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Dynamic force spectroscopy and steered molecular simulations have become powerful tools for
analyzing the mechanical properties of proteins, and the strength of protein-protein complexes and
aggregates. Probability density functions of the unfolding forces and unfolding times for proteins,
and rupture forces and bond lifetimes for protein-protein complexes allow quantification of the
forced unfolding and unbinding transitions, and mapping the biomolecular free energy landscape.
The inference of the unknown probability distribution functions from the experimental and
simulated forced unfolding and unbinding data, as well as the assessment of analytically tractable
models of the protein unfolding and unbinding requires the use of a bandwidth. The choice of this
quantity is typically subjective as it draws heavily on the investigator’s intuition and past
experience. We describe several approaches for selecting the “optimal bandwidth” for
nonparametric density estimators, such as the traditionally used histogram and the more advanced
kernel density estimators. The performance of these methods is tested on unimodal and multimodal
skewed, long-tailed distributed data, as typically observed in force spectroscopy experiments and in
molecular pulling simulations. The results of these studies can serve as a guideline for selecting the
optimal bandwidth to resolve the underlying distributions from the forced unfolding and unbinding

data for proteins. © 2009 American Institute of Physics. [DOI: 10.1063/1.3050095]

I. INTRODUCTION

Mechanical functions of intra- and extracellular proteins
play an essential role in diverse biological processes, from
ubiquitin-substrate protein degradationl’2 to cytoskeleton
support and cell Inotility,3’4 to cell adhesion and formation of
extracellular matrix,s_9 to muscle contraction and
relaxation,lo’11 to membrane transport,12 and to blood
clotting.m_15 Recent advances in dynamic force spectros-
copy, which utilize atomic force microscopy”'®!” (AFM)
and laser and optical tweezer-based force spectlroscopy,lg_20
and biomembrane force probes,m*23 have enabled research-
ers to study the mechanical properties and unfolding path-
ways of proteins,zé‘f27 and the strength of protein-protein
complexes and ligand-receptor noncovalent bonds.>**%
These experiments allow one to access the entire distribution
of molecular characteristics,zg_30 such as force-induced pro-
tein elongation,”’3 132 unfolding forces and unfolding
times®'? for proteins, and noncovalent bond lifetimes and
rupture forces for protein-protein complexess’]é’l&22 and
aggregates.‘g(’*‘39

The global unfolding and unbinding transitions in pro-
teins are described by single-step kinetics, F— U (B— U),
where F (B) denotes the folded (bound) state and U repre-
sents the unfolded (unbound) state, which correspond to uni-
modal distributions of unfolding forces, unfolding times,
rupture forces, and bond lifetimes. However, the unfolding
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and unbinding pathways may also involve formation of in-
termediate states or dynamic coupling among competing un-
folding and unbinding scenarios. For example, recent AFM
experiments and computer simulation studies of green fluo-
rescent protein (GFP) revealed the bifurcation in the GFP
unfolding pathways.27 A similar kinetic switch in the unfold-
ing pathways has also been reported for «- and ﬂ-tubulin.40
The transition from “catch” bond to “slip” bond in cell-
adhesion complexes between the P-, L-, and E-selectin re-
ceptors and their ligands (PSGL-1 and endoglycan), is medi-
ated by the dynamic competition for the forced dissociation
from the high affinity bound state (catch bond) and the low
affinity bound state (slip bond) of the complex.”*'®*! The
interplay between unfolding and unbinding pathways can
also be controlled by the amplitude and direction of the ap-
plied pulling force. For example, computer simulations of
the force-induced dissociation of A peptides from amyloid
fibrils, also studied experimentally,36’37 showed that the dis-
sociation mechanism is highly anisotropic as it depends on
whether the pulling force is applied in parallel or perpendicu-
lar direction with respect to the A fibril axis.” Computer
simulations of the forced unfolding of protein tandems show
that uncorrelated unfolding transitions of individual protein
domains, observed at low forces, may become correlated (de-
pendent) at elevated force levels.**** These examples show
that, due to the complexity of the free energy landscape re-
flected in the multitude of possible unfolding or unbinding
transitions, the molecular characteristics of proteins can also
be distributed in a multimodal fashion.44
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The main goal of statistical analyses of the forced un-
folding and unbinding data is to infer the probability density
function (pdf) f(x) of a continuous random variable x=g
(unfolding forces or rupture forces), or x=¢ (unfolding times
or bond lifetimes). Because, the pdf is, in general, unknown,
random samples of data are collected in order to obtain
“snapshots” of the population. To describe the pdf f(x), one
may have to collect an infinite number of observations. In
practice, obtaining large samples is both tedious and costly,
sometimes even infeasible. In density estimation, a random
sample of moderate size (few hundreds of data points) is
drawn from the population and is used to estimate the true
population pdf f(x). When a model for the pdf is not avail-
able, nonparametric density estimation methods are used.
Their defining characteristic is that they are fully data driven
and that the density estimate at a data point is computed by
weighting the points in its neighborhood. The size of the
latter is called bandwidth or bin size. Its choice is the central
issue in nonparametric density estimation. For example, the
histogram, which is the classical and simplest nonparametric
density estimator,” requires choosing the number of bins or,
equivalently, the bin size. Most authors advise that 5-20 bins
are sufficient to describe the data;46 yet, the number of bins
chosen may result not only in markedly different but also
highly subjective density estimates.

The three widely used “rule-of-thumb” criteria for
choosing the bin size for the histogram are due to Sturges,
Scott, and Freedman and Diaconis. The Sturges rule®’ uses
the Gaussian density as the reference distribution to select
the optimal number of bins as n,,=1+log, n, where n is the
number of observation, and the optimal bin size

hi;, = M, (1)

Nopt
where X, (Xy,) is the largest (smallest) data value. For
Scott’s rule,48 which also uses the normal as reference distri-
bution, the optimal bin size is

B =350, (2)

opt

where o, is the standard deviation of the data. Both these
methods assume the underlying true pdf to be unimodal and
symmetric with short tails. Typically, the forced unfolding
and unbinding data for proteins are asymmetric and skewed
toward longer unfolding or unbinding times and smaller un-
folding or rupture forces. Freedman and Diaconis® proposed
a more robust rule for A, against outlying observations and
lack of symmetry by replacing o, in Eq. (2) with the inter-
quartile range (IQR=difference of the 75th and 25th percen-
tiles), so that

htP = 2IQRn~'7. (3)

opt

To illustrate the effect of the choice of the bin size on the
shape of the histogram, we performed Monte Carlo (MC)
simulations of the exponential and gamma probability densi-
ties, defined by

fex)=ke™ and fg(x)=k%* e/ (), (4)

