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Probing Protein-Protein Interactions by Dynamic Force Correlation Spectroscopy
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We develop a formalism for single molecule dynamic force spectroscopy to map the energy landscape
of protein-protein complex (P1P2). The joint distribution P��1; �2� of unbinding lifetimes �1 and �2,
measurable in a compression-tension cycle, which accounts for the internal relaxation dynamics of the
proteins under tension, shows that the histogram of �1 is not Poissonian. The theory is applied to the
forced unbinding of protein P1, modeled as a wormlike chain, from P1P2. We propose a new class of
experiments which can resolve the effect of internal protein dynamics on the unbinding lifetimes.
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Many biological functions are mediated by interactions
between biomolecules under mechanical stress. Protein-
DNA interactions involve force-induced motion of proteins
[1,2]. Similarly, specific protein-protein interaction in cell-
protein complexes are important in molecular recognition
[3]. Dynamic force spectroscopic techniques probe these
interactions by forced unbinding of protein-protein com-
plexes using forces in the 1–100 pN range [1,2,4–8].
Atomic force microscopy (AFM) has been employed in
the studies of protein-protein interactions involving immu-
noglobulins [9], molecular motors [7,10], and cell adhesion
complexes [3,6,8].

In constant force-induced unbinding of single protein-
protein complexes, the histograms of unbinding lifetimes
are fit using the Poisson distribution

Pu��; fext� � k1�fext� exp��k1�fext���: (1)

The dependence of the unbinding rate constant k1 � 1=�u
(�u is the lifetime of the complex) on the external force
fext is given by the Bell model [11], k1�fext� � k10�
exp�fext�=kBT�. The parameter � is the maximum
protein-protein bond extension before rupture, and k10 is
the force-free unbinding rate of the bound complex P1P2.
Because the Poisson approximation ignores the intrinsic
dynamics of proteins (i.e., conformational motions and
rearrangements), this analysis can only be used when �u
exceeds the time scale of internal protein motion, �R.
Lifetime measurements of a single P-selectin receptor
with specific ligand PSGL-1 show that �u varies between
milliseconds and few seconds depending on the magnitude
of fext [3,6]. Because the lifetimes of the protein-protein
complex under force become comparable to �R, the inter-
pretation of the unbinding data is complicated by protein
motion. Thus, Eq. (1) cannot be used to describe experi-
mental histograms of the lifetimes. To account for the
competing time scales (�R and �u) a theoretical framework
that probes correlations between intrinsic relaxation and
unbinding dynamics is needed to analyze experimental
data.

In typical AFM experiments, the cantilever tip coated
with protein P1 is brought into contact with the surface-
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attached protein P2, and allowed to interact for a time �t so
that the complex P1P2 can form (compression cycle). The
tip is then retracted to a prescribed distance which results
in the complex feeling a constant force f � fextx in the
direction x perpendicular to the surface (tension cycle).
The lifetime � at which P1P2 bond breaks is recorded.
However, if �u � �R, there is a finite time (��R) for
propagation of the constant tension from the pulled termi-
nus of P1 to the binding interface of the P1P2 complex.
Thus, the average time �u to break the P1P2 bond (assum-
ing that cantilever spring constant is stiff compared with
the noncovalent linkages that stabilize P1 and P2) is en-
hanced by �R resulting in the ‘‘apparent’’ lifetime � 	
�R 
 �u of the complex.

In this Letter we propose a novel theoretical methodol-
ogy for describing forced unbinding which allows for
accurate estimation of protein-protein interaction parame-
ters. The approach is based on analyzing not only the
distribution of single lifetimes P��� but also the joint
distribution P��1; �2; �t� of lifetimes �1 and �2 separated
by compression time �t. The distribution P��1; �2; �t� is
measurable by constructing the joint histogram of lifetimes
using current experimental methods. Because in current
AFM assays �t can be as short as microseconds [12], �t
can be varied by changing the frequency of the compres-
sion cycle; P��1; �2; �t� can be utilized to resolve �R which
in turn can be used to obtain �u, and free-energy landscape
parameters � and k10. The theory describes protein-protein
complexes that obey P1 
 P2 � P1P2, and can be ex-
tended to more elaborate kinetic and protein models.

