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CHAPTER 1

Theoretical background

Notations

• X - material coordinates of a particle in reference configuration;

• x - material coordinates of a particle in deformed configuration;

• 𝜒(X, 𝑡) - mapping from reference configuration to a deformed configuration;

• 𝛼, 𝛽, 𝛾 - vectors or tensors components (𝑥, 𝑦, 𝑧), superscripts;

• 𝑖, 𝑗 - particle number, subscript;

• T - force vector;

• 𝐴 - area;

• F = {𝐹𝛼𝛽} - deformation gradient tensor;

• 𝐽 = 𝑑𝑒𝑡F - determinant of deformation gradient tensor, change in unit volume;

• C = {𝐶𝛼𝛽} - Green’s (Cauchy-Green) deformation tensor;

• E = {𝐸𝛼𝛽} - strain tensor;

• U = {𝑈𝛼𝛽} - right stretch tensor;

• R = {𝑅𝛼𝛽} - rotation tensor;

• 𝜎 = {𝜎𝛼𝛽} - stress tensor (Cauchy);

• P = {𝑃𝛼𝛽} - first Piola-Kirchhoff stress tensor;

• S = {𝑆𝛼𝛽} - second Piola-Kirchhoff stress tensor;

• K = {𝐾𝛼𝛽} - Kirchhoff stress tensor;

• B = {𝐵𝛼𝛽} - second Biot (Jaumann) stress tensor;

Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current con-
figuration. Consider a material body, which is a set of elements, called particles and in a chosen reference configuration
each particle is identified by the position vector X. The components of :math‘{bf X}‘ in the chosen reference frame
are called material coordinates. Mapping 𝜒 from one configuration to another is called deformation of the body. Let

1



TensorsCalculator Documentation, Release 1.0

x to be a position of the particle in the deformed configuration, such that x = 𝜒(X). At any different time, the body
may occupy different configurations so that a material paricle occupies a series of point in space. A smooth sequence
of configurations in time describes a motion of the body [Dill2006].

Fig. 1.1: Figure 1: Schematic of the body transformation from reference configuration (right) with position vector X
to the deformed configuration (left) with position vector x occuring under smooth mapping 𝜒.

Strain is a description of deformation in terms of relative displacement of particles in the body. Depending on the
amount of strain, or local deformation, the analysis of deformation is subdivided into three deformation theories:

• Finite strain theory (large strain theory) deals with deformations in which both rotations and strains are arbitrarily
large. In this case, the undeformed and deformed configurations of the continuum are significantly different and
a clear distinction has to be made between them. This is commonly the case with elastomers, plastically-
deforming materials and other fluids and biological soft tissue.

• Infinitesimal strain theory (small strain theory) - strains and rotations are both small. In this case, the undeformed
and deformed configurations of the body can be assumed identical. The infinitesimal strain theory is used in
the analysis of deformations of materials exhibiting elastic behavior, such as materials found in mechanical and
civil engineering applications, e.g. concrete and steel.

• Large-displacement or large-rotation theory, which assumes small strains but large rotations and displacements.

In a body that is not deformed, the arrangement of the molecules corresponds to a state of thermal equilibrium, meaning
that, if some portion of the body is considered, the resultant of the forces on that portion is zero. When a deformation
occurs, the arrangement of the molecules is changed, and the body ceases to be in its original state of equiliubrium.
Forces therefore arise which tend to return the body to equilibrium. These internal forces which occur when a body is
deformed are called internal stresses. If no deformation occurs, there are no internal stresses [Landau1970].

Quantitatively, stress at a point 𝐴 in a body is defined as

𝜎 = lim
Δ𝐴→0

∆T

∆𝐴
(1.1)

where ∆𝐴 is the area, surrounding the point A and ∆T is acting force. The stress 𝜎 is a measure of the average force
per unit area of a surface within the body on which internal forces act.

The stresses considered in continuum mechanics are only those produced during the application of external forces
and the consequent deformation of the body; that is to say, relative changes in deformation are considered rather
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than absolute values. A body is considered stress-free if the only forces present are those inter-atomic forces (ionic,
metallic, and van der Waals forces) required to hold the body together and to keep its shape in the absence of all
external influences, including gravitational attraction. This assertion is not valid in cases where the deformation of the
body results in macroscopic electric fields in it, so we will not discuss such bodies in futher.

Strain

A strain is a normalized measure of deformation representing the displacement between particles in the body relative
to a reference length. It is in general a tensor quantity. Physical insight into strains can be gained by observing that
a given strain can be decomposed into normal and shear components. The amount of stretch or compression along a
material line elements or fibers is the normal strain, and the amount of distortion associated with the sliding of plane
layers over each other is the shear strain, within a deforming body. This could be applied by elongation, shortening,
or volume changes, or angular distortion. Strains are dimensionless and are usually expressed as a decimal fraction, a
percentage or in parts-per notation. Strains measure how much a given deformation differs locally from a rigid-body
deformation.

Consider a particular point X and a neighboring point of the reference configuration are connected by the vector 𝑑X.
The direction of the fiber is given by unit vector N and its length is 𝑑𝑆, such that 𝑑X = N𝑑𝑆. After deformation, the
particle moves to the place x and the material fiber rotates and elongates to the deformed position 𝑑x = nds. The
deformed fiber is determined by the deformation:

𝑑X = F · 𝑑X (1.2)

where

F =
𝜕x(X)

𝜕X
(1.3)

Tensor F is called the deformation gradient. The deformation gradient at a point completely determines the rotation
and the change in the length of any fiber of material emanating from this point.