respectively, where k is the decay rate, « is the shape param-
eter, and ['(@) is the gamma function. The exponential den-
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sity, corresponding to single-step unfolding (unbinding) ki-
netics, F— U, (B—U), is used to describe the forced
unfolding times of proteinszs’n’sof52 and bond lifetimes of
protein-protein complexes and aggregates.5’9’16’18’19’41 The
gamma density can be used to describe the forced unfolding
times for individual protein domains in protein tandems.***
MC simulations are carried out as follows. At each time step
Ax, the decay probability Fz(Ax)=1-exp[—kAx] for the ex-
ponential density fz(x) and Fg(Ax)=1-I'(a,kAx)/T'(@) for
the Gamma density is compared to a uniformly distributed
random number F,,, from the unit interval F,,, € [0,1]. The
decay time x=sAx, where s is the number of MC steps, is
defined as the instant at which F,,,<Fp g(Ax) for the first
time. The histograms constructed by using Sturges’ rule [Eq.
(1)], Scott’s rule [Eq. (2)], and Freedman—Diaconis’ rule [Eq.
(3)] are displayed in Fig. 1. Sturges’ rule [Figs. 1(c) and 1(h)]
and Scott’s rule [Figs. 1(d) and 1(i)] result in smaller num-
bers of bins (9 and 10) than needed to describe the skewness
of the data. Freedman—Diaconis’ rule uses 15 and 14 bins
and the resulting histograms appear to be closer to the true
density [Figs. 1(e) and 1(j)]. We also display histograms with
5 and 20 bins for fx(x) [Figs. 1(a) and 1(b)], and 5 and 35
bins for f;(x) [Figs. 1(f) and 1(g)]. The agreement between
the underlying pdfs and the histograms varies greatly with
the number of bins: using too few bins negatively affects
estimation accuracy, and using too many bins results in a
noisy histogram that hides the shape of the underlying pdf.
Nonparametric density estimators present considerable
improvement over histograms. The most widely used kernel
density estimators® > smooth out the contribution of each
data point over a neighborhood of that point, and the contri-
bution of a data point to the density estimate at some other
point is controlled by a weight function for the distance be-
tween the points. As for the histogram, the choice of the
bandwidth is most important, especially when assessing a
particular model of forced unfolding or unbinding. In this
paper, we present a fairly comprehensive study of optimal
bandwidth selection methods for constructing nonparametric
estimates, such as histograms and kernel density estimates,
of the pdfs of unfolding forces and unfolding times for pro-
teins, and bond lifetimes and rupture forces for protein-
protein complexes. We employ statistical measures of esti-
mation accuracy, such as the squared error loss function,
mean squared error (MSE), and cross validation, to select the
optimal bandwidth. These measures are used to assess and
compare the performance of histograms and several kernel
density estimates at describing the unimodal and multimodal
distributions of the unfolding times and unfolding forces, and
rupture forces and bond lifetimes. We also introduce and
implement adaptive bandwidth selection that is shown to be
more appropriate for resolving multimodal distributions.

II. STATISTICAL MEASURES OF ESTIMATION
ACCURACY

Statistical measures of estimation accuracy assess how
well an estimator f(x) approximates the true density f(x). For
an estimate f(x) of the density f(x), the L, distance based
squared error loss function is defined to be L(f(x), f‘(x))
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FIG. 1. (Color online) Histograms of the 200 data points (bars) sampled
from the exponential density with the decay rate k=0.01 s! [(a)-(e)], and
from gamma density [Eq. (4)] with the shape parameter a=3 and the decay
rate k=1.0 s7' [(f)—(j)], generated by carrying out MC simulations (with
integration step Ax=10"% s). The histograms, overlaid with the exact pdfs
(curves), are obtained by using Sturge’s rule [Eq. (1), (c) and (h)], Scott’s
rule [Eq. (2), (d) and (i)], and Freedman—Diaconis rule [Eq. (3), (¢) and (j)]
for hyy, are compared to the histograms constructed by using too few bins
[(a) and (f)] and too many bins [(b) and (g)].

=(f(x)- f‘(x))z. The MSE is defined to be the expected (av-
erage) value of the loss function,
MSE[f(x)] = E[(f(x) - f(x))*] = var[f(x)] + bias[f(x)]*.
(5)

In Eq. (5), var[}A‘(x)]=E[}A‘()c)—E[]A‘(x):|]2 is the variance of
f(x) around its expected value E[}A”(x)], and bias[f(x)]
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:E[f(x)] —f(x), is the bias of f‘(x). The MSE is a pointwise
error criterion. The mean integrated squared error (MISE),

MISE[f(x)] = f ’ dxMSE[f(x)]
0

= f ’ dxvar[f(x)] + J i dxbias[f(x)]z, (6)

0 0

is a global criterion. In Eq. (6), the integrated variance, IV

= gdxvar[f‘(x)], is a measure of random variation about the
mean of the data, and the integrated squared bias, ISB

= gdxbias[f‘(x)]z, is an overall measure of the bias of the
estimate. An estimator f"(x;h) is said to be consistent if
MISE[f]—0, as n—o and h—0.® The asymptotic MISE
(AMISE) is a second order approximation to MISE given by
the sum of the first two terms of the Taylor series expansion
of MISE around f(x). An estimator f(x;h) is consistent in

AMISE, if AMISEDA‘]—>O, as n— and 7—0. In terms of
these measures, the optimal bandwidth (bin size for the his-
togram) is selected so that it minimizes MISE or AMISE.
The main challenge in nonparametric density estimation is
the bias-variance trade-off. In both MISE and AMISE, bias
and variance depend upon the bandwidth # that controls the
overall “smoothness” of the shape of the estimator. When the
data are oversmoothed, i.e., h— o [Figs. 1(a) and 1(f)], the
bias is large but the variance is small, whereas when the data
are undersmoothed, i.e., h— 0 [Figs. 1(b) and 1(g)], the bias
is small but the variance is large. Therefore, selecting /y by
minimizing either MISE or AMISE amounts to balancing
bias and variance at the same time.

We will show in Sec. III that the computation of the
optimal MISE and AMISE bandwidth requires knowledge of
the unknown true density f(x). Yet, the sole purpose of a

density estimator f(x) is to use it to infer f(x). This hurdle
can be overcome by using a reference distribution for f(x)
(“plug-in” method), such as the Gaussian or the exponential.
One can also use a fully data based measure of accuracy,
such as the cross-validation (CV) estimator, defined by

o) R 2 n R
CV[h]= J f2(x)dx - ;E f—i(xi)a (7)
0 i=1

where f_i is the estimator obtained by removing the ith ob-
servation. CV estimators are data resampling based estima-
tors of error.”’ Equation (7) is motivated by noting that in
the integral of the squared error loss function,
SL(f(x), f(x))dx=J F2(x)dx =2 () f(x)dx+ [ f2(x)dx, the last
term does not depend on A, and so, minimizing the loss is
equivalent to minimizing the expected value of J(h)
=[72(x)dx -2 f(x)f(x)dx. That is, CV[h] in Eq. (7) is the CV
estimator of E[J(h)].
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lll. OPTIMAL BIN SIZE SELECTION FOR THE
HISTOGRAM

A. MSE, MISE, AMISE, and CV of the histogram

First, we consider general rules for computing the opti-
mal bin size for a histogram, which describes the unimodal
unfolding and unbinding data. When the forced unfolding
and unbinding transitions in proteins follow single-step ki-
netics, the unfolding and unbinding data are described by
skewed unimodal distributions. Suppose Bi=[xo+(k
—1)h,xo+kh) is the kth bin, where % is the bin size and x, is
the position of the first bin. Let n;, denote the bin count, i.e.,
the number of points that fall in B;. Then, the histogram at
x € By is defined as

s oom 1
fh(x)_nh_nhg, l{xi EBk}~ (8)

Since the bin count n; is a Binomial random variable, i.e.,
n~B(n,p,), where p;=[p f(x)dx is the probability that a
point falls in By, E[n]=np; and var{n;|=np,(1-p;). The
bias of the histogram is bias[fh(x)]zE[f(x)]— f(x)
= Elng )/ nh—f() =y h—f(x) =  dtf(0) = ()= de( (1)
—f(x))/h. Using the first order Taylor expansion of f(x), we
obtain

EL0] - ) = f dif ()t - 2) + ()
By

=~ f' ()h+o(h). )

The variance of the histogram is var[f,(x)]=np,(1
—p)/n?h*=[p Aif(D(1= [, dif(t))/nh?, and since s f(D)d1
=Jl l)hdt(f(X)+f () (t=x)+ 0() = f()h+hf' (X)[ (k= 1/2)h
—x]+o(h),

h\hJ,

o (1
Y +0<nh>' (10)

varlf ()] = i(l f dtf(t))[l ~o(m]

By substituting Egs. (9) and (10) into Eq. (5), we obtain the
MSE for a histogram,

MSE[f,(x)] = Q"(x)h)2+0(h2)+f(x) (i) (11)
nh nh

It follows from Eq. (11) that MSE[fh(x)] —0 if the sequence
h(n)—0 as n—co, in which case f‘(x) — f(x), and f‘(x) is a
consistent estimator of f(x).

