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One-dimensional transport with dynamic disorder
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We study the mean quenching time distribution and its moments in a one-dimensionalN-site donor-bridge-
acceptor system where all sites are coupled to a two-state jump bath for arbitrary disorder and an arbitrary ratio
k[^k&/R of the bath jump rateR and the average hopping rate^k&. When kN;1, the quenching time
distribution has long power-law tails even when the waiting times are exponentially distributed. These disap-
pear for kN!1 where the hopping rate self-averages on the bath relaxation time scale. In the absence of
disorder or for smallk, the mean quenching time scales linearly withN. Otherwise, we observe a power law,
;N11g, with a crossover to linear scaling (g50) for largeN. Distributions of particle position, its second
moment, velocity and diffusion coefficient are computed in the infiniteN limit. For times longer thanR21, the
dynamic disorder self-averages and the average position, velocity, and diffusion coefficient scale linearly in
time.
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I. INTRODUCTION

Disordered systems are usually divided into two clas
depending on whether the disorder is annealed~dynamic! or
quenched~static! @1–4#. This paper studies the scaling pro
erties of one-dimensional directed walk@5–7# with dynamic
disorder. Models of directed walk have been used to ana
numerous systems, including excitation transport from a
nor chromophore through a bridge of intermediate sites to
acceptor where this excitation is quenched@8–12#, lateral
diffusion of proteins on the surface of a membrane@13–15#,
charge transport in single molecular wires and DNA@16–
18#, diffusion in ion channels@19–24#, and polymer translo-
cation through a narrow pore@25–29#.

The effects of fluctuating environment on transport are
considerable interest@30–36#. WhenkN!1, whereN is the
total number of sites,k[^k&/R, R is the bath jump rate, and
^k& is the average hopping rate, transport is unaffected
environment fluctuations. However, this is not the case in
presence of dynamic disorder, i.e., when transport and
jumps are coupled and occur on a compatible time sc
This is an important regime relevant to many biophysi
systems. For example, excitation transfer may occur w
the bridge conformation fluctuates spanning a manifold
conformational states. Some of these states may facil
fast transport whereas in others the excitation may be trap
@35,37#. Protein rare jumps over or through the cytoskele
fence between ‘‘corralled regions’’ in membranes may ta
place over the same time scale as the reorganization o
matrix itself @13#. Matrix fluctuations can either open o
close the gate of a ‘‘skeleton fence’’ and thus, may aff
protein transport. Charge transfer from donor to an acce
can occur while a molecule undergoes vibrational energy
distribution which may alter the donor and acceptor wa
function overlap and thereby affect conductance. Ion dif
sion may occur at comparable time as geometry fluctua
of a channel@19–23#, which may increase or decrease t
effective size of the bottleneck region and therefore, aff
ion diffusion. Furthermore, when an ion channel is control
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by more than one fluctuating bottleneck, diffusion can a
be affected by correlations among bottlenecks@19#.

Dynamic disorder is also important in the studies
glassy systems who have a broad spectrum of time sc
with no clear separation between fast and slow degree
freedom. The dynamic behavior of primary collective d
grees of freedom may be coupled to other modes which
low the dynamics only on slightly shorter~or longer! time
scale.

The equilibrium behavior of glassy systems is studied
the ‘‘replica trick’’ @38#. The existence of many minima o
the free-energy landscape, unrelated by symmetry, gives
in the mean-field treatment to ‘‘replica symmetry breaking
This transition can be understood in terms of the extrem
statistics of the Boltzmann weights of the low-lying stat
@38#. Their glassy dynamics are exhibited by lack of ergo
icity, violation of the fluctuation-dissipation relation, and a
ing. The correlation and response functions depend se
rately on the initial and final times and not on their differen
alone@39#. This transition was found for the mean first pa
sage time of a random walk on a random Cayley tree as
temperature is lowered@40#.

Ranges of applicability of these mean-field results to
alistic systems are still debated and alternative approac
are needed to go beyond mean-field theory. Here, we pre
such an approach by studying directly the effect of the no
time scales on the dynamics of a directed random w
which models drift caused by a strong external field. In t
absence of noise, the behavior is simple: the walker hop
the right to its neighboring site with a site independent ra
The distance covered varies linearly in time and the veloc
is given by the intersite distance to the hopping time ra
The dynamic disorder is modeled by coupling of the walk
a parallel channel. Despite the simplicity of this system
very rich variety of possible behaviors is found when tim
scales of diffusion and fluctuation of the environment a
entangled.

Random walks which serve as intuitive physical mod
for propagation of excitation or material transport in co
©2003 The American Physical Society01-1
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FIG. 1. Continuous time ran-
dom walk amongN sites in the
presence of dynamic disorder rep
resented by jumps between ba
statesa and b: excitation is cre-
ated in the first site, which under
goes a transition from the groun
u0& to the excitedu1& state, and is
destroyed after it arrives to the ter
minal siteN.
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densed phases@5–9#, may exhibit long tails in the distribu
tion of various quantities. The directed walk considered h
involves a single walker hopping to the next nearest neigh
on a line with N sites and is a limiting case of the usu
random walk when a jump back to the previous site can
neglected. It can be used to model excitation or mate
transport subject to an external potential. The probabi
density of making a jump is given by waiting time distrib
tions. When these distributions are exponential, the direc
walks may be described by an ordinary master equation w
random transition rates. For example, the directed walls
be used to model pulling of single DNA molecules by mo
proteins in bacteriophages@41#.

In this paper, we model fluctuations of the environment
the bath undergoing jumps between two states, one favo
transport whereas the other acts as a trap. In many ca
environment degrees of freedom can be modeled by two
evant states@42–47#. For instance, when the diameter of
bottleneck~or dimensions of the gate of a skeleton fenc!
exceeds or equal to the characteristic size of diffusing e
ties ~ions, protein, etc.!, the channel~gate! is open, otherwise
it is closed@48#. When the overlap of donor and accept
wave functions is nonvanishing, the charge hops to the n
est neighbor. When this overlap is zero, charge transfe
prohibited. In this dynamic gating picture, ‘‘the door’’ sto
chastically fluctuates between open or closed states.