Let us consider a pair of fibers 𝑑1X and 𝑑2X, which are deformed to 𝑑1x and 𝑑2x, then we have:

𝑑1x · 𝑑2x = 𝑑1X ·C · 𝑑2X (1.4)

According to Eq. (1.3)

C = F𝜏 · F (1.5)

The tensor C is a function of X that is called the deformation tensor or also Cauchy-Green tensor or Green’s defor-
mation tensor.

Suppose that 𝑑1X = 𝑑2X = 𝑑X. The stretch 𝛼 is the ration of the deformed length to the initial length:

𝑑𝑠 = 𝛼𝑑𝑆 (1.6)

The stretch is therefore a positive number, equal to 1 for no change in the length, greater that 1 for an increase in
length, and less than 1 for shortening of the fiber. The change in length divided by the reference length is the extension
or normal strain, equal to 𝛼− 1, then

𝛼2 = N ·C ·N (1.7)

From Eqs. (1.6) and (1.2):

𝛼n = F ·N (1.8)

1.1. Strain 3
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Next, consider two fibers that are initially perpendicular to each other. Let 𝛾 denotes the change in angle between the
fibers upon deformation, positive for a decrease in angle. The angle between deformed fibers is 𝜋/2 − 𝛾, so we call 𝛾
the shear or shear strain on the fibers. From Eq. (1.4):

𝛼1𝛼2𝑠𝑖𝑛𝛾 = N1 ·C ·N2 (1.9)

The deformation tensor C at X determines the stretch of any fiber at X with given direction N (Eq. (1.7)), at the same
time C also determines the shear of any pair of orthogonal fibers at X (Eq. (1.9)). Therefore, strain of the body at
X is completely determined by C. When C = 1, no strain of fibers at X occurs. For material characterization, it is
sometimes more convenient to have a measure of strain called strain tensor, which is zero when no strain occurs. One
such strain is E = 1

2 (C− 1).

The choice of strain measure is arbitrary. In practice, it is decided by the simplicity of the mathematical formulation
of the convenience in correletion with experiments on a particular material. Any symmetric tensor that is one-to-one
correspondence with the stretch :math:‘{bf U}‘ (see definition below) and is zero for no deformation can be used as a
strain measure:

E = 𝑓(U), 𝑓(0) = ),U = 𝑓−1(E) (1.10)

For example, a general formula for Lagrangian strain tensors is:

E𝑚 =
1

2𝑚
(U2𝑚 − 1) (1.11)

for different values of 𝑚 we can get:

E(1) =
1

2
(U2 − 1) =

1

2
(C− 1) - Green’s strain tensor

E(1/2) = (U− 1) - Biot (engeneering) strain tensor
E(0) = 𝑙𝑛(U) - Logarithmic (natural, true, Hencky) strain tensor

(1.12)

Now, consider three fibers at X that are not collinear and make a right-handed system. The volume of the parallelepiped
with these three adjacent edges in undeformed configuration is 𝑑𝑉0 = [𝑑1X, 𝑑2X, 𝑑3X]. The bracket notation here
denores the scalar triple product. In deformed configuration the there fibers determine the volume of deformed volume
element 𝑑𝑉 = [𝑑1x, 𝑑2x, 𝑑3x]. Using Eq. (1.2) for each fiber, we have:

𝑑𝑉 = 𝑑𝑒𝑡F 𝑑𝑉0 (1.13)

If consider only deformations for which the volume is never decreased to zero (𝐽 ≡ 𝑑𝑒𝑡F > 0) then the deformation
gradient F is non-singular tensor and the inverse tensor F−1 exists. By the polar decomposition theorem, there exists
a rotational tensor R and positive defined symmetric right and left stretch tensors U and V, respectively, such that

F = R ·U = V ·R,

U = UT, 𝑑𝑒𝑡U > 0,

V = VT, 𝑑𝑒𝑡V > 0,

R−1 = RT, 𝑑𝑒𝑡R = +1

(1.14)

The tensor U is called right stretch tensor and V is called left stretch tensor. The representation in Eq. (1.14) is a
decomposition of the deformation gradient into a stretch U followed by rotation R, or a rotation R is followed by
stretch V. It follows from Eq. (1.5) that

C = U2,U = C1/2 (1.15)

For the further reading see [Dill2006].

4 Chapter 1. Theoretical background
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Fig. 1.2: Figure 2: Schematic representation of the polar decomposition of the deformation gradient. The reference
(undeformed) configuration is 𝜒0(X), the deformed configuration in a moment 𝑡 is 𝜒𝑡(X).

1.1. Strain 5
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Stress

Let us consider the total force acting on some portion of the body. Firstly, this total force is equal to the sum of all
the forced on all the volume elements in that portion of the body, i.e. it can be written as the volume integral

∫︀
T𝑑𝑉 ,

where T is the force per unit volume and T𝑑𝑉 is the force on the volume element 𝑑𝑉 . Secondly, the forces with
which various parts of the portion considered act on one another are canceled by Newton’s third law and, therefore,
give zero in the total resultant force. Thus, the required total force can be regarded as the sum of the forces exerted on
the given portion of the body by the portion surrounding it.