Equations (9)—(11) imply that when # is large, the vari-
ance and IV are small, whereas when # is small, the bias and
ISB are small. Therefore, the optimal bin size, h,y, should

balance both components, bias[f,(x)] and var[f,(x)], or
ISB[/,,(x)] and IV[f,(x)] at the same time. The fastest rate of

convergence of f(x) to f(x) can be achieved when bias and
variance approach zero at the same speed; otherwise, the
slower rate dominates. Therefore, the optimal bin size se-
quence, hgy, should satisfy the condition, o(h pt)
=0(1/nhyy), or equivalently, ho,=0(1/n"?), which guaran-
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tees the fastest rate of convergence of MSE[fh(x)] to zero
and f(x) to f(x), ie., MSE[f(x);hopl]=o(l/n2/3). By using
the fastest rate of convergence in Eq. (11), we obtain

lim n?3MSE[f(x) ;o] = (' (X) hop)* + fx)

n—oo h()pl

(12)

and by taking the derivative of the right hand side of Eq.
(12), setting it to zero, and solving for /iy, (x), we find the
minimizer of MSE for a histogram

MSE [\ _ 2f(x) )1/3
hopm()—<nf,(x)2 : (13)

By using Egs. (6) and (11) we obtain the MISE for a histo-
gram,

f()

MISE[f,(x)] = f <(f’( )h)2+ +o(h?)

rol L) (19

so that the minimizer of MISE for a histogram reads™®
2 1/3
MISE
hoptH (nR(f-/)) > (15)
where R(f)=[{dxf*(x) is the roughness function. It follows

from Eq. (14) that if 7—0 and n— (nh—0) MISE[/]
— 0. Finally, the AMISE for a histogram is given by60

AMISEL}, ()] = f ((f'<x)h>2 fl ))

(16)
It follows from Eq. (16) that if 41— 0 and nh— 0, MISE[ /]
=AMISE[/1]=0(AMISE[ /]). AMISE[)A‘h] in Eq. (16) can be
expressed as AMISE[f,]=1/nh+h?R(f')/12,"%° where the

first term, IV, is of order O(h™"), whereas the second term,

ISB, is of order O(h?). By setting the derivative of AMISE
AMISE

with respect to & to zero and solving for hg, """, we obtain
amise_ (2"

hoptH =3 nR(fV) . (17)

The optimal error of AMISE for h= hg‘[/HSE is

AMISE[(x) ; hop ] = (32/34n-2/3)[R(f' 1"3. Thus, the histo-
gram constructed by using h MISE converges to the true den-
sity at the rate of O(n=??3).

Equations (13), (15), and (17) show that in order to ob-
tain /1, for any of the three criteria, prior knowledge of the
unknown density or its derivative is needed. Even when the
analytical form of f(x) is known, f(x) and f’(x) typically
depend on model parameters, whose values may not be
known. It is, thus, important to have a statistical tool for
estimating A, that does not depend on f(x) or f'(x). By
using the CV criterion [Eq. (7)], we obtain™

2 1 G n?
& Ei (18)

h(n-1) h(n -1);

where m is number of bins, h= (X~ Xmin) /7, and ny, is the
kth bin count. The optimal bin size can be computed by

CV[h]=
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FIG. 2. (Color online) Histograms of the data, obtained by using MC simu-
lations (Sec. I) of the exponential density [(a)-(d)] and gamma density [(e)—
(h)] with integration step Ax=107° s. Parameters of the models are given in
the caption to Fig. 1. The histograms (bars), constructed by using the CV

criterion [Eq. (18)] for hgp\{, are compared to the exact pdf curves. The

number of data points n (sample size) are indicated in the plots.

using a grid search as follows. First, the number of bins is set
to m=m;=2 or 3, and the bin size is computed as 5,
=(Xpax—Xmin) /M1, Which is used to calculate the CV[h,]
value [Eq. (18)]. Next, the number of bins is increased by
k=1, 2, or 3 (for an exhaustive search, k=1), and m,=m,
+k, for which the value of Zy= (X, —Xmin) /My is used to
compute CV[h,]. The process is repeated up to m,, =n. The
value of h; that corresponds to the minimum of CV[#Z] de-
fines hogt‘ For several minima, the largest bin size, hg;"
=max{h | ,hocgéz, ,hocp\fys}, is used. We employed this pro-
cedure to estimate hgp\: in order to construct the histograms
for the exponential and Gamma densities [Eqgs. (4)], analyzed
in Fig. 1. For 200 data points (Fig. 2), 13 bins are used in the
histograms of fz(x) and f;(x) constructed using the CV-
based approach [Figs. 2(a) and 2(e)]. In contrast, the corre-
sponding histograms of fz(x) and f;(x) are based on 9 bins
[Sturge’s rule, see Figs. 1(c) and 1(h)] and 10 bins [Scott’s

J. Chem. Phys. 130, 015102 (2009)

rule, see Figs. 1(d) and 1(i)]. For both densities, the CV-
based optimal number of bins is closer to the Freedman—
Diaconis’ optimal number of bins, i.e., 15 bins for f(x) [Fig.
1(e)] and 14 bins for fg(x) [Fig. 1()]. Both fz(x) and f(x)
are now resolved better but appear rough in the tails due to
data paucity.

B. Adaptive MSE, MISE, AMISE, and CV criteria for
multimodal densities

In a large variety of proteins and protein-protein com-
plexes, the forced unfolding and unbinding transitions occur
through multiple pathways, which result in multimodal dis-
tributions of unfolding forces, unfolding times and bond life-
times, and rupture forces. %1641 Resolving the multimodal
shape of the density is a challenging task since individual
contributions from unfolding or unbinding pathways and
nonspecific interaction may partially overlap, resulting in ob-
served broad distributions with long tails. In such cases, the
issue of optimal bandwidth selection is crucial, as inaccurate
description of the data may result in false conclusions about
the underlying mechanism(s) of the protein unfolding or un-
binding. To overcome this problem, we propose to use his-
tograms with “adaptive bin size.”

Consider a kinetic model that describes the forced un-
folding transitions in a protein which occur through two
competing unfolding pathways I and II,

) U—F—-U (I, (19)

or a model for the forced rupture of a ligand-receptor com-
plex LR between a receptor R and a ligand L that accounts
for two coupled unbinding pathways (I and II),

(IO R+L—(L-R),=(L-R),—L+R (I). (20)

The kinetic scheme (19) can be used, e.g., to model the two
unfolding pathways for a- and B-tubulins which correspond
the unraveling of protein domains initiated in the C-terminal
(pathway I) and N-terminal (pathway II),*" or the bifurcation
in the GFP unfolding pathways.”’ The kinetic scheme (20)
has been used to describe the forced rupture of cell-adhesion
complexes between the P- and L-selectin receptors and the
ligand PSGL-1.>%1641 Corresponding to the kinetic schemes
(19) and (20), the distributions of unfolding forces and rup-
ture forces (x=g), or unfolding times, and bond lifetimes
(x=t) are characterized by the bimodal pdf,

J&) = a;()f1(x) + ar(x) f>(x), (21)

where the unimodal density f;(x) (f,(x)) for pathway I (II) is
weighted by the function «a;(x) (a,(x), Appendix A). Using
Eq. (11), we obtain the MSE criterion for the bimodal pdf,

MSE[f,(x)] = (@ (x)f{ (x)h + ay(X)f5(x)h)? + 0(h?)