While the scaling properties of one-dimensional rand
walks in the presence of static disorder, i.e., the distribut
of transition rates for various sites in the chain, have b
extensively studied by many authors@49–51#, dynamic dis-
order is less studied. The simple one-dimensional rand
walk was studied in the presence of dynamic and static
order when fluctuations are either fast or slow than the
fusion itself@49,52#. However, modeling the intermediate r
gime is more difficult. We have previously analyzed t
distribution of excitation arrival times for a donor-accept
system coupled to a two-state jump bath@12#. We show that
a directed random walk in anN-site donor-bridge-accepto
system with exponential waiting time distributions for ho
ping between nearest-neighboring sites acquires memory
previously visited sites in the presence of dynamic disord

Our model is defined in Sec. II. In Sec. III, we employ
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generating Green function method to compute the distri
tion of probability of quenching times. In Sec. IV, we simu
late the quenching time distribution and study the scaling
the mean and second moment of quenching time withN. The
distribution of particle coordinate, its average, the distrib
tion of second moments of coordinate, and its average
studied in Sec. V. We also compute the distribution
velocity and diffusion coefficient and their average. Our
sults are discussed in Sec. VI. The generating function
the recursive computation of Green functions is given in
Appendix.

II. THE MODEL

Consider anN-site donor-bridge-acceptor system, whe
an excitation is created on the donor site~see Fig. 1!, hops
through bridge sites 2, . . . ,N21, and finally reaches the ter
minal site N where it is quenched. The excitation transf
process is coupled to a fluctuating environment modeled
the two-state jump bath with statesa andb @43#. We assume
a directed continuous time walk with nearest-neighbor h
ping from sitei to i 11 determined by the waiting time dis
tribution functionsc i

a(t),c i
b(t) for the excitation jumps (i

51, . . . ,N21) when the bath is in statem5a or b. Bath
fluctuations are described by the ratesRab and Rba of b
→a anda→b jumps, respectively, and are independent
the excitation. Finally, the quenching of excitation fro
statesuNa& anduNb& of the terminal site is described by th
waiting time distributionscD

a (t) andcD
b (t).

The time evolution of directed walk probabilitiesP[ i ] (t)
of finding excitation in sitei 51,2, . . . ,N is described by the
generalized master equations which in matrix form are giv
by

Ṗ~ t;m!5E
0

t

dtF~t;m!P~ t2t;m!, ~1!

wherem5a,b andP(t;m) denotes the vector of population
of sitesi 51,2, . . . ,N with vector componentsP[ i ] (t;m) de-
fined by
1-2
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P[ i ]~ t;m![S Pa
[ i ]~ t !

Pb
[ i ]~ t !

D ~2!

F(t;m) is a N3N two-block-diagonal matrix of 232 matrix F( i )(t;m) of generalized rates of excitation transfer and b
jump rate matrixR,

F~ t,m!5S 2F(1)~ t;m!2R 0 . . . 0

F(1)~ t;m! 2F(2)~ t;m!2R . . . 0

0 . . . F(N21)~ t;m! 2F(D)~ t;m!2R
D , ~3!
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where

F( i )~ t;m!5S f i
a~ t ! 0

0 f i
b~ t !

D , ~4!

F(D)~ t;m!5S fD
a ~ t ! 0

0 fD
b ~ t !

D , ~5!

and

R5S Rab 2Rba

2Rab Rba
D . ~6!

Using the Laplace transformation

f̃ ~z![E
0

`

dte2ztf ~ t !, ~7!

the matrix elements of Eqs.~4! and~5! may be computed in
terms of the waiting time distributions

f̃ i
a,b~z!5zc̃ i

a,b~z!@12c̃ i
a,b~z!#21, ~8!

f̃D
a,b~z!5zc̃D

a,b~z!@12c̃D
a,b~z!#21. ~9!

With the choicec i(t,m)5ki
m exp$2ki

mt% for i 51,2, . . . ,N
and cQ(t;m)5kD

m exp$2kD
mt%, F(t) reduces to the ordinary

kinetic rate matrix withf i(m)5ki
m and fQ(m)5kD

m , and

Eqs. ~16! become ordinary master equations, i.e.,Ṗ(t,m)
5F(m)P(t,m).

The generalized master equations~1! may be solved by
defining the conditional probability matrixG for the excita-
tion to reside in stateu j m& at time t8 given that excitation
was in stateu in& at earlier timet ( i , j and m,n denote sites
1,2, . . . ,N and bath statesa,b, respectively!, i.e.,

G~ t,in;t8, j m![@G~ t2t8;0!#$ in%,$ j m% , ~10!

whereim5 ia,ib is the site and bath state dependent ind
P[ i ] (t;m) can then be expressed as

P[ i ]~ t;m!5P~ t; im!5(
j m

G~ t,in;0,j m!P~0; j m!, ~11!
01110
.

whereP(0; j m) is the probability to find excitation in stat
u j m& at time t50. G is given in Laplace domain by

G̃~z;m!5@zI2F̃~z;m!#21, ~12!

andP(t;m) is obtained by inverse Laplace (L21:z→t) trans-
form and substitutingG(t;m) back into Eq.~12!.

To study the scaling of quenching times withN, we need
to compute the Green functions, Eq.~12!. Because excitation
is created in site 1, a 232 matrix of Green functionsGmn

[N] (t)
is formed by elements of the 2N32N matrix L21$@zI
2F̃(z;m)#21% of propagators of excitation from stateu1m&
to stateuNn& (mn5a,b). There are in total 2N21 bath state
dependent pathways for propagation of excitation rep
sented by 2N21 diagrams for each of the propagatorsG̃mn

[N] (z)
(mn5a,b) resulting in total of 2N possible diagrams repre
senting propagatorsz1f̃b

i(z)1Rba andz1f̃a
i(z)1Rab of

excitation in statesu ia& andu j b&, excitation hops from sitei
to site i 11 while being in statea or b described by the
generalized ratesf̃a

i(z) or f̃b
i(z), and bath jumps rates

These fragments are presented in Fig. 2~panelA). In each
diagram, the number of propagatorsp plus the number of
bath jumpsN2p is equal to the total number of sitesN. The
number of diagrams withp propagators andN2p bath
jumps is given by the binomial distributionCN

p 5N!/ @p!(N
2p)! #. Diagonal elements of the Green function matr
G̃aa

[N] (z) andG̃bb
[N] (z), have either even number of bath jump

or zero. Off-diagonal elements,G̃ab
[N] (z) and G̃ba

[N] (z), have
either odd number of jumps or zero. Some of the diagra
for computation of Green functionsG̃aa

[N] (z) andG̃ab
[N] (z) for

N52 and 3 are given in Fig. 2~panelB).
The entire distribution of quenching probabilities for a

bitrary N is obtained by summing over all 2N21 diagrams for
each of the four elements of Green function matrix. Th
matrix can be obtained numerically by diagonalizing the m
trix F(t) itself when the waiting time distributionsc ’s are
exponential or finding the inverse of matrix@zI2F̃(z)# for
generalc ’s followed by inverse Laplace transformation
the time domain. It becomes a formidable task for largeN.