Hence, for any portion of the body, each of three components
∫︀
T𝛼𝑑𝑉 of the resultant of all the internal stresses can

be transformed into an integral over the surface. According to divergence theorem, the integral of a scalar over an
arbitrary volume can be transformes into an integral over the surface if the scalar is the divergence of a vector. In the
present case we have the integral of a vector, then the vector 𝑇𝛼 must be the divergence of a tensor of rank two, i.e.
be of the form 𝑇𝛼 = 𝜕𝜎𝛼𝛽/𝜕𝑥𝛽 . Then the force on any volume can be written as an integral over the closed surface
bounding that volume: ∫︁

𝑇𝛼𝑑𝑉 =

∫︁
𝜕𝜎𝛼𝛽

𝜕𝑥𝛽
𝑑𝑉 =

∮︁
𝜎𝛼𝛽𝑑𝑛𝛽 (1.16)

where 𝑑𝑛𝛽 are the component of the surface element vector 𝑑n, directed along the outward normal.

The tensor 𝜎𝛼𝛽 is called the stress tensor. As we see from Eq. (1.16), 𝜎𝛼𝛽𝑑𝑛𝛽 is the 𝛼-th component of the force
T acting on the surface element 𝑑n. By taking elements of area in the planes of 𝑥𝑦, 𝑦𝑧, 𝑥𝑧, we find that the com-
ponent 𝜎𝛼𝛽 of the stress tensor is the 𝛼-th component of the force acting on a unit area perpendicular to the 𝑥𝛽-axis
[Landau1970].

Depending on the orientation of the plane under consideration, the stress vector may not necessarily be perpendicular
to that plane, i.e. parallel to n, and can be resolved into two components:

• one component normal to the plane, called normal stress:

𝜎n = lim
Δ𝐴→0

∆𝑇n

∆𝐴
= 𝜎 · n =

∑︁
𝛼,𝛽

𝜎𝛼𝛽𝑛𝛼𝑛𝛽
(1.17)

where ∆𝑇𝑛 is the normal component of the force ∆T to the differential area ∆𝐴 (see Eqs. (1.1) and (1.16)).

• and the other component parallel to this plane, called the shear stress:

𝜏n = lim
Δ𝐴→0

∆𝑇s

∆𝐴
=

√︀
𝜎2 − 𝜎n

2 =

√︃ ∑︁
𝛼,𝛽,𝛾

𝜎𝛼𝛽𝜎𝛼𝛾𝑛𝛽𝑛𝛾
(1.18)

where ∆𝑇𝑠 is the tangential component of the force ∆T to the differential surface area ∆𝐴 (see Eqs. (1.1) and (1.16)).
The shear stress can be further decomposed into two mutually perpendicular vectors.

Consider a body in reference state and deformed state. Let 𝑑𝐴N denotes a unit area with normal vector N in reference
state and 𝑑𝑎n denotes the same unit area in deformed state with the normal vector n. Let dT be the differential force
vector that represents the resultant of the total internal forces acting on 𝑑𝑎 in deformed state. According to Eqs. (1.1)
and (1.16), we can define force ∆T and unit area ∆𝐴 in arbitrary way and evaluate several measures of stress:

• Cauchy stress (𝜎) is the most commonly used measure of stress (also is called true stress tensor), which is
defined as force in deformed configuration per unit area in deformed configuration:

dT = (n𝑑𝑎) · 𝜎 (1.19)

The Cauchy stress tensor is used for stress analysis of material bodies experiencing small deformations where the
differences in stress distribution in most cases can be neglected. The Cauchy stress tensor is symmetric.

• First Piola-Kirchhoff stress (P) is the measure of stress defined as force in deformed configuration per unit area
in reference configuration:

6 Chapter 1. Theoretical background
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Fig. 1.3: Figure 3: The components of the stress vector on a coordinate surface are equal to three components of the
stress tensor, such that the first index corresponds to the direction on the component and the second index identifies
the direction of surface.

1.2. Stress 7
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dT = (𝑑𝐴N) ·P,

P = 𝐽F−1 · 𝜎
(1.20)

The first Piola-Kirchhoff stress tensor is used for stress analysis of material bodies experiencing large deformations.
Like deformation gradient F, the first Piola-Kirchhoff tensor is unsymmetric two-point tensor.

• Second Piola-Kirchhoff stress (S)} is the measure of stress defined as modified force in deformed configuration
(dT̂) per unit area in reference configuration. The purpose of this is that the second Piola-Kirchhoff stress tensor
will now be a symmetric tensor:

dT̂ = F−1 · dT,

dT̂ = (𝑑𝐴N) · S,
S = 𝐽F−1 · 𝜎 · F−𝑇

(1.21)

If the material rotates without a change in stress state (rigid rotation), the components of the first Piola-Kirchhoff stress
tensor will vary with material orientation, but the components of the second Piola-Kirchhoff stress tensor remain con-
stant, irrespective of material orientation. For infinitesimal deformations or rotations, the Cauchy and Piola-Kirchhoff
tensors are identical.

• Kirchhoff stress tensor (K) is a scalar multiple of the Cauchy stress tensor 𝜎. The scalar factor is the determinant
of deformation gradient tensor, F:

K = 𝐽𝜎 (1.22)

It is used widely in numerical algorithms in metal plasticity because relates to the Cauchy stress via scalar.