Basic concepts.—Typically, for specific protein-protein
complexes the binding rate for P1 
 P2 ! P1P2 is fast,
and �t is controlled by the duration of the compression
cycle. Because of the conformational fluctuations of P1,
the binding interface experiences a restoring force f�X; t�
which tends to decrease the end-to-end distance X�t�. As t
increases, the unbinding force along the coordinate X
increases so that f�X; t� ! fext as t! 1, and X�t� ap-
proaches the equilibrium force-dependent value hX�fext�i.
Because of the conformational dynamics of the proteins,
the unbinding rate, k1�X; t� � k10 exp��f�X; t�=kBT�, is a
2-1 © 2005 The American Physical Society
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stochastic variable that depends on X through f�X�. When
application of fext does not result in complete stretching of
P1 (X � L), the instantaneous value of force along the
P1P2 bond is equal to the restoring force

f�X; �� � �kBT
1

P�X; ��
@P�X; ��
@X

; (2)

where the probability that P1 has end-to-end distance X at
16830
time t is given by P�X;t�� 1
N�t�

R
L
0 dX04�X2

0G0�X;t;X0��

 eq�X0� and N�t� is a normalization constant. When fext is
large to fully stretch P1, the force felt by P1P2 bond spikes
up to fext at X � L, i.e., f � f�X; ��h�L� X� 

fexth�X� L�, where h�X� is the Heaviside step function.
We only consider fext that does not exceed the unfolding
force threshold. The unbinding time distribution is given
by the convolution of unbinding kinetics and dynamics of
X, i.e.,
P��; fext� �
1

N1

Z L

0
dX14�X2

1

Z L

0
dX04�X2

0Pu�X; ��Gfext
�X1; �;X0� eq�X0�; (3)
where N1 is a normalization constant. In Eqs. (2) and (3),
G0�X1; t;X0� and Gfext

�X1; t;X0� are, respectively, the
force-free and force-dependent conditional probability of
X at time t and  eq�X� is the equilibrium distribution of X.
The unbinding probability Pu�X; t� depends on X through
k1, i.e., Pu�X; t� � k1�X; t� exp��k1�X; t�t�. The above
equation is a generalization of Eq. (1) for force exerted
on P1P2 bond that continuously evolves from zero to f �
fext over time �R. In the limit �R � �u, P��; fext� reduces
to Pu��; fext� given by Eq. (1).

A model application.—To illustrate the consequences of
the stochastic nature of k1�X; t�, we assume that a thermally
fluctuating wormlike chain (WLC) (P1) is in contact with
the immobile P2. Upon application of force fext, extension
of P1 results in unbinding. The Hamiltonian for P1 is

H�
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where lp is the protein persistence length and r�s; t� is the
location of monomer s (� L=2  s  L=2) at time t. The
end-to-end vector is X�t� � r�L=2; t� � r��L=2; t�, where
L is the protein contour length. The statistics of X can be
represented by a large number of independent modes when
L=lp � 1. Thus, it is reasonable to assume that
G0�X; t;X0� is a Gaussian. In the overdamped limit, when
fext exceeds the unfolding threshold force, stretching of P1

is smooth and thus, preserves Gaussian statistics,

G0�X; t;X0� �

�
3

2�hX2i

�
3=2 1

�1��2�t��3=2

� exp
�
�

3�X���t�X0�
2

2hX2i�1��2�t��

�
(5)

specified by the mean value hX�t�i � ��t�X0 and variance
�2 � hX2i � hXi2, where the correlation function ��t� �
hX�t�X�0�i=hX2i. To construct G0�X; t;X0; 0� we compute
hX�t�X�0�i and hX2i � limt!1hX�t�X�0�iwith fext � 0. By
using Eq. (4) and assuming that the dynamics of the worm-
like chain in the overdamped random media is described by
a stochastic force ��s; t� with white noise statistics,
h���s; t�i � 0 and h���s; t����s0; t0�i � 2�kBT	��	�s�
s0�	�t� t0�, where � � x; y; z and � is the friction coeffi-
cient, we arrive at the Langevin equation:

�
@
@t

r�s; t� 
 

@4

@s4 r�s; t� � 2�
@2

@s2 r�s; t� � ��s; t�; (6)

where 
 � 3lpkBT=4 and � � 3kBT=2lp. We solve Eq. (6)
for r�s; t� with boundary conditions �2� @

@sr�

@3

@s3 r��L=2�

0, �2�0
@
@s r� 
 @2

@s2 r��L=2 � 0, where �0 � 3kBT=4 to
yield [13]:

hX�t�X�0�i0 � 12kBT
X1
n�1

1

zn
 2
n�L=2�e�znt=�;

n � 1; 3; . . . ; 2q
 1; (7)

where the odd eigenfunctions are [13]

 n�s� �
�����������
cn=L

q �
�n

cos��nL=2�
sin��ns�



�n

cosh��nL=2�
sinh��ns�

�
(8)

with normalization constant cn. The eigenvalues zn �

�4

n 
 2��2 and the constants �n, �n are obtained by
solving �n sin��nl2 � cosh��nl2 � � �

3
n cos��nL2 � sinh��nL2 � �

1
lp
��2

n 
 �
2
n� cos��nL2 � cosh��nL2 � � 0 and �2

n � �
2
n �

1
l2p

. In

the limit, L=lp ! 1, we arrive at the Rouse chain model
describing the stretching modes  Rn �

������
2L
p

sin�n�s=L�
with eigenvalues zRn � 3n2�2kBT=2lpL

2. To construct
force-dependent propagator Gfext

�X; t;X0�, we integrate
Eq. (6) with fextx added to ��s; t� to obtain hX2ifext

�

hX2i0 
 f
2
ext

P
1
n�1  

2
n�L=2�=z2

n.
We computed P��; fext� by integrating Eq. (3) at room

temperature. The parameters L, lp, and � � kBT=DL de-
termine the time scale of protein motion �R 	 maxf�=zng.
We set k10 � 0:1 �s�1, � � 1:0 nm, L � 80 nm, lp �
0:4 nm, and D � 10�8 cm2=s. The largest eigenvalue
z1=� � 0:2 �s�1 determines the longest relaxation time
scale �R 	 5 �s. In left panels of Fig. 1 we compare
P��; fext� for WLC and Rouse model [Eq. (3)] with the
Poisson approximation Pu��; fext� [Eq. (1)] for fext�1 pN,
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FIG. 1. The distribution of unbinding times P��; fext� for WLC
(solid line) and Rouse model (dash-dotted line) of protein and
Poisson approximation Pu��; fext� (dashed line) for fext � 1 pN,
3 pN, and 10 pN computed for k1 � z1=� (left panels) and k1 �
z1=� (right panels).
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3 pN, and 10 pN. At fext � 3 pN and 10 pN, P��; fext� for
WLC model is in good agreement with P��; fext� computed
for the Rouse model. A slight overestimate in P��� at short
�’s and lower fext � 1 pN is due to faster relaxation of the
Rouse modes. For k1 � z1=�, Poisson approximation
Pu��� deviates noticeably from P���. Deviations grow as
fext is increased from 1 pN to 10 pN; Pu��� overestimates
P��� at shorter � and underestimates P��� at longer �,
predicting shorter lifetimes. Therefore, in cases when pro-
tein conformational relaxation and unbinding dynamics
occur on similar time scales the use of Poisson approxi-
mation leads to inaccurate estimates of k10 and �. In the
right panels of Fig. 1 we compare P��; fext� for the WLC
and Rouse modes with Poisson approximation Pu��; fext�
for z1=� � 2 �s�1 � k10. A tenfold increase in z1=�
corresponds to less overdamped environment with larger
D � 10�7 cm2=s (the other parameters are same as in left
panels). Because it now takes an order of magnitude
shorter time to propagate fext from the pulled end of P1

to the P1P2 interface, Poisson distribution Pu follows
closely P��; fext� at lower fext � 1 pN and 3 pN.
However, Pu deviates from P��; fext� at higher fext �
10 pN due to rapid force-induced increase in the unbinding
rate k1. Thus, even when propagation of tension is rapid
there are substantial deviations from Poisson distribution
of bond lifetimes at higher fext.

A practical methodology that can be used in conjunction
with experimental data to accurately estimate k10 and � is
required. Dynamical signatures of protein motion can be
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assessed by computing the joint distribution P��1; �2; �t�
of consecutive unbinding times, �1 and �2, separated by
compression time �t,
P��1; �2; �t; fext� �
1

N2

Z L

0
dX34�X2

3

Z L

0
dX24�X2

2

Z L

0
dX14�X2

1

Z L

0
dX04�X2

0Pu�X3; �2�

�Gfext
�X3; �2;X2�Pb�X2;�t�G0�X2;�t;X1�Pu�X1; �1�Gfext

�X1; �1;X0� eq�X0�; (9)
where Pb�t� is the binding probability for P1 
 P2 ! P1P2

andN2 is a normalization constant. In Eq. (9),G0�X2; t;X1�
is the force-free propagator representing correlations of
two interaction events decaying over �R. When �R >�t,
P��1; �2; �t� is a sensitive measure of protein motion and
thus, can be employed to estimate �R. When �R��t, un-
binding events are independent, lim�t!1G0�X2;�t;X1� !
 eq�X2�, and hence, P��1; �2� ! P��1�P��2�.