N a; (x)f1(x) + ay(x)f5(x) N O(L). (22)

nh nh
Suppose the mode of f; is to the left of the mode of f, in the
x-axis, and that f; and f, weakly overlap in the middle range
[Fig. 3(b)]. Since in the left tail of f,, f,=0, and f5=0
[region T in Fig. 3(b)], the A, in region I is given by

h?ﬁ)splf(x) ~21B3n7183(f 1 (x)/ @) (x) £} (x)?)!73 [see Eq. (13)]. In the
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FIG. 3. The distributions of lifetimes of the ligand-receptor complex L-R [scheme (20)] for the force-ramp [(a)—(d)] and force-clamp [(e)—(h)] protocol,
sampled from the bimodal density [Eq. (21)]. The histograms of 1600 data points (bars), obtained by using MC simulations (Sec. I) with time step At
=107° s, are compared with the exact pdfs (solid curves) and with a,f,(f) and a,f,(¢) (dashed curves). The histograms are constructed by using the
Freedman-Diaconis rule [Eq. (3), (a) and (e)], adaptive MISE criterion [Eq. (24), (b) and (f)], adaptive AMISE criterion [Eq. (25), (c) and (g)], and CV-based
approach [Eq. (18), (d) and (h)]. The regions I, II, and III (IT and III) for the bimodal (tailed-exponential) density, used in the MISE and AMISE criteria, are
indicated in panel (b) [(f)], and the regions II and III, used in the CV-based approach, are shown in panels (d) and (h). The numerical values for /iy, AMSE

opt
and hﬁé\t’“SE for regions I-1II and the limits for each region are indicated in the graphs.

right tail of f,, f;=0 and f] =0 [region I in Fig. 3(b)], and = 173

ISE ()= 253 (fy(0)  ap()fs(0)) . In the  middle 1| ) PO

range [region I in Fig. 3(b)], roughly around the minimum hoMpItSlll:] _ (_) x) . (24)
between the two modes where f; and f, overlap, both densi- ' N2

ties contribute, and hi\ﬁggt(x) =(2/n) " (ay(x)f;(x) B (e (0)f2(x))

+ay(0) ()7 (1 (0)f1(x) + aa(x)f5(x)) 7.

Consider now the MISE and AMISE criteria. First, by  Finally, by using Eq. (24) and Eqgs. (15) and (17), we obtain
using Egs. (14) and (21), we obtain the MISE criterion for  the corresponding expressions for h)}">" for the histogram:
the bimodal density,

hop?F=3BpNSE p=1LI, and IIL (25)
2 ~ | 2 Equations (24) and (25) show that due to the bimodal nature
MISELf,(x)] fo dxMSE[en (). ] of the density, both hg/gtSE(x) and hOA;\fISE(x) vary along the
max data range x € [0;%). Indeed, for shorter 0 <x<x{"* (region
+ fxz dXMSE[a,f, + ayf>(x), hy] I) and longer x| <x <o (region III) the kinetics of forced
max unfolding [scheme (19)] and forced unbinding [scheme (20)]
oo is controlled by the pathways I and II, respectively, and /1,
+ f dXMSE[ ayf5(x), hyp ], (23)  is determined by the statistical properties of f1(x) and f5(x)
o alone. In the middle range x"™* <x<x3™ (region II), path-
ways I and IT compete, and hence, &,y is determined by f;(x)
where x™ and xI"* are the abscissae of the maxima of f; ~ and f 2(x). . o .
and f,. Equation (23) shows that /,, for the histogram must Let us consider the lifetimes for a ligand-receptor com-

be estimated separately for each density region I-II, so that ~ Plex L-R, which undergoes conformational transitions be-
tween the two bound states, (L-R),=(L-R),, with rates r;,

and r,;. The complex is subjected to pulling force, which

fxl dxa (X)f;(x) " results in its dissociation from state (L-R), or state (L-R),

MISE (2)”3 0 with the off-rate k; and k,, respectively [scheme (20)]. We
optl = ; - max ’ employ the constant force protocol, g=g, (force clamp), and
f dx(ha,(x)f}(x))? the time-dependent force protocol, g(t)=r,t (force ramp),

0 where r, is the loading rate. We describe the force depen-

dence of the off-rates k;, k,, and transition rates r;,, and r,;
by using the Bell model, i.e., k1,2=k?,2e)’1~2g/kBT and rij

max
sz dx(a, () f1(x) + ar(x)f5(x)) " :r?jexllg”‘BT (i,j=1,2), where k?l and r?j are the attempt
MISE (2)”3 X frequencies, and x;, and y;, are the distances from the
Poper = n max ’ minima of the states (L-R), and (L-R), to the transition
f dx(a, (x)f1(x) + ap(x)f5(x))? states for conformational fluctuations and unbinding,

xmﬂx

respectively.”*' For the kinetic model (20), the distribution

Downloaded 21 Jan 2009 to 129.63.144.17. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



015102-7 Density estimation and bandwidth selection

of bond lifetimes f(r) for both force protocols are described
by the bimodal density in Eq. (21) and Eqgs. (Al) and (A2)
(Appendix A), which we refer to as “tailed-exponential” den-
sity (force clamp) and “bimodal” density (force ramp). To
generate n=1600 bond lifetimes for each force regime, we
carried out MC simulations of the bimodal density by using
the following model parameters: k;=5.0 s™!, k,=0.5 s7!,
and ry,= r12—0 3 57! (force clamp), and k=10 s7!, &5
=10.0 s7!, ru—r21—001 s7!, y,=0.5 nm, y,=1.0 nm, and
x1=x,=0.02 nm (force ramp). The loading rate was set to
r,=250 pN/s (kgT=4.14 pN nm).

We used the adaptive MISE [Eq. (24)] and AMISE cri-
teria [Eq. (25)] to calculate h,,. Because the use of
Freedman-Diaconis rule for A, resulted in better approxi-
mations to the true pdf curves for fz(x) and f;(x) (Fig. 1), we
compared the performance of adaptive MISE and AMISE
criteria with the histograms constructed based on the
Freedman-Diaconis rule [Eq. (3)]. The histograms are pre-
sented in Fig. 3. We partitioned the range of integration in
Eq. (24) into regions II and III (I, II, and III) for the tailed-
exponential (bimodal) density, shown in Fig. 3(f) [Fig. 3(b)].
The histograms constructed by using the adaptive MISE and
AMISE criteria resolve better the pdf curves compared to the
histogram constructed by using the Freedman—Diaconis rule
[Figs. 3(a) and 3(e)], especially in the range of shorter life-
times where the tailed-exponential density shows a sharp de-
crease, and in the crossover region. Deviations from the pdf
curves are smaller for the histograms with adaptive hgﬁSE and
RAMSE \which permits to resolve more clearly the modes of
the bimodal density and abscissae for both f(z) and f,(z), as
well as the position of the minimum [Fig. 3(c)].

These results demonstrate that for more complex prob-
ability densities, such as bimodal densities, and, in general,
long-tailed densities and multimodal densities with multiple
peaks and valleys, the histograms constructed by using the
adaptive MISE and AMISE criteria with varying bin size
perform better at describing the true pdf curves compared to
the histograms constructed by using standard rules for bin
size selection. The optimal bin size varies from one density
region to another as it adjusts to local changes in probability
mass. Adaptive criteria use more (fewer) bins for describing
the pdf curves where the probability density changes faster
(slower), thus offering more flexibility at resolving the den-
sity in the regions of maxima and minima (Fig. 3). For ex-
ample, for n=1600 data points, the Freedman—Diaconis rule
prescribes to use 15 (41) bins for the bimodal (tailed-
exponential) density, whereas the adaptive MISE criterion
partitions the data into 31 (49) bins and the AMISE criterion
uses 23 (35) bins. Of these, 19 bins (MISE) and 14 bins
(AMISE) are used to describe the narrower f(z) portion of
the bimodal pdf, and 20 bins (MISE) and 14 bins (AMISE)
are used to resolve the sharply decaying part of f,(7) for the
tailed-exponential pdf.

The use of adaptive MISE and AMISE criteria requires
prior knowledge about the roughness function, R(f") [Egs.
(15), (17), (24), and (25)], that quantifies the amplitude of
variation of the true pdf f(z). To overcome this limitation, the
data-driven adaptive CV criterion can be employed. We used
the adaptive CV criterion to compute the varying optimal bin

J. Chem. Phys. 130, 015102 (2009)

size [Eq. (18)] for tailed-exponential and bimodal densities.
Because the application of MISE and AMISE criteria
showed that Ay ;= oy, We partitioned the lifetime data
into two groups [regions I and IIT in Figs. 3(d) and 3(h)].
The grid search was used to find the minima of functions
CV[A"] and CV[A"], where A= (LU /3 and m
=m;=2, and an exhaustive search (k=1) was employed to
compute hf)lp{IlI and hgy". We see that the adaptive CV-based
histograms are closer to the true pdf curves compared to the
histograms, obtained by using the Freedman—Diaconis rule
for hqp. As in the case of the MISE and AMISE, the adaptive
CV criterion for A,y requires more bins, i.e., 10 (21) bins, for
describing the narrower (rapidly decaying) f;(¢)-part, and
fewer bins, namely, 9 (12) bins, for resolving the wider
(slowly decaying) f,(¢)-portion of the bimodal (tailed-
exponential) pdf [Figs. 3(d) and 3(h)]. Hence, the use of
adaptive CV criterion allows to resolve better the pdfs with
long tails compared to the Freedman—Diaconis approach.