• Biot (Jaumann) stress tensor (B) is the measure of stress defined as force due to stretch only applied in the
undeformed body (dT̂) per unit undeformed area.

dT̂ = R−1 · dT,

dT̂ = (𝑑𝐴N) ·B,

B = 𝐽F−1 · 𝜎 ·R = 𝐽F−1 · 𝜎 · F−𝑇 ·U

(1.23)

where R and U is a rotational and rigth stretch components respectively of deformation gradient tensor due to po-
lar decomposition (see Eq. (1.14)). Biot stress tensor is used in combination with Biot (engeneering) strain tensor
[Dill2006], [Bonet2008].

8 Chapter 1. Theoretical background



CHAPTER 2

Numerical approaches

The calculations of stress and strain tensors of a biological particle are based on the coarse-grained representation of
the molecule, described by Self-Organized Polymer (SOP) model. That is, the molecule is described by one or two
interacting centers (𝐶𝛼‘s only or 𝐶𝛼 and 𝐶𝛽) and total potential energy is follow

𝑈𝑆𝑂𝑃 = 𝑈𝐹𝐸𝑁𝐸 + 𝑈𝐴𝑇𝑇
𝑁𝐵 + 𝑈𝑅𝐸𝑃

𝑁𝐵 (2.1)

The details of the SOP model, as well as complete explanation of how to use SOP-GPU package can be found in
SOP-GPU documentation.

Strain

Because strain is fundamentally a continuum quality, its computation from atomic displacement data requires either
interpolation of a continuous displacement field (𝜒(X)) or discretization of the deformation gradient tensor (F). Here
we go with the second way.

To calculate an atomic deformation gradient tensor (Fi) we utilized the approach purposed by Horstemeyer and
Baskes [Horstemeyer1999] and improved by Gullete et al. [Gullett2008]. The deformation gradient tensor emerges
from a weighted least squares optimization of local deformation data. In an arbitrary atomic system, the deformation
in the neighborhood of atom 𝑖 is characterized by the changes in the relative position of its neighbors. Let atom 𝑖 is
located at the position X𝑖 in reference configuration and position x𝑖 in deformed configuration. The relative position
of neighboring atom 𝑗 is given by the vector ∆X𝑖𝑗 = X𝑗 −X𝑖 in reference configuration and by ∆x𝑖𝑗 = x𝑗 − x𝑖 in
deformed configuration. Here the subscripts denote atom numbers, and the vectors ∆X𝑖𝑗 and ∆x𝑖𝑗 connect atom 𝑖 to
its neighbors 𝑗. There exists a unique linear mapping that transforms the relative position vector ∆X𝑖𝑗 to ∆x𝑖𝑗 :

∆x𝑖𝑗 = F𝑖 · ∆X𝑖𝑗 (2.2)

where F𝑖 is the value of the deformation gradient at atom 𝑖. Here, Eq. (2.2) defines the operation of the discrete
deformation gradient at atom 𝑖 in a manner analogous to the continuum deformation gradient of Eq. (1.2), where it
maps a vector in the reference configuration to a vector in the deformed configuration. Writing Eq. (1.2) for atom
𝑖 and each of its neighbors leads to a system of linear equations that, because of the freedom of the atomic motion,
cannot generally be satisfied by a single mapping F𝑖. For this reason, an optimal local deformation gradient (F̂𝑖) is

9
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sought, by calculating the mapping error between atom 𝑖 and a single neighbor 𝑗 as 𝑙2-norm of the difference between
the ∆x𝑖𝑗 and F̂𝑖 · ∆X𝑖𝑗 :

𝜑𝑖𝑗 = (∆x𝑖𝑗 − F̂𝑖 · ∆X𝑖𝑗)
𝜏 (∆x𝑖𝑗 − F̂𝑖 · ∆X𝑖𝑗) (2.3)

Thus, the weighted least squares error among the neighbors of 𝑖 is given by

𝜑𝑖 =

𝑁∑︁
𝑗=1

(∆x𝑖𝑗 − F̂𝑖 · ∆X𝑖𝑗)
𝜏 (∆x𝑖𝑗 − F̂𝑖 · ∆ (2.4)

where 𝑁 is the number of neighboring atoms, and 𝑤𝑗 is a weight factor.

This formulation takes into account the fact that local deformation at individual atoms in system are subjected to
inhomogeneous deformations; thus the local deformation gradient is computed without extension of the mapping error
to the bulk. The optimal deformation gradient F̂𝑖, in least square sense, is obtained by minimizing 𝜑𝑖 with respect to
components of F̂𝑖.

𝜕𝜑𝑖

𝜕𝐹𝛼𝛽
=

𝑁∑︁
𝑗=1

(−2∆𝑥𝛼
𝑖𝑗∆𝑋𝛽

𝑖𝑗 + 2∆𝑋𝛽
𝑖𝑗𝐹

𝛼𝛾∆𝑋𝛾
𝑖𝑗)𝑤𝑗 (2.5)

Here greek superscripts denote components of vectors ∆X𝑖𝑗 and ∆x𝑖𝑗 and tensor F̂𝑖. Setting Eq. (2.5) equal to zero
and solving for the components of F̂𝑖 get the linear system of equations which in matrix notation can be written as

F̂D = A (2.6)

where D and A are 3 × 3 matricies such as

D =
∑︁
𝑗

∆X𝑖𝑗∆X𝜏
𝑖𝑗𝑤𝑗 ,

A =
∑︁
𝑗

∆x𝑖𝑗∆X𝜏
𝑖𝑗𝑤𝑗

(2.7)

Provided that D was formed from a minimum of three non-coplanar nearest neighbors having nonzero weights, the
optimal discrete deformation gradient is determined as

F̂ = AD−1 (2.8)

which is the deformation gradient of the system in current configuration with respect to reference configuration
[Gullett2008].