We computed P��1; �2; �t� for �t � 1 �s� �=z1,
�t � 10 �s� �=z1, and �t � 500 �s� �=z1 for fext �
3:0 pN and k10 � 0:1 �s�1, � � 1:0 nm, L � 80 nm,
lp � 0:4 nm, and z1=� � 0:01 �s�1 (Fig. 2). We assumed
that protein binding (P1 
 P2 ! P1P2) is independent of
the dynamics of X; i.e., once P1 reached the vicinity of
binding interface of P2 it binds, and set Pb�X;�t��Pb�1
in Eq. (9). A short �t � 1 �s and 10 �s peak in P��1; �2�
(top and middle panels) is washed out at longer �t �
500 �s (bottom). Striking asymmetry of the contour plots
at short �t is due to the dependence of shorter �2 events on
longer �1 events. During the first interaction the constant
force felt by P1P2 bond is ramped up from f � 0 to f �
fext following the restoring force f�X; t� thus, prolonging
�1. When �t� �R � �=z1, the next binding event takes
place (at t � �t after the first unbinding) when P1 is
partially or fully stretched. As a result, the binding inter-
face experiences nonvanishing restoring force from the be-
ginning of the second interaction event and �2 < �1. Con-
tour plots of P��1; �2� become more symmetric as �t is
increased to 10 �s which implies growing statistical inde-
pendence of unbinding events. At �t � 500 �s� �R,
P��1; �2� is symmetric density, which results in factoriza-
tion P��1; �2� � P��1�P��2�. Thus, to obtain statistically
meaningful distributions of uncorrelated unbinding times,
unbinding events must be separated by much longer �t
compared to �R whose a priori determination is difficult.

Application to Experiments.—Using D��1; �2; �t� �
P��1; �2; �t� � P��1�P��2�, correlations between �1’s and
�2’s can be probed in AFM experiments. If D � 0, the
unbinding events are influenced by conformational fluctu-
ations of the protein. For the model parameters in Fig. 2 we
show in Fig. 3 D��1 � �2; �t� for �t � 1 �s, 10 �s, and
500 �s. The peak of D��;�t�=D��; 0�, which signifies the
amplitude of correlations between the unbinding events,
decays to zero as �t is increased from 1 �s� �=z1 to
500 �s� �=z1. An accurate statistical analysis of un-
binding lifetimes can be made using the following steps.
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FIG. 3. Normalized correlation amplitude D��;�t�=D��; 0� of
equal lifetimes � � �1 � �2 separated by �t � 1 �s (solid
line), 10 �s (dash-dotted line), and 500 �s (dashed line) for
fext � 3 pN.
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FIG. 2 (color online). The joint distribution P��1; �2; �t; fext�
of lifetimes �1 and �2 separated by �t � 1 �s (top panel), 10 �s
(middle panel), and 500 �s (bottom panel) for fext � 3 pN. The
contour plots of P��1; �2; �t; fext� are shown on the right.
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From the unbinding time histogram P��; fext� and the
apparent mean lifetime �app the joint histogram
P��1; �2; �t� for �t� �app is computed. The difference
D��1; �2; �t� is evaluated using P��; fext� and the experi-
mentally determined P��1; �2; �t; fext�. If D 	 0, the un-
binding events are uncorrelated, and k1 can be estimated by
fitting Eq. (1) to P��; fext�. If D> 0, the unbinding and
protein motions are correlated. In this case the lifetime
measurements must be repeated for longer �t. Using the
new data, new distributions P��1�, P��1; �2; �t�, and
D��1; �2; �t� can be calculated. The process is iterated
until the requirement D 	 0 is satisfied for the compres-
sion cycle of duration, say, �t�. The protein relaxation time
�R is the minimum value of �t � �t� at which D 	 0.
Uncorrelated lifetimes collected for �t� �R 	 �t� can
then be binned to obtain the final histogram P���. If �R �
�app � �R 
 �u then �app 	 �u, and k10 and � can be
estimated by fitting Eq. (1) to P��; fext�. However, if �R �
�app, P��; fext� must be analyzed using Eq. (3) for given
fext, L, � � kBT=DL, and estimated �R. Thus, the theory
presented here suggests a novel dynamic force correlation
spectroscopy in which measurements of P��1; �2; �t� for
16830
varying �t can be used to account for the influence of in-
ternal protein dynamics on unbinding of proteins.
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