IV. KERNEL DENSITY ESTIMATION
A. General methodology

Although the histograms constructed based on adaptive
MISE, AMISE, and CV optimal bin size perform better at
describing the true pdf curves, compared to the histograms
with fixed bin size, they remain discrete approximations to
the continuous pdfs. In addition, the CV-based histogram
construction involves computationally intensive algorithms.

One of the most widely used techniques of nonparamet-
ric density estimation is kernel density estimation.” The idea
behind this method is that instead of assigning equal weight
of 1/n to every point, as in the construction of a histogram
density estimator, this weight is smoothly redistributed in the
vicinity of each point. The kernel density estimate is defined
by

Frx) = E K(

US| h ) (26)

h

where the kernel K(x) (weight function) is a normalized
(fdxK(x)=1) and symmetric (fdxK(x)=0) function with fi-
nite second moment cr2 [dxx*K(x). A Wldely used kernel
function is the Gaussian kernel K(x)=exp(-x>/2)/ V2. As
in the case of histograms, the bandwidth /4 is the most im-
portant characteristic of a kernel density estimate. The MSE

of a kernel density estimate fx(x) is given by [Eq. (5)],”
MSE[fx(x)] = var[f(x)] + bias[ fx(x) I
=L bkt + Aot of L)
+ 0(h6), (27)

and the MISE of f,((x) is given by [Eq. (6)]
MISE[ f(x)] = iR(K(x)) + lh“o-‘,‘(R(f”(x)) + 0<1>
nh 4 n

+0(h°). (28)

The AMISE[fK] is simply the sum of the first two terms in
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Eq. (28), i.e., AMISE[f¢(x)]=R(K(x))/nh+h*ctR(f"(x))/4.
In both MISE and AMISE, the squared bias, given by the
h*-term in Eqs. (27) and (28), is proportional to the band-
width and large bandwidth values may result in over-
smoothed pdf estimates that obscure the fine structure of the
data. The variance, given by the first term in Egs. (27) and
(28), is inversely proportional to the bandwidth and hence,
small bandwidth values may result in undersmoothed wiggly
curves with artificial modes.

By following the same line of argument used in deriving
the AMISE based optimal bin size for the histogram [Eq.
(17)], one can show that the bandwidth that minimizes the
AMISE for a kernel density estimate is given by

RKx) \"
‘&%@uﬁ t >

A comparison of Eq. (17) with Eq. (29) shows that hoA;\:l}(SE
decreases at the faster rate of n™'> as opposed to the
n~'3-rate for hé;‘t/l},SE for the histogram. Since the rate of con-
vergence of the MISE and AMISE based kernel density es-
timates to the true pdf are asymptotically equivalent in the
large n limit, we can substitute the expression for hOA;{[}(SE [Eq.
(29)] into Eq. (28) in order to estimate the optimal rate of
convergence of the MISE for a kernel density estimate. We
find that the convergence rate scales as O(n™*) compared to
the n=%3 scaling law for the MISE for a histogram. Hence,
kernel density estimates are not only smoother but they also
converge to the true pdf at a faster rate compared to histo-
grams.

Equation (29) also indicates that h?l\td}(SE depends on the
underlying pdf through its second derlvative f'(x), and
hence, the use of hOA;\f}(SE is limited. As in the case of histo-
grams, the optimal bandwidth can be chosen either by using
the CV approach, or by using the so-called plug-in or refer-
ence distribution methods. The original plug-in approach is
based on the assumption that there is some knowledge about
the underlying pdf. If the true density is symmetric, then the
normal reference rule sets the Gaussian with standard devia-
tion o as the target density, and the optimal bandwidth is

AMISE
h opt,K

given by
W (8 (RKGD\E
hgg;%m:( 3 ) = on™'. (30)
K
When K(x) is the standard normal kernel, hgi"i%\,"}(

=1.06n"136, where 6=min{o,,IQR/1.34} and o, is the
sample standard deviation. We will refer to this approach as
the plug-in method.

Among the second generation plug-in methods, the most
widely used is the Sheather—Jones (SJ) “solve-the-equation
plug-in approach.”61 The main idea of this approach is to
plug-in an estimate for R(f"(x)) into Eq. (29) for Ay x and
then solve the equation

= o1
KR (5, ()
nogR(f 5, (x
for hiljﬂ( This involves the calculation of the bandwidth

(h) for the estimation of the roughness function R(f"(x)),

J. Chem. Phys. 130, 015102 (2009)

which is done by finding an analog of A, in Eq. (29) for
estimating R(f").®! The algorithm for obtaining the SJ based
optimal bandwidth hopt, x 1s presented in Appendix B.

The most studied among automatic databased bandwidth
selectors is the least-squares CV.” The CV function for a
kernel density estimate is given by (Appendix B)

CV[h]_—EZK*K< . )
E E

i=1 j=1
(32)
l)htljlj#t ( h )

where K *L(x)= JduK(u)L(x—u), and the optimal CV band-
width, hopl 18 the minimizer of Eq. (32). Because CV[h]
often has several minima,” a grid search (Sec. III) is pre-
ferred over standard optimization techniques such as the
Newton—Raphson method.

B. Application of kernel density estimation methods
1. Tailed-exponential and bimodal data

We assessed the performance of the plug-in, CV, and SJ
kernel density estimates at approximating the tailed-
exponential and bimodal pdf of the bond lifetimes [Eq. (21)],
generated by using MC simulations (Sec. I) of these densities
with the same parameter values as in the case of the adaptive
MISE, AMISE, and CV criteria (Sec. III B, Fig. 3). The ob-
tained kernel density curves are compared in Fig. 4 for vary-
ing sample size n with the true tailed-exponential and bimo-
dal pdfs, and with histogram estimates based on the
Freedman-Diaconis rule for /. The numerical values of
hep for all three kernel density estimates are summarized in
Table I. We see that all three density estimates deviate some-
what from the true tailed-exponential pdf at shorter lifetimes
[Figs. 4(a)-4(d)], especially for n=400 [Fig. 4(a)]. Specifi-
cally, the plug-in, CV, and SJ based curves underestimate the
true pdf curves in the range of the faster decaying f()-part
of the tailed-exponential density. However, the improvement
grows with n, and the slower f,(¢)-portion of the density is
resolved fairly well. The CV and SJ based estimates show
closer agreement with true tailed-exponential and bimodal
pdfs [Figs. 4(e)~4(h)] compared to the plug-in estimate, and
for n=3200 the agreement is perfect [Figs. 4(d) and 4(h)]. In
the case of the CV and SJ based estimates of the bimodal
density, the location of modes, the minimum separating f(z)
from f,(z), and the widths of f,(z) and f,(z) are well resolved;
yet the heights of the modes are lower compared to those for
the true bimodal pdf [Fig. 4(g)].