To obtain the value of atomic stretch tensor (Ui) we computed the Green’s strain tensor according to Eq. (1.5)
and calculated square root (see Eq. (1.15)) using eigenvalue decomposition of tensor C = RΛR−1, where {bf R} is
the matrix of eigenvectors and Λ is eigenvalue matrix. Since tensor C is real symmetric matix then eigenvectors and
eigenvalues are defined in a real space, Λ is positive-defined and R−1 = R𝜏 is orthogonal matrix. Then

U = C1/2 = RΛ1/2R𝜏 (2.9)

The eigenvalues of matrix C (also called principal values) were obtained analyticaly, writing the characteristic poly-
nomial for an arbitrary symmetric 3 × 3 matrix:

𝑀 =

⎛⎝𝑎 𝑑 𝑒
𝑑 𝑏 𝑓
𝑒 𝑓 𝑐

⎞⎠

𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0 (2.10)

10 Chapter 2. Numerical approaches
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where coefficients are

𝐴 = −(𝑎 + 𝑏 + 𝑐),

𝐵 = 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐− 𝑑2 − 𝑒2 − 𝑓2,

𝐶 = 𝑎𝑏𝑐 + 2𝑑𝑓𝑒− 𝑒2𝑏− 𝑓2𝑎− 𝑑2𝑐 = 𝑑𝑒𝑡(𝑀)

are invariats of matrix (tensor), meaning that they do not change with rotation of the coordinate system. The solution
of cubic equation was obtained using Viete’s substitution (also Viete’s triginometric formulas):

𝜆1 = −2
√︀
𝑄 cos (𝜑) − 𝐴

3
,

𝜆2 = −2
√︀
𝑄 cos (𝜑 +

2

3
𝜋) − 𝐴

3
,

𝜆3 = −2
√︀

𝑄 cos (𝜑− 2

3
𝜋) − 𝐴

3

(2.11)

where

𝜑 =
1

3
arccos

𝑅√︀
𝑄3

, 𝑄 =
𝐴2 − 3𝐵

9
, 𝑅 =

2𝐴3 − 9𝐴𝐵 + 27𝐶

54

Since we work in the space of symmetric real matricies all the possiblel solution of the characteristic polynomial (Eq.
(2.10)) are real positive values (Eqs. (2.11)).

Solving problems Eqs. (2.10) - (2.11) for each Green’s tensor C𝑖 for each atom 𝑖, we sustitute solution into Eq. (2.9))
and can obtain atomic stretch tensor U𝑖. We can calculate different atomic strain tensors E𝑖 using Eqs. (1.11).

Stress

We calculated atomic stress using forlmulas, widely utilized to measure atomic stress in crystals ([Basinski1971],
[Cormier2001], [Delph2005]) and proteins ([Ishikura2012]), according to which

𝜎𝑖 =
1

2Ω𝑖
(
∑︁
𝑗 ̸=𝑖

T𝑖𝑗 ⊗ r𝑖𝑗 + 𝑚𝑖v𝑖 ⊗ v𝑖) (2.12)

where 𝜎𝑖 is the atomic stress tensor of atom 𝑖, r𝑖𝑗 = x𝑗 −x𝑖, ⊗ represents the tensor product, T𝑖𝑗 is the pairwise force
vector acting on atom 𝑖 from atom 𝑗, and 𝑚𝑖, v𝑖 and Ω𝑖 are the mass, velocity and volume of atom 𝑖, respectively. In
our calculations we neglect kinetic energy of an atom (second term in Eq. (2.12)) since we consider coarse-grained
representation of the molecule when all the particles have same kinetic energy term.

If consider 𝑇𝛼
𝑖𝑗 = −𝑑𝑊𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗

𝑑𝑟𝛼𝑖𝑗
𝑟𝑖𝑗

, where 𝑊𝑖𝑗(𝑟𝑖𝑗) is pair potential between atom 𝑖 and 𝑗, then the stress tensor
representation in component becomes:

𝜎𝛼𝛽
𝑖 = − 1

2Ω𝑖

∑︁
𝑗 ̸=𝑖

𝑑𝑊𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗

𝑟𝛼𝑖𝑗𝑟
𝛽
𝑖𝑗

𝑟𝑖𝑗
(2.13)

The question arises how calculate the atomic volume Ω𝑖. This is the point which separates all the numerical formula-
tions of stress measure provided previously ([Hardy1982], [Cormier2001]) and it can be calculated in different ways.
In our calculation, for each atom we considered it interacting in pairwise way with other particles within the certain
cut-off radius. Then we found so-called “effective volume” originated from these pairs:

Ω𝑖 =
4𝜋

3
𝑎3𝑖 , where 𝑎𝑖 =

∑︀
𝑗 ̸=𝑖 𝑟

−1
𝑖𝑗

2
∑︀

𝑗 ̸=𝑖 𝑟
−2
𝑖𝑗

(2.14)

here 𝑟𝑖𝑗 is the distance between two particles within a chosen cut-off. For our coarse-grained tensors the values for
𝑎𝑖 ≈ 3.1 − 3.9 Å, corresponding to a covalent 𝐶𝛼 − 𝐶𝛼 bond length.