We have computed the Green functions for theN-site
problem recursively starting from Green functions for
single site using a generating function approach outlined
the Appendix. The Green functions for theN-site problem
are given by
1-3
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FIG. 2. PanelA: propagators,
waiting time distributions for ex-
citation jumps ia→ j a and ib
→ j b and bath jumpsia→ ib and
ib→ ia. PanelB: Green functions

G̃aa
[N] (z) and G̃ab

[N] (z) for calcula-
tion of the excitation population
the last site forN52 andN53.
s
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te
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ility
S G̃aa
[N]~z!

G̃ab
[N]~z!

D 5S l̃1
N21~z! 0

0 l̃2
N21~z!

D S G̃aa
[1]~z!

G̃ab
[1]~z!

D , ~13!

where G̃aa
[1] (z) and G̃ab

[1] (z) are single site Green function

and l̃1(z), l̃2(z) are the eigenvalues of the generating m
trix Ãn(z) given by Eq.~A2!.

All our calculations were carried out using Eq.~13!. It
shows that the Green functions for the excitation trans
process can be computed from the Green functions for
two-eigenchannel problem in which this excitation is crea
and destroyed on a single site.

III. QUENCHING PROBABILITY DISTRIBUTIONS

We now study a directed walk with no disorder so th
c i

a,b5ca,b for i 51,2, . . . ,N21. Assuming exponentia
waiting time distribution

ca,b~ t !5ka,be2ka,bt, ~14!
01110
-

r
e

d

t

cD
a,b~ t !5kD

a,be2kD
a,bt, ~15!

and using Eqs.~13!, we have computed probabilitiesQa
[N] (t)

and Qa
[N] (t) of excitation quenching from terminal state

uNa& and uNb& after it has been created in site 1 at timet
50 defined by

S Qa
[N]~ t !

Qb
[N]~ t !

D[S kD
a 0

0 kD
b D S Gaa

[N]~ t ! Gab
[N]~ t !

Gba
[N]~ t ! Gbb

[N]~ t !
D S weq

a

weq
b D ,

~16!

where weq
a 5Rab /(Rab1Rba), weq

b 5Rba /(Rab1Rba) are
equilibrium populations of statesu1a& and u1b& of the first
site, respectively, and the average quenching probab
^Q[N] (t)& given by

^Q[N]~ t !&5Qa
[N]1Qb

[N] . ~17!

We computedQa
[N] (t), Qb

[N] (t), and ^Q[N] (t)& for the
models M1 –M9 of fast and slow channels, i.e.,ka!kb.
Models M1 –M9 are summarized in Table I. We setkD

a

1-4
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TABLE I. Parameters of modelsM1 –M12 used in Figs. 3–12.

Model ka kb Rab Rba kD
a kD

b

M1 1.0 7.0 0.1 0.1 1.03102 1.03102

M2 1.0 7.0 1.0 1.0 1.03102 1.03102

M3 1.0 7.0 25.0 25.0 1.03102 1.03102

M4 1.0 7.0 0.1 0.4 1.03102 1.03102

M5 1.0 7.0 1.0 4.0 1.03102 1.03102

M6 1.0 7.0 20.0 80.0 1.03102 1.03102

M7 1.0 7.0 0.4 0.4 1.03102 1.03102

M8 1.0 7.0 4.0 1.0 1.03102 1.03102

M9 1.0 7.0 80.0 20.0 1.03102 1.03102

M10 1.0 10.0 0.05 0.05
M11 1.0 10.0 0.5 0.5
M12 1.0 10.0 50.0 50.0
i

we

t
g,

n-
inal

t
bil-
kes
er
5kD
b5kD and assumed that quenching is fast compared w

excitation transfer and bath jumps, i.e.,kD@k,R and when
bath jumps are slowk@1 (M1, M4, andM7), intermediate
k;1 (M2, M5, andM8), and fastk!1 (M3, M6, and
M9) compared with excitation hopping rateKa,b which in
the case of exponential waiting time distributions of Eq.~14!
is given by

Ka,b5

E
0

`

dtca,b~ t !

E
0

`

dtca,b~ t !t

5ka,b. ~18!

In modelsM1 –M3, Rab5Rba . In modelsM42M6, Rba
,Rab , where bath stateb facilitating faster transfer, and in
modelsM7 –M9, Rba.Rab .

In Fig. 3, we displayQa
[N] (t), Qa

[N] (t), and^Q[N] (t)& for
01110
thmodelsM1 –M3 andN54, 10, and 20. For largerN, peaks

of probabilities shift toward longer times. Plots ofQa
[N] (t),

Qa
[N] (t), and^Q[N] (t)& for modelsM1 andM2 exhibit long

tails which gradually disappear as jump rates increase as
move from M1 to M2 and to M3. Note the remarkable
difference in the time profile ofQa

[N] (t) and Qb
[N] (t) for

modelsM1 andM2. This is not the case forM3 asQa
[N] (t)

differs from Qb
[N] (t) only in the amplitude. Because ‘‘fas

channel’’ primarily contributes to excitation quenchin
^Q[N] (t)& resemblesQa

[N] (t).
ModelsM4 –M6 are depicted in Fig. 4. Here, fast cha

nel is less populated as excitation transfers to the term
siteN54, 10, and 20 and the weights ofQa andQb in ^Q&
are roughly equal. After creation of excitation in site 1 at
50, the fast channel probability quickly passes the proba
ity in slow channel. Coupling between these channels ma
faster~slower! part to decay from the terminal site at short
y

FIG. 3. Distribution of excita-
tion quenching probabilities
Qa

[N] (t) ~left panels! and Qb
[N] (t)

~middle panels! of the terminal
site statesuNa& and uNb& and the
average quenching probabilit
Q[N] (t) ~right panels! for N54
~dashed lines!, 10 ~dotted lines!,
and 20 ~solid lines! for models
M1 ~top!, M2 ~middle!, and M3
~bottom!.
1-5
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FIG. 4. Distribution of excita-
tion quenching probabilities
Qa

[N] (t) ~left panels! and Qb
[N] (t)

~middle panels! of the terminal
site statesuNa& and uNa& and the
average quenching probabilit
Q[N] (t) ~right panels! for N54
~dashed lines!, 10 ~dotted lines!,
and 20 ~solid lines! for models
M4 ~top!, M5 ~middle!, and M6
~bottom!.
ur
s

or

is
ia
di
~longer! times which shows up in the double-peaked feat
of ^Q[N] (t)& for modelM4. The shorter time peak become
more of a cusp for modelM5 and disappears altogether f
modelM6.

