Rab1Rba!

6A~Rab1Rba!12~Rab2Rba!~Kab
a 2Kab

b !#.

~B5!

Case IV:

Qba,aa~t1!5kbe2kbt1S Rba1Rabe2(Rba1Rab)t1

Rba1Rab
D

3S Kab
a 2Kab

a e2(Kab
a

1Kba
a )t1

Kab
a 1Kba

a D ,
Downloaded 09 Dec 2002 to 128.151.176.185. Redistribution subject to 
Qba,ab~t1!5kbe2kbt1S Rba2Rbae2(Rba1Rab)t1

Rba1Rab
D

3S Kab
b 2Kab

b e2(Kab
b

1Kba
b )t1

Kab
b 1Kba

b D ,

Qbb,aa~t1!5kbe2kbt1S Rab2Rabe2(Rba1Rab)t1

Rba1Rab
D

3S Kab
a 2Kab

a e2(Kab
a

1Kba
a )t1

Kab
a 1Kba

a D ,

Qbb,ab~t1!5kbe2kbt1S Rab1Rbae2(Rba1Rab)t1

Rba1Rab
D

3S Kab
b 2Kab

b e2(Kab
b

1Kba
b )t1

Kab
b 1Kba

b D . ~B6!
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