2.2. Stress 11
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The Eq. (2.13) in the present form corresponds to the local atomic Cauchy stress. In order to obtain any other stress
measures one can use the Eqs. (1.19) - (1.23). Another way, showed by Delph ([Delph2005]), to obtain second
Piola-Kirchhoff stress tensor using formula:

𝑃𝛼𝛽
𝑖 = − 1

2Ω𝑖

∑︁
𝑗 ̸=𝑖

𝑑𝑊𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗

𝑅𝛼
𝑖𝑗𝑅

𝛽
𝑖𝑗

𝑅𝑖𝑗
(2.15)

where Rij = X𝑗 −X𝑖 - the distance between particles in reference confuguration.

The Eq. (2.13) were modified for a spherical geometry by Zandi and Reguera ([Zandi2005]) to describe the stress
measures of icosahedral shells. They derived formulas in terms of spherical basis (e𝑟, e𝜑, e𝜃), which correspond to
radial, azimutal and polar unit vectors, respectively. According to this geometry, stress measures can be defined as
follow:

(𝜎𝑇 )𝑖 = − 1

2Ω2𝐷

∑︁
𝑗 ̸=𝑖

𝑑𝑊𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗

(𝑟𝑖𝑗 · e𝜃)2 + (𝑟𝑖𝑗 · e𝜑)2

2𝑟𝑖𝑗
- lateral (tangential) component of stress,

(𝜎𝜃𝜑)𝑖 = − 1

2Ω2𝐷

∑︁
𝑗 ̸=𝑖

𝑑𝑊𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗
(𝑟𝑖𝑗 · e𝜃)(𝑟𝑖𝑗 · e𝜑) - (45𝑜)-shear component of stress,

(𝜎𝑅)𝑖 = − 1

2Ω3𝐷

∑︁
𝑗 ̸=𝑖

𝑑𝑊𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗
(𝑟𝑖𝑗 · e𝑟)2 - radial component of stress,

(2.16)

First two stress components are defined in-plane as the projection on the spherical surface, therefore the volume
element, Ω2𝐷, corresponding to particle is also in-plane, i.e. area. The third stress component, radial, is still three-
dimentional (3D), therefore Ω3𝐷 is atomic volume, as described above.

12 Chapter 2. Numerical approaches
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Using TensorCalculator

To build executable file change directory to the TensorCalculator/src/ type in command line:

make

The approaches described in a Section Numerical approaches are implemented in TensorCalculator (TC) program
package, which allows to calculate and visualize the distribution of a stress/strain measure on a surface of consid-
ered biological particle. There are two regimes available in TC: tensor computing regime and tensor visualization
regime. Running TC requires presence of the following files:

• Structure file: file of the coarse-grained structure in .pdb format.

• Topology file: file of the coarse-grained structure topology in Gromacs .top format (see SOP-GPU documenta-
tion for details).

• Trajectory file: file of coordinates of a system in coarse-grained representation, in .dcd format. Note: the
trajectory as well as initial .pdb structure should contain only the atoms of a considered biomolecule or its part
(no water, ions, mica surface or tip atoms).

• If running TC just in visualization regime, tensor files .tnsr are also required.

All these as well as other parameters should be specify in configuration file (see Section Input parameters file). To run
TC, type in terminal:

tensors config_file.config

The program will generate output files with the atomic tensors values arranged in .tnsr format or/and .pdb format for
visualization.

Format .tnsr

The calculated values of atomic tensors can be written out in output files, in order to use them later for visualization.
Tensor values file .tnsr has one-to-one correspondance with .dcd trajectory file and each frame is separated by the
word END:

13
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-------(a)--(b)-(c)-(d)-(e)------(f)---
ATOM 1 ALA 1 A A1 -2.00000 ... 2.50000
ATOM 2 ALA 2 A A1 -3.00000 ... 3.50000
ATOM 3 ALA 3 A A1 -4.00000 ... 4.50000
...

(a): atom ID; (b): residue name; (c): redidue number; (d): chain identificator; (e): segment identificator; (f): tensor
components;

Note: depending on calculating tensor type and the output value, there may be from 1 to 9 components, written at
position (f). One component if output is scalar (energy distribution), three components is output is vector (spherical
tensors disribution) and nine components if output is the second-ranked tensor, i.e. matrix (stress or strain distribution).

Tensors calculation

Using TC one can compute the following measures:

• Potential energy distribution: total potential energy, calculated according to Eq. (2.1) for each atom in the
system.

• Stress tensor distribution: Cauchy stress tensor (Eq. (1.19)) calculated per atom using Eq. (2.13).

• Spherical tensors distribution: stress tensor projected along the combination of spherical unit vectors, calculated
per atom for an object possesing spherical geometry (Eq. (2.16)).

• Strain tensor distribution: calculation of the Green strain tensor (Eq. (1.12)) per atom, the deformation gradient
tensor (Eq. (1.3)) is also calculted as intermediate using Eq. (2.8). If required, atomic stretch tensor (Eq. (1.14))
can be calculated within the strain tensor option using Eq. (2.9).

Tensors visualization

If tensor files already exist, they can be visualized separately from calculation. Most of the time it is required if
appropriate representation of the values is sought. Visualization regime requires presence of tensor files (see Section
Format .tnsr) as well as structure and trajectory file in order to produce output file in PDB format with multiple frames.
This PDB file can be uploaded in VMD ([Humphrey1996]) using TCL script (see Section Example of VMD TCL script
below).