Comparing Figs. 3 and 4, we see thatQa , Qb , and^Q&
for slow and intermediate bath exhibit power-law tails. Th
implies that excitation transfer retains memory to its init
state. In fact, using the eigenchannel picture of the Appen
Q̃a

[N] (z) andQ̃a
[N] (z) can be recast as
01110
e

l
x,

S Q̃a
[N]~z!

Q̃b
[N]~z!

D 5kDS l̃1
N21~z! 0

0 l̃2
N21~z!

D S G̃aa
[1]~z! G̃ab

[1]~z!

G̃ba
[1]~z! G̃bb

[1]~z!
D

3S weq
a

weq
b D , ~19!

with the eigenvaluesl̃1(z) and l̃2(z) given by
l̃1,2~z!5
1

2det@M̃ ~z!#
$2kakb1R^k&1zK6A~2kakb1R^k&1zK!224kakb@z21z~R1K !1kakb1R^k&#%, ~20!
s
cts

-

g

where the average ratêk& is defined by ^k&5weq
a ka

1weq
b kb, R5Rab1Rba , K5ka1kb, and

M̃ ~z!5S z1ka1Rba Rba

Rab z1kb1Rab
D . ~21!

Taking inverse Laplace transform of Eq.~19!, we obtain

Qa
[N]~ t !5weq

a E
0

t

dt l1
N21~t!Qaa

[1]~ t2t!

1weq
b E

0

t

dt l2
N21~t!Qab

[1]~ t2t!, ~22!
Qb
[N]~ t !5weq

a E
0

t

dt l1
N21~t!Qba

[1]~ t2t!

1weq
b E

0

t

dt l2
N21~t!Qbb

[1]~ t2t!.

Qmn
[1] (t) (mn5a,b) in Eq. ~22! represent memoryles

propagation of excitation on a single site. Memory effe
enter the dynamics through the eigenvaluesl̃1(z) andl̃2(z)
taken to powerN21 which in the time domain become in
tegral memory kernelsl1

N21(t) andl2
N21(t).

Note that whenRab5Rba50, G̃ab
[1] (z) andG̃ba

[1] (z) van-
ish and eigenvalues~20! of transformation~A2! are given by
l̃1

0(z)5ka/(z1ka) and l̃2
0(z)5kb/(z1kb), where super-

script ‘‘0’’ denotes no disorder. The distribution of quenchin
probability becomes
1-6
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@Qm
[N] #0~ t !5Pm~0!

G~N21!2G„N21,~km2kD!t…

G~N21!~km2kD!N21 e2kDt,

m5a,b, ~23!

where Pm(0) is a populations of stateu1m& at time t50,
G(N)5(N21)!, andG(N,y) is defined by

G~N,y![E
y

`

dte2ttN21, ~24!

In particular, whenkm5kD , Eq. ~23! gives @Qm
[N] #0(t)

5Pm(0)G21(N) @km#NtN21exp$2kmt%. It follows from Eq.
~23! that in the absence of dynamic disorder excitat
quenching probability is exponentially distributed.

From Figs. 3 and 4, we see that the dynamic disor
self-averages for fast bath jump modelsM3 andM6. As a
result, aside from the overall amplitudeQa

[N] (t), Qa
[N] (t),

and^Q[N] (t)& are identical. Invoking eigenchannel represe
tation, the eigenvalues~20! of transformation~A2! in the
limit of fast bath jumps becomel̃1

f b(z)50 and l̃2
f b(z)

5^k&/(z1^k&), where R[Rab1Rba and the superscrip
‘‘ f b’’ denotes fast bath. Vanishingl̃1

f b implies that we no
longer have two interacting eigenchannelsa and b but
rather, the dynamics of quenching probability is now av
aged. As a result, excitation hops in the ‘‘averaged chann
with the average ratêk& and the average quenching pro
ability

^Q[N]~ t !& f b5
G~N21!2G„N21,~^k&2kD!t…

G~N21!~^k&2kD!N21 e2kDt.

~25!

The distribution of quenching probability can be computed
@Qm

[N] # f b(t)5weq
m ^Q[N] (t)& f b. In particular, when̂ k&5kD ,

we obtain^Q[N] (t)& f b5G21(N) ^k&NtN21exp$2^k&t%. In the
limit of large N, ^Q[N] (t)& f b becomes a Gaussian distrib
tion,

^Q[N]~ t !& f b'
^k&

A2pN
expF2

@ t2N/^k&#2

2N/^k&2 G for large N,

~26!

which is a consequence of the central limit theorem. Wh
N→`, the relative width of̂ Q[N] (t)& f b, (AN/^k&)/(N/^k&)
approaches zero and excitation transport becomes a
averaging deterministic process.

Therefore, both in the fast bath jump limit when the d
namic disorder self-averages and in the absence of dyna
disorder, the distribution of quenching probability, given
Eqs.~23! and~25! respectively, is exponential and theN-site
walk can be described as a Markovian process without
cluding explicitely the bath variable. However, whenkN
;1 ~dynamic disorder!, the distribution of quenching prob
ability is governed by Eqs.~22! with nontrivial memory ker-
nelsl1

N21(t) andl2
N21(t), and excitation transfer becomes

non-Markovian walk with memory. For modelsM7 –M9
01110
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~not shown!, we found that the time profile of̂Q[N] (t)& is
dominated by a contribution from a fast channel.

IV. DISTRIBUTION OF QUENCHING TIMES

Using Eqs.~16! for the probability distribution of quench
ing times, we now compute its partial momentsp
51,2, . . . ),

tn
(p)~N![E

0

`

dtQn
[N]~ t !tp, n5a,b, ~27!

tn
(p) is thepth moment corresponding to quenching from sta

uNn&. The total moment of quenching time distribution
given by

^t (p)~N!&5ta
(p)~N!1tb

(p)~N!. ~28!