To provide a numerical assessment of the relative perfor-
mance of kernel density estimates and the histogram based
estimate, we computed the MSE

MSE = 2, (fx(x) = f(x)*/n, (33)
i=1

which measures the L,-distance between the kernel (histo-
gram) estimate fK(x) (fh(x)) and the true density f(x). The
obtained MSE values are given in Table II. For the tailed-
exponential pdf, the CV and SJ based kernel density esti-
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FIG. 4. (Color online) The true tailed-exponential pdf of bond lifetimes f(7)
[panels (a)-(d)] and the bimodal pdf of rupture forces f(g) [panels (e)—(h)]
for the ligand-receptor complex [scheme (20), solid curves], computed by
using Eq. (21) (Appendix A), are compared for varying sample size n with
the kernel density estimates of these densities (dashed curves), obtained by
using the plug-in, CV, and SJ methods for the optimal bandwidth selection,
and with the histograms (bars), constructed by using the Freedman-Diaconis
rule for /iy [Eq. (3)].

mates show smaller estimation errors for all values of n,
compared to the plug-in based estimate. The CV-based esti-
mate shows similar agreement with the true pdf as the histo-
gram constructed by using the Freedman—Diaconis rule for
hop (Table II). This implies that the CV method is more
useful for describing the crossover region, from the faster
decay at shorter lifetimes to the slower decay at longer life-
times, which characterizes the tailed-exponential density
[Figs. 4(a)-4(d)]. For the bimodal density, the CV and SJ
based kernel density estimates show better agreement with
the true pdf compared to the histogram based estimate, im-
plying that the SJ based bandwidth is preferred for resolving
multiple peaks and valleys of the multimodal densities.

2. Forced unraveling of the Rouse chain

We performed Langevin simulations of the forced unrav-
eling of the Rouse chain® by using the force-clamp and

J. Chem. Phys. 130, 015102 (2009)

force-ramp protocols (Appendix C). Very close approxima-
tions to the true pdfs of unfolding times, f(z), and unfolding
forces, f(g), were obtained by collecting large data set (n
=5000) of unfolding measurements for each force protocol.
The data were used to construct the cumulative distribution
functions (cdfs), F(¢) and F(g), which were then used to
estimate numerically the pdfs, f(x)=dF(x)/dx (x=t or g). We
set the number of monomers in the chain N=100, the cova-
lent bond distance a=0.4 nm, which sets the total length of
the chain L=Na=40 nm, and the diffusion constant D
=250 nm?/us. We assumed that the end-to-end distance B at
which the chain is in the unfolded state is B=0.9 L, and
used constant force gy=30 pN and time-dependent force
g(t)=r,t ramped up with the loading rate r,=3 pN/us. A
comparison of the plug-in, CV, and SJ kernel density esti-
mates with the histograms constructed by using the
Freedman-Diaconis rule for iy, and with the numerically
determined pdfs f(z) and f(g) is presented in Fig. 5. The hqy
values for the plug-in, CV, and SJ kernel density estimates
are given in Table 1. The MSE values for the kernel density
estimates and for the histograms (Table III), show that all
three kernel density estimates perform better at describing
the skewed distributions of unfolding times [Figs. 5(a)-5(d)]
and unfolding forces [Figs. 5(e)-5(h)] compared to histo-
grams for all values of n. Indeed, here histograms are largely
inaccurate rough estimates of f(r) and f(g). Even a visual
inspection of the graphs shows that the agreement between
kernel density estimates and the pdf curves is very good for
n=800 [Figs. 5(c) and 5(g)], and that the agreement is almost
quantitative for n=1200 data sample [Figs. 5(d) and 5(h)].
All kernel density estimates capture the locations of maxima,
describe well the width of the densities, and resolve the long
right (left) tail of f(r) (f(g)). The density tails are due to
outlying observations that can be analyzed by using statistics
of extremes.**

3. Forced dissociation of the protein-protein complex

We also performed Langevin simulations of the Brown-
ian particle in the harmonic potential subjected to pulling
force. This model was used in Ref. 52 to describe the forced
dissociation of the protein-protein complex P, - P, formed by
proteins P, and P,, P;-P,— P;+P,, in which the particle
position describes the extension of the noncovalent bond dis-
tance. The bond lifetime and the rupture force data samples
of varying size n were generated by employing force-clamp
and force-ramp protocols, respectively (Appendix C). Very
close approximations to the pdfs of bond lifetimes f(r) and
unbinding forces f(g) were obtained by collecting large data
set (n=10 000) for each force protocol and constructing the
cdfs F(r) and F(g), which were used to estimate the pdfs. We
set the molecular spring constant, which quantifies the cur-
vature of the equilibrium free energy landscape for unbind-
ing, k,=10 pN/nm, the cantilever spring constant k
=1 pN/nm, and the diffusion constant D=1.0 nm?/ ms. We
assumed that the critical extension of the noncovalent bond,
y*, at which the bond ruptures is y*=1.0 nm. We applied
constant force go=3 pN, and time-dependent force g(z) in-
creasing linearly with the pulling speed v,=1.0 nm/ us.
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TABLE 1. The optimal bandwidth values for the plug-in, CV, and SJ kernel density estimates of the tailed-
exponential pdf of bond lifetimes, the bimodal pdf of rupture forces for the ligand-receptor complex (Appendix
A), the pdf of unfolding times and unfolding forces for the Rouse chain (Appendix C), and the pdf of bond
lifetimes and rupture forces for the protein-protein complex (Appendix C) as a function of sample size n.

Tailed-exponential Bimodal
Density (s) (s)
n 400 800 1600 3200 400 800 1600 3200
Plug-in 0.345 0.257 0.227 0.188 0.010 0.009 0.008 0.007
(&% 0.048 0.036 0.034 0.029 0.003 0.005 0.004 0.003
N 0.121 0.082 0.066 0.048 0.006 0.005 0.004 0.003
Unfolding times Unfolding forces
Density (us) (pN)
n 200 400 800 1200 200 400 800 1200
Plug-in 0.128 0.115 0.096 0.082 0.522 0.480 0.424 0.383
(&% 0.032 0.092 0.089 0.073 0.537 0.515 0.455 0.379
SJ 0.122 0.096 0.081 0.72 0.535 0.478 0.416 0.377
Bond lifetimes Rupture forces
Density (us) (pN)
n 200 400 800 1600 200 400 800 1600
Plug-in 0.463 0.421 0.337 0.310 0.520 0.469 0.378 0.338
(&% 0.194 0.081 0.083 0.093 0.559 0.504 0.275 0.352
SJ 0.278 0.227 0.154 0.130 0.576 0.513 0.354 0.348

The plug-in, CV, and SJ based kernel density estimates
are compared to the histogram based estimate, constructed
by using the Freedman-Diaconis rule for Ay, and with the
pdf curves of bond lifetimes f(r) and rupture forces f(g) in
Fig. 6. The optimal bandwidth values are summarized in
Table I. The pdf curves of bond lifetimes and rupture forces
for the protein-protein complex appear more noisy compared
to the pdf curves of unfolding times and unfolding forces for
the Rouse chain (Fig. 5). This is due to a weaker cantilever
spring constant (k=1 pN/nm) compared to a stiff molecular
spring constant («,,=10 pN/nm), and is due to cusplike po-
tential for unbinding used in pulling simulations (Appendix
C). The k=1 pN/nm value was chosen to assess the perfor-
mance of kernel density estimators at describing noisy data.
Though the curves for all three kernel density estimates dis-
agree with the pdf f(¢) at shorter lifetimes [Figs. 6(a)-6(d)],
due to poor sampling of the probability density (few data
points), they describe well the decaying portion and the
width of f(), which carries information about the unbinding

rate. All three density kernel estimators resolve better the pdf
of rupture forces f(g) [Figs. 6(e)-6(h)] compared to the life-
time pdf, f(¢). This is because in the force-ramp protocol the
applied pulling force increases gradually resulting in slower
variation of f(g). The MSE values (Table IV) indicate that
the CV and SJ based estimates resolve better f(r) and f(g)
compared to the histogram, and capture the location and
height of the peak of f(¢) and f(g).

V. DISCUSSION

We presented a comprehensive analysis of optimal band-
width selection for nonparametric estimates of the pdfs that
describe the forced unfolding data for proteins and the forced
unbinding data for protein-protein complexes. The histogram
is the classical nonparametric density estimator dating back
to the mortality studies of Graunt in 1662.% By construction,
the histogram is very sensitive to the choice of the bin size,
and also depends on the “histogram origin,” i.e., location of

TABLE II. The MSE values [Eq. (33)] for the histogram, constructed using the Freedman—Diaconis rule for /2,
[Eq. (3)], and for the plug-in, CV, and SJ kernel density estimates (Sec. IV) of the tailed-exponential pdf of
bond lifetimes and the bimodal pdf of rupture forces for the ligand-receptor complex (Appendix A) as a

function of sample size n.