Since a tensor value has nine components, in order to obtain scalar value for visualization, TC calculates projection of
the tensor on a preferred direction (normal vector). Hence, separating tensor into two components: normal and shear
(Eqs. (1.17) and (1.18), see Section Stress for details). The normal vector should be specified in configuration file (see
Section Input parameters file below). The normal and shear components of the tensor will be written out in occupancy
and beta columns of the output PDB file, respectively. In case of potential energy distribution, the scalar atomic value
will be written out in the occupancy column only. In case of spherical tensor, all three values of the lateral, 45𝑜-shear
and radial stresses will be written out in occupancy, beta and charge columns of the PDB file, respectively.

14 Chapter 3. Using TensorCalculator
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CHAPTER 4

Input parameters file

The TC program can work both with coarse-grained and all-atomic representations of the system and trajectory, trans-
forming all-atom structure and trajectory into coarse-grained and saving coarse-grained trajectory file separately. How-
ever, it still requires as an input to have topology file in .top format, which can be obtained running sop-top utility
of the SOP-GPU package.

General parameters

• name <protein name>

Type: String.

Status: Optional.

Purpose: Name, assigned to the protein. Used mostly for files naming.

• structure <filename>

Type: String.

Status: Required.

Purpose: Path to the structure coordinates file in PDB format either in all-atom or coarse-grained repre-
sentation. This coordinates are also taken as reference configuration for calculation of stress and strain
tensors.

• topology <filename>

Type: String.

Status: Required.

Purpose: Path to the structure topology file in Gromacs-like format .top.

• dcd <filename>

15
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Type: String.

Status: Required.

Purpose: Path to the trajectory coordinates file in .dcd format.

• allAtom <yes/no>

Type: Boolean.

Status: Optional.

Default value: No.

Purpose: Specifies if initial srtucture and trajectory files are in all-atom representation, rather than coarse-
grained.

• dcdCa <filename>

Type: String.

Status: Required if allAtom is on.

Purpose: Path to the trajectory coordinates file in .dcd format saved for coarse-grained representation.

• initialFrame <frame number>

Type: Integer.

Status: Optional.

Default value: 0;

Purpose: Number of an initial frame to start calculations and visualization. If one performes just vi-
sualization of tensors, the initialFrame number should be in consistence with tensor input files initial
frame.

• frameCount <number of frames>

Type: Integer.

Status: Optional.

Default value: 1;

Purpose: Number of frames, started from the initialFrame, using for tensor calculation/visualization. If
one performes just visualization of tensors, the frameCount number should be in consistence with the
amount of frames in tensor input files.

• compute <yes/no>

Type: Boolean.

Status: Optional.

Default value: Yes.

Purpose: Run calculation of the tensor measures as despribed in Section Using TensorCalculator for a
structure and trajectory specified in structure and dcd respectively.

Tensor visualization parameters

• printPDB <yes/no>

16 Chapter 4. Input parameters file
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Type: Boolean.

Status: Optional.

Default value: Yes.

Purpose: Create PDB files for visualization of the tensor measures as despribed in Section Using Tensor-
Calculator using existing tensor files .tnsr.

• average <string>

Type: “no”/”cutoffAv”/”cutoffSum”/”segmentAv”/”segmentSum”.

Status: Optional.

Default value: “no”.

Purpose: Specifies if averaging or summation for an atom is required for better representation: aver-
age over all atoms within cut-off distance (cutoffAv), summation over all atoms within cut-off distance
(cutoffSum), averaging over all atoms in each segment (segmentAv) and summation over all atoms in
each segment (segmentSum). Valid only if printPDB is on.

• normalVector <string>

Type: “endtoend”/”vector”.

Status: Required if printPDB is on .

Default value: “vector”.

Purpose: Specifies normal vector to calculate normal and shear components of the tensor (see Secton
Stress). If “endtoend” the normal vector will be calculated as the end-to-end vector between two given
particles.

• normalDirection <x, y, z normalized coordinates>

Type: Vector.

Status: Required if normalVector is vector.

Purpose: Direction of the normal vector, using to obtain normal and shear components of the tensor.

• end1/end2 <residue ID>

Type: Integer.

Status: Required if normalVector is endtoend.

Purpose: Direction of the normal vector, using to obtain normal and shear components of the tensor.

Energy distribution parameters

• energy <on/off>

Type: Boolean.

Status: Optional.

Default value: Off.

Purpose: Switching on/off calculation/visualization of the potential energy distribution per atom (Eq.
(2.1)).

• outputEnergy <filename>

4.3. Energy distribution parameters 17
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Type: String.

Status: Required if energy is on.

Purpose: Path to the output tensor file in .tnsr format with the values of the atomic potential energy.

• outputPDBEnergy <filename>

Type: String.

Status: Required if energy is on.

Purpose: Path to the PDB output file with energy values written out in occupancy column.

• inputEnergy <filename>

Type: String.

Status: Required if energy is on and compute is off.

Purpose: Path to the input tensor file in .tnsr format.

• energyScaleFactor <scale factor>

Type: Float.

Status: Optional.

Default value: 1.0.

Purpose: When specified, the value written out in PDB file will be multiplied by this factor. Used for
better representation big/small values, which do not fit PDB column.

Stress distribution parameters:

• cauchyStress <on/off>

Type: Boolean.

Status: Optional.

Default value: Off.

Purpose: Switching on/off calculation/visualization of the Cauchy stress distribution per atom (Eq.
(2.13)).

• outputCauchyStress <filename>

Type: String.

Status: Required if cauchyStress is on.

Purpose: Path to the output file in .tnsr format with the components of the atomic Cauchy stress tensor.