In Fig. 5, we display partial first momentsta(N), tb(N)
of the quenching time vsN for modelsM1 –M9. Because in
these modelskD@k,R, ta(N), and tb(N) and the mean
quenching time~MQT! ^t(N)& studied below are equivalen
to partial first moments of passage time and the mean-
passage time, respectively.ta(N) andtb(N) for modelsM1,
M4, M7 (k@1) andM2, M5, M8 (k;1) exhibit nonlin-
ear scaling withN. Only when the dynamic disorder ave
ages out, dota(N) andtb(N) scale linearly withN for mod-
els M3, M6, and M9 (k!1). Note that tb(N) ~fast
channel! approaches linear scaling faster thanta(N).

Before analyzing the MQT for modelsM1 –M9, let us
examine the limiting cases of no dynamic disorder (k→`)
or fast bath jumps (k→0) considered in the preceding se

FIG. 5. Partial first momentsta ~left panels! and tb ~right pan-
els! of quenching time vsN for modelsM12M3 ~top!, M4 –M6
~middle!, andM7 –M9 ~bottom!. Size of circles increases with bat
jump rates: small, intermediate, and large circles representk@1,
k;1, andk!1, respectively.
1-7



n

n

i-

-

is

what

ear

re,
ts

ity
f
of

nd

ates

p
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tion. Using the distribution of quenching probability give
by Eqs. ~23! and ~25! in Eqs. ~27! and ~28! and settingp
51, we obtain

^t~N!&05A0N1B0 , ~29!

^t~N!& f b5Af bN1Bf b ,

where the coefficientsA0 , B0 , Af b , andBf b are given by

A05
1

kaPa~0!1
1

kbPb~0!, ~30!

B05S 1

kD
a 2

1

kaD Pa~0!1S 1

kD
b 2

1

kbD Pb~0!,

Af b5^k&21,

Bf b5
1

^kD&
2

1

^k&
,

and the average excitation quenching rate^kD& is given by
^kD&5weq

a kD
a 1weq

b kD
b . Therefore, for a Markovian random

walk in the limit k→` or k→0, the MQT ^t(N)&0 and
^t(N)& f b scale linearly withN. When kD

a,b5ka,b and ^kD&
5^k&, we obtain^t(N)&05A0N and ^t(N)& f b5Af bN.

In Fig. 6, we present log-log plots of̂t(N)& vs N for
modelsM1 –M9. ^t(N)& lie between the upper bound give

FIG. 6. Log-log plots of the mean quenching time vsN for
models M1 –M3 ~top panel!, M4 –M6 ~middle panel!, and
M7 –M9 ~bottom panel!. Size of circles increases with bath jum
rates~see Fig. 5!. Upper curves reflect scaling with no disorder^t&0.
Lower curves are obtained for fast bath jumps^t& f b .
01110
by ^t(N)&0 and the lower bound̂t(N)& f b . When the time it
takes for excitation to reach the siteN is short compared with
1/R, i.e., whenNk@1, the MQT can be reasonably approx
mated by^t&0. For our model parameters,N;1 ~note that
both curveŝ t&0 and^t& f b coincide with data points for mod
els M1 –M9 for N51). In the opposite limit,̂ t&'^t& f b .
Therefore, modelsM1 –M9 tend asymptotically tôt& f b for
largeN ~in our calculationN;20).

The crossover between the two asymptotic regimes
clearly observed whenNk;1. Indeed, the log-log plot for
this case indicates that the apparent exponent is some
larger than one for intermediateN, and only gradually ap-
proaches the scaling form̂t&;N. We have found that in this
parameter regime, the MQT is described by the nonlin
scaling law

^t~N!&5Af bN11g(N)1Bf b , ~31!

whereg is the N-dependent fractional exponent. Therefo
in a context of the MQT the non-Markovian memory effec
~e.g., long tails of the distributions of quenching probabil
depicted in Figs. 3 and 4! are reflected in the deviation o
apparent exponent from the unity in the log-log plot
^t(N)& vs N.

In Fig. 7, we display the fractional exponentg as a func-
tion of N for modelsM1, M2, M4, M5, M7, andM8. g
asymptotically tends to zero for largeN. Faster bath jumps
result in smaller initial amplitude and faster decay ofg.
When Nk@1, the dynamic disorder self-averages a
^t(N)& again approaches linear scaling. In this limit,Af b and
Bf b are given by the average transfer and quenching r
^k& and ^kD& @see the last two Eqs.~30!#.

FIG. 7. Plots of the fractional exponentg vs N for modelsM1,
M2 ~top!, M4, M5 ~middle!, and M7, M8 ~bottom!. Solid
~dashed! curves denotek@1 (k;1) modelsM1, M4, and M7
(M2, M5, andM8).
1-8
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ONE-DIMENSIONAL TRANSPORT WITH DYNAMIC DISORDER PHYSICAL REVIEW E68, 011101 ~2003!
Using the generating Green function technique of the p
vious sections and Eq.~22!, we now Taylor expand Eq.~28!
~with p51) around^t(N)& f b , i.e.,

^t~N!&5^t~N!& f b1gF ]

]g
^t~N!&G

g50

10~g2!, ~32!

and to the first order ing, we obtain

g~N!5k
N21

N ln N
, ~33!

Eq. ~33! implies that the amplitude ofg(N) is proportional
to k and thatg scales asg;1/lnN for large N. When k
→0, g(N)→0.

We have also analyzed partial second moments
quenching timeta

(2)(N) and tb
(2)(N) and the average secon

moment ^t (2)(N)&. ta
(2) and tb

(2) vs N shown in Fig. 8 for
modelsM1 –M9 are similar to the distribution of first mo
mentsta and tb ~Fig. 5!. In Fig. 9, we present the log-log
plots of ^t (2)& vs N for modelsM1 –M9. Again, we observe
similarity in theN profile between̂ t (2)& and^t& ~Fig. 5!. The
log-log plots also indicate that the apparent exponen
larger than two for smallN, but asymptotically approache
the scaling form̂ t2&;N2 for largeN or fast bath jumps.