Density Tailed-exponential (s?) Bimodal (s?)

n 400 800 1600 3200 400 800 1600 3200
Plug-in 0.380 0.307 0.324 0.284 10.694 8.799 3.877 1.784
CvV 0.108 0.083 0.049 0.037 4.290 4.278 1.448 0.307
SJ 0.202 0.128 0.101 0.063 4.468 4.209 1.428 0.295
FD histogram 0.135 0.082 0.053 0.035 9.752 6.750 3.941 2.336
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FIG. 5. (Color online) The pdf curves of the unfolding times f() [(a)—(d)]
and the unfolding forces f(g) [(e)—-(h)] for the Rouse chain (Appendix C) are
compared for varying sample size n with the kernel density estimates of
these densities (dashed curves), obtained by using the plug-in, CV, and SJ
methods, and with the histograms (bars), constructed by using the
Freedman-Diaconis rule for /4, [Eq. (3)].

the first bin. Most authors of Statistics textbooks advise that
5-20 bins are usually adequate for describing real data sets,
and that the origin of the first bin should be chosen so that
the data do not fall on the bin boundaries.*® The question of
the bin origin is of lower order effect on the histogram com-

J. Chem. Phys. 130, 015102 (2009)
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FIG. 6. (Color online) The pdf curves of the bond lifetimes f(z) [(a)-(d)]
and the rupture forces f(g) [(e)—(h)] for the protein-protein complex (Ap-
pendix C), are compared for varying sample size n with the kernel density
estimates of these densities (dashed curves), obtained by using the plug-in,
CV, and SJ methods, and with the histograms (bars), constructed by using
the Freedman-Diaconis rule for /,, [Eq. (3)].

pared to the bin size. One may simply select several bin
origins, and, by using the same bin size, average the resulting
histograms, which results in the so-called averaged shifted
histogram.56'65

TABLE III. The MSE values [Eq. (33)] for the histogram, constructed using the Freedman—Diaconis rule for
hop [Eq. (3)], and for the plug-in, CV, and SJ kernel density estimates (Sec. IV) of the pdf of unfolding times
and unfolding forces for the Rouse chain (Appendix C) as a function of sample size n.

Density Unfolding times (us?) Unfolding forces (pN?)

n 200 400 800 1200 200 400 800 1200
Plug-in 0.002 0.002 0.001 0.0002 2.53X107° 2.13X107° 537X10° 2.54x10°
CV 0.003 0.002 0.001 0.0004 245X107° 207X107° 6.10X10° 2.63x107°
SJ 0.002  0.002 0.001 0.0004 246X1075 2.14X107° 527x10° 266X 107
FD histogram 0.011 0.006 0.006 0.003 0.0002 0.0001 599X 10  5.12X107
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TABLE IV. The MSE values [Eq. (33)] for the histogram, constructed using the Freedman—Diaconis rule for
hop [Eq. (3)], and for the plug-in, CV, and SJ kernel density estimates (Sec. IV) of the pdf of bond lifetimes and
rupture forces for the protein-protein complex (Appendix C) as a function of sample size n.

Density Bond lifetimes (us?) Rupture forces (pN?)

n 200 400 800 1600 200 400 800 1600
Plug-in 0.0009  0.0009  0.0005  0.0005  0.0001 0.0003 8.22X 107  6.85X 107
Ccv 0.0003  0.0007  0.0006  0.0005  0.0001 0.0003  0.0002 6.69X 107
SJ 0.0005  0.0006  0.0005  0.0004  0.0001 0.0003  9.58X 107>  6.73x 107
FD histogram 0.0008  0.0008  0.001 0.0007  0.0007  0.0006  0.0006 0.0002

J. Chem. Phys. 130, 015102 (2009)

The first attempt to derive a formal rule for choosing the
bin size for the histogram is due to Sturges47 who proposed a
simple rule for classifying a series of n observations. He
observed that normally distributed random variables can be
appropriately divided so that the bin counts comprise a bino-
mial series for all n which are even powers of 2. As the
number of bins increases, an ideal histogram tends to a nor-
mal density with mean (r—1)/2 and variance (r—1)/4, for
which the kth bin count B; equals the binomial coefficient
(=), for k=0, ....r—1 and a total of r bins of width 1.
The sum of bin counts then equals the total sample size, n
=2""!. Consequently, the optimal number of bins is Nope=1
+log, n, and the optimal bin size is given by Eq. (1).*
Sturges’ rule has become a guideline for researchers, and is
the standard, default value for bin size used in statistical
software packages. Scott*® proposed an alternative choice of
the bin size that minimizes the MSE over the entire data
range. Because Scott’s rule also uses the Gaussian distribu-
tion as reference, the bin size is proportional to the sample
standard deviation o, [Eq. (2)]. However, the forced unfold-
ing data for proteins and unbinding data for protein-protein
complexes are of “lifetime type,” i.e., skewed, in which case
Sturge’s and Scott’s rules-of-thumb are inappropriate as they
use too few bins to resolve long tails of such distributions.
Freedman and Diaconis’® rule takes into account the asym-
metry of the data and sets the bin size to be proportional to
the IQR [Eq. (3)]. The application of Sturges’ rule, Scott’s
rule, and Freedman—Diaconis’ rule to describing exponential
and gamma densities [Eq. (4)] showed that the use of the
Freedman—Diaconis rule results in better histogram based ap-
proximations to skewed, lifetimelike distributions (Fig. 1).

By employing several model-driven statistical measures
of estimation accuracy, such as the global MISE and AMISE
measures, we derived analytical expressions for the optimal
bin size for the histograms. We also presented a numerical
algorithm for the estimation of the optimal bin size using a
data-driven CV estimator of accuracy. The advantage of the
CV-based approach, which belongs to the class of automatic
bandwidth selection methods,66 over the MISE and AMISE
based methods is that its implementation does not require
any knowledge about the underlying pdf. Their construction,
although, employs computationally intensive algorithms that
are more difficult to implement compared to the MISE and
AMISE based approaches. We also developed adaptive
MISE, AMISE, and CV-based approaches for the varying
optimal bin size selection for histograms. “Adaptive histo-
grams” perform better at describing the true pdf curves of the

tailed-exponential and bimodal density compared to the his-
tograms constructed by using standard MISE, AMISE, and
CV-based rules. Our results show that, compared to histo-
grams with fixed bin size, the histograms with adaptive
(varying) bin size appear wider in the tails of the tailed-
exponential and bimodal density and narrower in the regions
where the density is changing rapidly (Fig. 3).

To this day, the histogram remains a simple yet impor-
tant statistical tool for displaying and summarizing experi-
mental and simulated data. However, the histogram is a “dis-
crete” approximation to a continuous pdf, sensitive to the
choice of the bin size, in which bin counts are constant over
the intervals of bin length. As a result, the histogram requires
large data samples to capture the main features of the under-
lying pdf. Our results indicate that 400—-800 data points are
needed in order to obtain a good histogram based approxi-
mation to the unimodal distributions (Figs. 1 and 2), and that
1000-1200 data points are needed to resolve more complex
distributions such as the tailed-exponential and the bimodal
density (Fig. 3). Furthermore, in order to assess the validity
of a model for protein unfolding or unbinding, a goodness-
of-fit test is needed. The existing chi-square goodness-of-fit
test is, practically, the only available such tool.®” However,
for a relatively small data set of, say, a few hundreds of data
points or less, sampled from a skewed distribution, the test
oftentimes fails because of empty bins (Figs. 1 and 2). As an
alternative, we propose to use nonparametric kernel density
estimators.” ™ These estimators are characterized by a faster
rate of convergence, and present considerable improvement
over histograms. In effect, the rate of convergence of kernel
density estimates to the true pdf is the fastest across all non-
parametric estimators.®® Hence, smaller data sets are needed
in order to obtain accurate estimates of the underlying pdf.