• outputPDBCauchyStress <filename>

Type: String.

Status: Required if cauchyStress is on.

Purpose: Path to the PDB output file with Cauchy stress tensor normal and shear components written out
in occupancy and beta columns, respectively.

• inputCauchyStress <filename>

Type: String.

Status: Required if cauchyStress is on and compute is off.

Purpose: Path to the input tensor file in .tnsr format.

18 Chapter 4. Input parameters file
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• cauchyScaleFactor <scale factor>

Type: Float.

Status: Optional.

Default value: 1.0.

Purpose: When specified, the value in PDB file will be multiplied by this factor. Used for better represen-
tation big/small values, which do not fit PDB column.

• sphereStress <on/off>

Type: Boolean.

Status: Optional.

Default value: Off.

Purpose: Switching on/off calculation/visualization of the Cauchy stress projected on spherical unit vec-
tors (Eq. (2.16)).

• outputSphereStress <filename>

Type: String.

Status: Required if sphereStress is on.

Purpose: Path to the output file in .tnsr format with the components of the atomic Cauchy stress tensor
projected into spherical unit vectors.

• outputPDBSphereStress <filename>

Type: String.

Status: Required if sphereStress is on.

Purpose: Path to the PDB output file with the lateral, (45𝑜)-shear and radial spherical stress tensor com-
ponents written out in occupancy, beta and charge columns, respectively.

• inputSphereStress <filename>

Type: String.

Status: Required if sphereStress is on and compute is off.

Purpose: Path to the input tensor file in .tnsr format.

• sphereScaleFactor <scale factor>

Type: Float.

Status: Optional.

Default value: 1.0.

Purpose: When specified, the value in PDB file will be multiplied by this factor. Used for better represen-
tation big/small values, which do not fit PDB column.

Strain distribution parameters

• strain <on/off>

4.4. Strain distribution parameters 19
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Type: Boolean.

Status: Optional.

Default value: Off.

Purpose: Switching on/off calculation/visualization of the Green’s strain distribution per atom (Eq.
(1.12)).

• outputGreenStrain <filename>

Type: String.

Status: Required if strain is on.

Purpose: Path to the output file in .tnsr format with the components of the atomic Green’s strain tensor.

• outputPDBGreenStrain <filename>

Type: String.

Status: Required if strain is on.

Purpose: Path to the PDB output file with the normal and shear strain tensor components written out in
occupancy and beta columns, respectively.

• inputGreenStrain <filename>

Type: String.

Status: Required if strain is on and compute is off.

Purpose: Path to the input tensor file in .tnsr format.

• strainScaleFactor <scale factor>

Type: Float.

Status: Optional.

Default value: 1.0;

Purpose: When specified, the value in PDB file will be multiplied by this factor. Used for better represen-
tation big/small values, which do not fit PDB column.

• stretch <on/off>

Type: Boolean.

Status: Optional.

Default value: Off.

Purpose: Switching on/off calculation/visualization of the stretch distribution per atom.

• outputStretch <filename>

Type: String.

Status: Required if stretch is on.

Purpose: Path to the output file in .tnsr format with the components of the atomic stretch tensor (Eq.
(2.9)).

• outputPDBStretch <filename>

Type: String.

Status: Required if stretch is on.
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Purpose: Path to the PDB output file with the normal and shear stretch tensor components written out in
occupancy and beta columns, respectively.

• inputStretch <filename>

Type: String.

Status: Required if stretch is on and compute is off.

Purpose: Path to the input tensor file in .tnsr format.

• stretchScaleFactor <scale factor>

Type: Float.

Status: Optional.

Default value: 1.0.

Purpose: When specified, the value in PDB file will be multiplied by this factor. Used for better represen-
tation big/small values, which do not fit PDB column.

• outputDeformGradient <filename>

Type: String.

Status: Optional.

Purpose: Path to the output file in .tnsr format with the components of the atomic deformation gradient
tensor (Eq. (2.8)).

• outputPDBDeformGradient <filename>

Type: String.

Status: Optional.

Purpose: Path to the PDB output file with the normal and shear deformation gradient tensor components
written out in occupancy and beta columns, respectively.

• inputDeformGradient <filename>

Type: String.

Status: Optional.

Purpose: Path to the input tensor file in .tnsr format.

• deformGradientWeightCovalent, deformGradientWeightNative, deformGradientWeightRepulsive
<weight factors>

Type: Float.

Status: Optional.

Default value: 1.0, 1.0, 1.0.

Purpose: Weight factor for covalent, native and repulsive interactions, used in Eq. (2.7).

Example of VMD TCL script

This TCL script can be utilize to visualize tensors using VMD software ([Humphrey1996]):

4.5. Example of VMD TCL script 21
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set fname <tensorPDBOutput>.pdb
mol new $fname waitfor all
set all [atomselect top all]
set frame 0
set in [open $fname r]
set occupancy {}
while { [gets $in line] != -1 } {

switch -- [string range $line 0 3] {
END {

$all frame $frame
$all set user $occupancy
set occupancy {}
incr frame

}
ATOM {

#column numbers changed to reflect occupancy column
lappend occupancy [string range $line 54 60];

}
}

}

To load the script run the following command in VMD terminal window:

play <script_name>.vmd

By changing the column numbers in the line lappend occupancy [string range \$line 54 60]; the
appropriate column of PDB file can be specified.

To download TensorCalculator use the following link .

22 Chapter 4. Input parameters file
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