In Fig. 10, we show the ratio of second moment of t
MQT to the square of the MQT,

r ~N!5
^t (2)~N!&

^t~N!&2 , ~34!

as a function ofN for modelsM1 –M9. This quantity probes
a contribution to quenching times from rare events.r (N)
starts off from a finite value~not equal to 1! and decays with
N, approaching asymptotic valuer (N)51 for largeN. Varia-

FIG. 8. Partial second momentsta
(2) ~left panels! and tb

(2) ~right
panels! of quenching time vsN for models M1 –M3 ~top!,
M4 –M6 ~middle!, andM7 –M9 ~bottom!. Size of circles increase
with bath jump rates as in Fig. 5.
01110
-

f

is

FIG. 9. Log-log plots of̂ t (2)& vs N for modelsM1 –M3 ~top
panel!, M4 –M6 ~middle panel!, andM7 –M9 ~bottom panel!. Size
of circles increases with bath jump rates as in Fig. 5.

FIG. 10. Plots of the dimensionless ratio^t (2)&/^t&2 vs N for
models M1 –M3 ~top panel!, M4 –M6 ~middle panel!, and
M7 –M9 ~bottom panel!. Size of circles increases with bath jum
rates as in Fig. 5.
1-9
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FIG. 11. Top:Va(t) ~left pan-
els!, Vb(t) ~middle panels!, and
^V(t)& ~right panels! vs t for mod-
els M10 ~dotted lines!, M11
~dashed lines!, and M12 ~solid
lines!. Bottom: Dna(t) ~left pan-
els!, Dnb(t) ~middle panels!, and
^Dn(t)& ~right panels! vs t for
modelsM10 ~dotted lines!, M11
~dashed lines!, and M12 ~solid
lines!. Initial populations of states
a and b of the donor arePa(0)
50.95 andPb(0)50.05.
a
n

or

d

m

-

e

tion of r with N demonstrates that higher moments of me
quenching time provide additional information to that co
tained in the MQT.

V. DISTRIBUTIONS OF COORDINATE, VELOCITY,
AND DIFFUSION COEFFICIENT

We now examine the scaling behavior of excitation co
dinaten, velocity V, and diffusion coefficientD in the limit
whenN→`. The velocity distribution is defined by

Vm[
d

dt
nm~ t !, m5a,b, ~35!

and the average velocity function is

^V~ t !&5
d

dt
^n~ t !&5Va1Vb . ~36!

The distribution of excitation coordinatenm(t) and the aver-
age coordinatên(t)& can be obtained by integratingVa(t),
Vb(t), and^V(t)& with initial condition n(0)51.

It follows from Eq. ~1! that

d

dt
^n~ t !&5 (

n50

`

n
d

dt
@Pa

[n]~ t !1Pb
[n]~ t !#

5ka (
n50

`

Pa
[n]~ t !1kb (

n50

`

Pb
[n]~ t !, ~37!

where the total populationsPa[(n50
` Pa

[n] and Pb

[(n50
` Pb

[n] of channela andb obey the system of couple
differential equations

d

dtS Pa~ t !

Pb~ t !
D 5S 2Rba Rab

Rba 2Rab
D S Pa~ t !

Pb~ t !
D , ~38!

Eqs.~38! can be readily solved to give

S Pa~ t !

Pb~ t !
D 5S gaa~ t ! gab~ t !

gba~ t ! gbb~ t !
D S Pa~0!

Pb~0!
D , ~39!
01110
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where the Green functionsgaa(t) and gab(t) are given by
gaa(t)5R21(Rab1Rbae2Rt) and gab(t)5R21(Rab
2Rbae2Rt), respectively, andgba(t) and gbb(t) are ob-
tained by interchanging indicesa↔b. These functions de-
scribe propagation of the total occupation probability fro
channel m to n (m,n5a,b) subject to initial condition
Pa(0)[(n50

` Pa
[n] (0), Pb(0)[(n50

` Pb
[n] (0), and Pa(0)

1Pb(0)51.
Using Eqs.~39!, we obtain for the average velocity func

tion

^V~ t !&5kaweq
a 1kbweq

b 1
Dk

R
@RbaPa~0!2RabPb~0!#e2Rt,

~40!

whereDk[ka2kb is the magnitude of disorder. It follows
from Eq. ~40! that ^V(t)& starts off from its valuekaPa(0)
1kbPb(0) at time t50 and asymptotically approaches th
limit

^V&5 lim
t→`

^V~ t !&5kaweq
a 1kbweq

b , ~41!

whereVa5kaweq
a andVb5kbweq

b is the distribution of ex-
citation velocity. The transient part@second term in Eq.~40!#
decays on the time scale of bath relaxationR21. Thus, dy-
namic disorder self-averages whent@R21.

In Fig. 11 ~upper panels!, we plot the distribution of ve-
locity

Va~ t !5kaweq
a 1R21kaRbaPa~0!exp@2Rt#, ~42!

Vb~ t !5kbweq
a 2R21kbRabPb~0!exp@2Rt#,

and ^V(t)& for modelsM10, M11, andM12 with k@1, k
;1, andk!1, respectively~see Table I!. Note that since in
our calculationDk,0, Vb(t) grows at the expense ofVa(t).
All three quantities,Va(t), Vb(t), and ^V(t)&, approach
their respective asymptotic limits,Va , Vb , and ^V&, as k
→0.

The distribution of thepth moment (p51,2, . . . ) of ex-
citation coordinate is defined by
1-10
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nm
p [ (

n50

`

npPm
[n] , m5a,b, ~43!

wherePa
[n] (t) andPb

[n] (t) are populations of statesuna& and
una&. The average coordinate is given by

^np~ t !&[ (
n50

`

npP[n]~ t !5na
p1nb

p . ~44!

The distribution of coordinatesna(t), nb(t) and the av-
erage coordinatên(t)& can now be obtained by integratin
Va(t), Vb(t), and ^V(t)& subject to initial conditionn(t
50)5n0. For ^n(t)&, we obtain

^n~ t !&5n01~kaweq
a 1kbweq

b !t

1
Dk

R2 @RbaPa~0!2RabPb~0!#~12e2Rt!.

~45!

The distribution of displacement given by

Dna~ t ![na~ t !2na05kaweq
a t1R22kaRbaPa~0!

3~12exp@2Rt# !, ~46!

Dnb~ t ![nb~ t !2nb05kbweq
b t2R22kbRabPb~0!