In this paper, we focused on the model-driven plug-in, as
well as data-driven CV and SJ methods for optimal band-
width selection for kernel density estimates. We employed
these methods to compute kernel density estimates for the
tailed-exponential and bimodal data (Fig. 4), for the unfold-
ing times and unfolding forces for a Rouse chain (Fig. 5),
and for the bond lifetime and rupture force data for the
protein-protein complex (Fig. 6). The results of MSE-based
analysis indicate that the model-free, data-driven CV and SJ
methods perform better at approximating tailed-exponential
and bimodal distributions (Table II), and the forced unfold-
ing data (Table III) and unbinding data (Table IV) compared
to histograms, with the SJ based density estimates showing
the best performance, which agrees with previous ﬁndings.69

Downloaded 21 Jan 2009 to 129.63.144.17. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



015102-13  Density estimation and bandwidth selection

The SJ and CV methods do not require any knowledge about
the unknown pdf; however, the bandwidth, selected by the
CV method, converges slowly to the optimal bandwidth and
has large variance compared with the bandwidth, computed
by using the SJ approach. These findings agree with results
of recent studies. """

VI. CONCLUSION: HISTOGRAMS VERSUS KERNEL
DENSITY ESTIMATORS

The obtained results and algorithms for optimal band-
width selection for nonparametric density estimates, such as
histograms and the plug-in, CV, and SJ method based kernel
density estimates, can be used by experimentalists and theo-
reticians to model the pdfs that underlie the forced unfolding
data for proteins (unfolding times and unfolding forces), and
forced dissociation data for protein-protein complexes and
aggregates (bond lifetimes and rupture forces). The MISE,
AMISE, and CV-based rules of the optimal bin size selection
and the closed form expressions for /i, (Sec. IIl A) can be
used to construct histograms of the unfolding and unbinding
data sampled from unimodal distributions. The adaptive
MISE, AMISE, and CV-based rules and the formulas for /1,
(Sec. III B) can be employed to construct histograms of the
data described by bimodal distributions, and can be general-
ized to accommodate multimodal distributions as well. The
plug-in, CV, and SJ method (Sec. IV A) can be used to con-
struct kernel density estimates of the pdfs for the protein
unfolding and unbinding data. The functions for computing
optimal bandwidths for all three methods are built-in in the R
software package.72

For both histograms and kernel density estimates, the
choice of a particular optimal bin size or bandwidth method
depends on three factors: prior knowledge about the under-
lying distribution, the overall complexity of the distribution,
and size of the data sample. When information about the
underlying pdf is available, the MISE and AMISE based ex-
pressions for the optimal bandwidth can be used to estimate
hop in order to describe the data sampled from the unimodal
distributions, and the adaptive MISE and AMISE based ex-
pressions for A,y can be utilized to resolve the multimodal
densities with long tails and multiple peaks. When the under-
lying density is unknown, CV approaches can be used in-
stead. Although histograms are simpler to construct com-
pared to kernel density estimates, they require large data
samples in order to provide good estimates of unimodal and
multimodal densities. On the other hand, both for unimodal
and multimodal densities, kernel density estimates can be
employed to analyze smaller samples of just a few hundreds
of data points. Combining several density estimation meth-
ods may be needed for accurate description of the unfolding
or unbinding data for proteins, and for the assessment of
analytically tractable models of unfolding or unbinding.
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APPENDIX A: DERIVATION OF THE BIMODAL PDF
FOR KINETIC MODEL (20)

1. The lifetime pdf for constant force protocol

In the constant force regime (force clamp), the kinetic
rates ky, ko, 75, and r,; do not vary in time. The pdf of
lifetimes for the ligand-receptor complex L-R was obtained
in Refs. 9 and 41. The lifetime pdf, f(z), is given by the
tailed-exponential density [Eq. (21)] with f,(z) and f5(¢)
given by

Hi)=e" and  fo(r) =™, (A1)
where K ,=(kj+ky+rio+ry 1;\5)/2, and «a;=K,(Py(K,;
—k)+Pyo(K =k))=rip=r)/ND  and  ap=Ky(Po(ky— K)
+Py(k;—K5) +715+75;)/VD. The initial populations of the
bound states (L-R); and (L-R),, P;, and P, are given by
Pio=ry1/(rip+ry) and Py=ry,/(rip+ry) and D=(k;+k,
+rip+r1) =4k ko +kyrag+kory).

2. The lifetime pdf for time-dependent force protocol

Under the simplifying assumption that r,,r; <<ky,k,
the lifetime density is given by the bimodal pdf [Eq. (21)]
with f;(¢) and f,(r) given by

fi)=q(0e™" and  f5(1) = go(1)e ™, (A2)
Where ql’z(t)zrf(rlle+r21.X2)/kT(r]2+r2|)+k1’2+(rf/kT)
X(ky2y12t=%Xp1), and a;(t)=ry(t)/ (ryo(1) +75(2)) and ay(r)
=r1p(t) (ryo(8) + 7 (1)).

APPENDIX B: COMPUTATION OF h,,; FOR
SHEATHER-JONES METHOD AND THE DERIVATION
OF Eq. (32)

SJ

1. Computation of hgy,

The algorithm for the computation of hg;t is adapted

from Ref. 61, and is built-in in the R software package:72

Step 1. Suppose that the set of unfolding or unbinding
data comprise n observations, xi,...,x,. Set parameters a
=0.920 X IQRn~"7 and »=0.912 X IQRn~'°,

Step 2.  Construct  functions T(h)=—(1/n(n
—1D)b')E! _ b((x;—x,)/ b) and R(a)=(1/n(n
-Da’)Z} L d((x;—x;)/ a), where (1) =exp(?/2)/\ 2.

Step 3. Set B(h)=1.357(R(a)/T(b))"7h%7, and use the
Newton—-Raphson optimization algorithm to solve the equa-
tion (R(K(x))/ okR(B(h)))"*n~"5—h=0 for hyy.

2. Derivation of Eq. (32)

We integrate the squared error loss function (Sec. II), for
the kernel density estimate, f¢(x), L(f(x),fx(x)). The first
term in the integral of L(f(x), f,((x)) is given by
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whereas the second term is given by
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hi’l(l’l l 1 i#j
By using these expressions we obtain Eq. (32) of the main
text.

APPENDIX C: FORCED UNRAVELING OF THE ROUSE
CHAIN, AND FORCED DISSOCIATION OF THE
PROTEIN-PROTEIN COMPLEX

1. Rouse chain

Consider a Rouse chain of N connected beads with the
bond distance . The first monomer is fixed, and a pulling
force g=gy is applied to the Nth monomer in the direction
parallel to the end-to-end vector y. The Hamiltonian is given
by H=3ksT/2a°Z),(R,-R, )’+g(Ry-R,), where R,
:{R’f,R;',Rj} is the jth monomer position. To obtain the ki-
netics of forced unraveling of the chain, we integrate numeri-
cally Langevin equations for each monomer position in the
overdamped limit, &(d/dt)R; —VR H({R;})+G;, where VR
=d/dR;, E=D/kgT is the friction coefficient (D is the diffu-
sion constant) and G, is Gaussian random force: <G“(z)>

=0 and (G}(1)G5(0))= 2ngT 18,50(1) (e, B=x.y,2).

2. Protein-protein complex

We model the forced rupture of the protein-protein com-
plex PP, by the escape of the particle, along the pulling
direction y, evolving on the potential of mean force U(y,)
=Uy(y)+U,(y), where Uy(y) is the binding potential and
U,(y) is the potential due to applied force. We take Uy(y) to
be a harmonic function of y with a cusplike barrier, i.e.,
Uo(y)zékmy2 for y<y* and Uy(y)=- for y=y*, where «,,
is the spring constant and y™ is the critical bond extension at
which the complex dissociates. For the force-ramp protocol,
we use Uy(y)=1/2k(y- vot)?, where « is the cantilever
spring constant and v, is the pulling speed (r,= ), and for
the force clamp we set dU(g)/dy=g,. We describe the bond
rupture kinetics by the diffusive motion of the bond exten-
sion y on the potential U(y,?) by following Langevin equa-
tion in the overdamped regime, &(dy/dt)=—(dU/dy)+G,
where G is Gaussian random force.
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