3~12exp@2Rt# !,

and the average displacement^Dn(t)&[^n(t)&2n0 for mod-
els M102M12 is plotted in Fig. 11~lower panels!. Again,
we see that all three quantities,Dna(t), Dnb(t), and
^Dn(t)& approach linear scaling,Dna(t);kaweq

a t, Dnb(t)
;kbweq

b t, and ^Dn(t)&;(kaweq
a 1kbweq

b )t after the dy-
namic disorder self-averages.

We next examine the distribution of higher moments
excitation coordinatena

p(t), nb
p(t) and higher moments o

the average excitation coordinatênp(t)& (p.1). For
^np(t)&, we obtain

d^np~ t !&
dt

5ka (
n50

`

@~n11!p2np#Pa
[n]~ t !

1kb (
n50

`

@~n11!p2np#Pb
[n]~ t !

5ka(
l 51

p

Cp
l (

n50

`

np2 l Pa
[n]~ t !

1kb(
l 51

p

Cp
l (

n50

`

np2 l Pb
[n]~ t !1 (

l 51

p21

Cp
l @kana

p21~ t !

1kbnb
p21~ t !#1ka (

n50

`

Pa
[n]~ t !1kb (

n50

`

Pb
[n]~ t !,

~47!
01110
f

where Cp
l 5p!/ @ l !( p2 l )! #. Equation~47! implies that the

distribution of pth moments of excitation coordinate can b
computed recursively from the corresponding distribution
moments of orderp21.

The distribution of second momentsna
2(t), nb

2(t) and the
average second moment^n2(t)& are obtained by settingp
52 in Eq. ~47!, i.e.,

d^n2~ t !&
dt

5
d

dt
@na

2~ t !1nb
2~ t !#

5ka@na~ t !1Pa~ t !#1kb@nb~ t !1Pb~ t !#.

~48!

Insertingna(t), na(t), Pa(t), and Pb(t) into Eq. ~48! and
integrating Eq.~48!, we obtain the distribution of secon
moments,

na
2~ t !5na0

2 1Fna0ka1kaweq
a 1

@ka#2

R2 @RbaPa~0!

2RabPb~0!#G t1 1

2
@ka#2weq

a t21S ka

R2 2
@ka#2

R3 D
3@RbaPa~0!2RabPb~0!#~12e2Rt!,

nb
2~ t !5nb0

2 1Fnb0kb1kbweq
b 2

@kb#2

R2 @RbaPa~0!

2RabPb~0!#G t1 1

2
@kb#2weq

b t22S kb

R2 2
@kb#2

R3 D
3@RbaPa~0!2RabPb~0!#~12e2Rt!, ~49!

wherena0
2 5na

2(0), nb0
2 5nb

2(0) are initial conditions (na0
2

1nb0
2 51) and the average second moment is^n2(t)&

5na
2(t)1nb

2(t).
Plots ofDna

2(t), Dnb
2(t), and^Dn2(t)& for modelsM10

2M12 are presented in Fig. 12~upper panels!. The ampli-
tude of Dna

2 for a slow channel (Dnb
2 for a fast channel!

increases~decreases! with bath relaxation time scale. As fol
lows from Eqs.~49! and seen in Fig. 12, all three quantitie
Dna

2(t), Dnb
2(t), and ^Dn2(t)& scale linearly with time for

short times and quadratically for long times. In the interm
diate time regime (Rt;1), the dynamic disorder@terms con-
taining factor 12exp@2Rt# in Eqs.~49!# gives nonvanishing
contribution.

We have also computed the distribution of diffusion fun
tion Da(t) andDb(t) defined by

S Da~ t !

Db~ t !
D 5

1

2

d

dt F S na
2~ t !

nb
2~ t !

D 2S na~ t !2

nb~ t !2D G , ~50!

and the average diffusion function^D(t)&,
1-11
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FIG. 12. Top: Dna
2(t) ~left

panels!, Dnb
2(t) ~middle panels!,

and ^Dn2(t)& ~right panels! vs t
for models M10 ~dotted lines!,
M11 ~dashed lines!, and M12
~solid lines!. Bottom: Da(t) ~left
panels!, Db(t) ~middle panels!,
and ^D(t)& ~right panels! vs t for
modelsM10 ~dotted lines!, M11
~dashed lines!, and M12 ~solid
lines!. Pa(0) andPb(0) are as in
Fig. 11.
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^D~ t !&5
1

2

d

dt
@^n2~ t !&2^n~ t !&2#. ~51!

Expressions forDa(t), Db(t), and ^D(t)& are too lengthy
and will not be presented.

In Fig. 12 ~lower panels!, we displayDa(t), Db(t), and
^D(t)& for modelsM10–M12. Note drastic difference in th
amplitude of diffusion coefficients for slow and fast cha
nels. We see that only after the dynamic disorder avera
out ~i.e., for N such thatNk!1) do Da(t), Db(t), and
^D(t)& approach their limiting distribution given by diffu
sion coefficientsDa,b5 limt→`Da,b(t) and the average dif
fusion coefficient̂ D&5 limt→`^D(t)&. A slow channel~fast
channel! approaches its asymptoticsDa (Db) from below
~above!, which reflects conservation of the total probabili
in channelsa andb.

Note that before the disorder self-averages,Da may be-
come negative, implying the absence of excitation transfe
channela and funneling of the distribution from channela
to channelb at short times. However, as the disorder se
averages at longer times,Da becomes positive.

VI. CONCLUSIONS

In this paper, we studied the effects of a fluctuating en
ronment on transport, modeled by a directed o
dimensional walk. We consider a walker created at timt
50 on the first site of the chain and destroyed at some l
time on a terminal siteN. The fluctuating environment is
described by stochastic jumps between two states of the b
In this stochastic model, transport is affected by the b
dynamics but the bath is not affected by transport.

We studied the dynamics when the waiting time for
walker to hop to the next nearest neighbor are exponent
distributed in a regime when both transport and bath fluct
tions occur on a comparable time scale assuming the s
transfer rates for all sites. The present analysis could be
tended to include both static and dynamic disorder as we
backward transitions.
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Examination of the probability distribution of quenchin
at the terminal site shows that when hopping rates associ
with bath states are notably different, bath state depend
quenching probabilities develop interesting dynamical p
tern ~i.e., anomalously long quenching time tails for a slo
channel and peaks at short times for a fast channel! with the
average quenching probability exhibiting multiply peak
long quenching tails. This implies that in the presence
fluctuating environment whenR is comparable with the
MQT, random walk becomes a non-Markovian process o
the bath is eliminated. When bath jumps are fast compa
with transport time, quenching probabilities and the avera
probability are identically distributed. In this limit, we
merely see the average channel since self-averaging se
on the bath time scale almost immediately.

These findings motivated our study of scaling of the en
distribution of quenching time and the MQT withN. In the
absence of dynamic disorder when the waiting times are
ponentially distributed, the average posing time for a
rected walker is inversely proportional to the hopping ra
and the MQT is linear inN. However, with disorder partia
first moments of quenching time and the MQT^t& notably
deviate from linear scaling. We found that^t&;N11g where
the fractional part of the exponentg scales withN as 1/lnN
and is inversely proportional to the bath jump time sca
Therefore, as the dynamic disorder self-averages, deviat
of ^t& from linear scaling gradually disappear for a long
walk or faster bath jumps. Only whenNk!1, does^t& ap-
proaches asymptotically linear scaling,^t&;N. The exis-
tence of finite fractional counterpartg is directly related to
non-Markovian long tails of the distribution of quenchin
probabilities and is a result of the memory of the rando
walker to its initial state.

We have further examined partial second moments
quenching time and the average second moment^t (2)&. Simi-
lar to the behavior of̂t&, we found deviations of̂t (2)& from
quadratic dependence and that^t (2)&;N2 only after the dy-
namic disorder is self-averaged. In view of the interest
types of dynamic behavior for^t& and^t2&, we examined the
1-12
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inverse problem, namely, how the length of a directed w
scales with time~i.e., ^n& and ^n2& as functions oft) in the
limit when N is infinite. We computed the distribution o
displacements, average displacement, the distribution of
placement second moments, and the average second mo
of displacement. We have shown that the distribution
higher (pth) moments of coordinate can be computed fro
the distribution of moments of lower order (p21).

Similar to ^t(N)& and ^t2(N)&, ^Dn(t)&, and ^Dn2(t)&
exhibit interesting scaling behavior with time:^Dn& scales
linearly with t only after the transient part reflecting dynam
disorder decays to zero on the time scaleR21; ^Dn2& scales
linearly with time for times shorter thanR21 and quadrati-
cally for times longer thanR21 with the cross over facili-
tated by the transient term~decaying exponentially on th
time scaleR21) coming from dynamic disorder. We hav
also computed the distributions of velocity and diffusion c
efficient, and the average velocity and diffusion coefficie
and found that only after the dynamic disorder self-averag
do distributions of velocity and diffusion coefficients a
proach their limiting constant values.
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APPENDIX: RECURSIVE CALCULATION
OF THE GREEN FUNCTIONS

The Green functionsG̃aa
[n11](z) and G̃ab

[n11](z) for the
(n11)-site transfer problem can be obtained from Gre
functionsG̃aa

[n] (z) and G̃ab
[n] (z) for the n-site problem by the

following matrix transformation:

S G̃aa
[n11]~z!

G̃ab
[n11]~z!

D 5Ãn~z!S G̃aa
[n]~z!

G̃ab
[n]~z!

D , ~A1!

where the generating matrixÃn(z) is defined by

Ãn~z![
1

det@P̃[n]~z!1R#
@P̃[n]~z!1R#F̃(n)~z!, ~A2!

where matrixP̃[n] (z) of excitation propagators is given by

P[n]~z!5S z1f̃n
b~z! 0

0 z1f̃n
a~z!

D , ~A3!
d

y

01110
k

is-
ent
f

-
t
s,

e
s

n

matrix F̃(n)(z) is obtained by Laplace transformation of e
trees of matrixF(n)(t) given by Eq.~4!, and matrixR is
given by Eq.~6!. Similarly, Green functionsG̃ba

[n11](z) and

G̃bb
[n11](z) can be obtained fromG̃ba

[n] (z) andG̃bb
[n] (z) by the

transformation in which we have interchange
f̃n

a(z)↔f̃n
b(z) andRab↔Rba .

The matrix transformationÃn(z) in Eq. ~A1! allows to
derive a recursion relation between then-site and (n11)-site
problem. Alternatively, the matrix transformation@Ãn(z)#21

inverse toÃn(z), reduces the (n11)-site problem into the
n-site problem. Therefore, applying transformationÃn(z) to
Green functionsG̃aa

[1] (z) and G̃ab
[1] (z) for 1-site problemN

21 times, we obtain Green functions forN-site problem, i.e.,

S G̃aa
[N]~z!

G̃ab
[N]~z!

D 5Ãn
N21~z!S G̃aa

[1]~z!

G̃ab
[1]~z!

D . ~A4!

Although Eq.~A4! has a simple form, it is not practical fo
computations with largeN. To make it more useful, we solv
the eigenvalue problem forÃn(z), i.e.,

Ãn~z!S G̃aa
[1]~z!

G̃ab
[1]~z!

D 5ãn~z!S G̃aa
[1]~z!

G̃ab
[1]~z!

D , ~A5!

whereãn(z) is the matrix of eigenvaluesl̃n,1(z) andl̃n,2(z)
of An(z).

In the absence of static disorder,l̃1,1(z)5l̃2,1(z)5•••

5l̃1(z) and l̃1,2(z)5l̃2,2(z)5•••5l̃2(z), and solving the
eigenvalue problem~A5! N21 times, we finally obtain Eq.
~13!.

Equation~13! sums the 2N21 diagrams in calculation of
G̃aa

[N] and G̃ab
[N] and the result is) i 52

N21l̃ i ,1G̃aa
[1] (z) and

) i 52
N21l̃ i ,2G̃ab

[1] (z), respectively. Note that the eigenvaluesl̃ i ,1

and l̃ i ,2 must remain invariant with respect to the inte
changea↔b, and for the other pair of Green functionsG̃ba

[N]

andG̃bb
[N] , we obtain

S G̃ba
[N]~z!

G̃bb
[N]~z!

D 5S l̃1
N21~z! 0

0 l̃2
N21~z!

D S G̃ba
[1]~z!

G̃bb
[1]~z!

D . ~A6!

The bath state dependentaa and ab elements of Green
function matrix forN-site problem depend onaa and ab
elements for the problem involving a single site. In th
‘‘two-eigenchannel’’ picture, excitation pathways from sta
of the bathu1m& to stateuNn& (m, n5a, b) are decoupled.
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