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We have investigated the folding and forced unbinding transitions of adsorbed semiflexible polymer chains
using theory and simulations. These processes describe, at an elementary level, a number of biologically
relevant phenomena that include adhesive interactions between proteins and tethering of receptors to cell
walls. The binding interface is modeled as a solid surface, and the wormlike chain (WLC) is used for the
semiflexible chain (SC). Using Langevin simulations, in the overdamped limit we examine the ordering kinetics
of racquet-like and toroidal structures in the presence of an attractive interaction between the surface and the
polymer chain. For a range of interactions, temperature, and the persistence length,lp, we obtained the monomer
density distribution,n(x), (x is the perpendicular distance of a tagged chain end from the surface) for all of
the relevant morphologies. There is a single peak inn(x) inside the range of attractive forces,b, for chains
in the extended conformations, whereas in racquet and toroidal structures there is an additional peak atx ≈
b. The simulated results forn(x) are in good agreement with theory. The formation of toroids on the surface
appears to be a first-order transition as evidenced by the bimodal distribution inn(x). The theoretical result
underestimates the simulatedn(x) for x , b and followsn(x) closely forx g b; the calculated density agrees
exactly with n(x) in the rangex , b. The chain-surface interaction is probed by subjecting the surface
structures to a pulling force,f. The average extension,〈x( f)〉, as a function off exhibits a sigmoidal profile
with sharp all-or-none transition at the unfolding force thresholdf ) fc which increases for more structured
states. Simulated〈x(f)〉 compare well with the theoretical predictions. The critical force,fc, is a function of
ls/lc for a fixed temperature, wherelc andls are the length scales that express the strength of the intramolecular
and SC-surface attraction, respectively. For a fixedls, fc increases aslp decreases.

I. Introduction

Interactions between biomolecules and surfaces are important
in a number of biological phenomena. Binding and unbinding
of proteins from macromolecular complexes are involved in the
regulation of biological functions.1-3 Adsorption of fibrinogen
influences the adhesion of leukocytes, microphages, or platelets.
In addition, interaction between proteins, DNA, and RNA are
mediated by biological membranes.4-6 In the crowded cellular
conditions, protein-protein and DNA-protein interactions take
place in confined geometries in which surface interactions are
vital. For instance, interaction between P-selectin receptors and
their specific ligands is mediated by a flat and shallow binding
interface.7,8 Besides these situations, which are obviously
relevant in biology, there are a number of situations in polymer
science in which interactions with surfaces are important.9-12

These include nanolubrication, which involves interaction
between surfaces that are mediated by polymers. Design of
nanoscale materials and biologically inspired self-assembling
systems also requires an understanding of how heteropolymers
and biomolecules interact with surfaces. Recent advances in
atomic force microscopy7,13,14has allowed a direct probe of the
energetics of interaction between adsorbed proteins with other
biomolecules.1,15-19 The potential applications of polymer-
surface models to a number of problems has prompted us to

develop a theoretical approach that can be used in conjunction
with AFM experiments to decipher biomolecule-surface in-
teractions.

There have been numerous studies of the adsorption of
flexible polymers adsorbed on solid surfaces that find applica-
tions in many aspects of colloidal and interface science.10,11,12,20

However, many biomolecules, including DNA, RNA, and
proteins, are better described using wormlike chain (WLC)
models.1,21,22 Thus, it is important to provide a theoretical
description of the interactions between semiflexible chains22-24

and interfaces. The purpose of this paper is to address the
following specific questions: (i) It is known that DNA, a
semiflexible polymer, undergoes a coil-globule transition in
the presence of osmolytes or multivalent cations.23,25Simulations
of semiflexible chains in poor solvents20,26 have been used to
understand the kinetics and pathways of transitions from
extended conformations to collapsed toroidal structures. The
coil-globule transition in stiff chains in the bulk occurs through
a series of metastable racquet structures.20,26 How does the
interaction with the surface alter the morphology and kinetics
of such transitions? This question is relevant even for DNA
collapse in cells where the DNA compaction takes place in the
presence of interactions with their large biomolecules in
restricted spaces; (ii) AFM experiments are likely to provide
the most direct data for the strength of interaction between
semiflexible biomolecules. In these experiments, one of the
molecules of interest is anchored onto the surface while force
is applied to the end of the other. The unbinding force can be
calculated from the force-extension profiles. These experiments
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raise a question, namely, what are the adhesive forces between
semiflexible polymer and a surface? We address this question
using theory12,27,28and simulations for a WLC model interacting
with a solid surface.

In the absence of the surface, the morphologies of the
semiflexible chain (SC) are determined by thermal fluctuations
and an interplay of the chain persistence length,lp, and
intramolecular condensation lengthlc ) xlpkBT/um whereT is
the temperature andum is the effective intramolecular attractive
energy per unit length.20 In the presence of a surface another
length scalels ) xlpkBT/uads, whereuads is the attractive SC-
surface interaction energy per unit length, plays an essential
role in the determination of the structures. The interplay oflp,
lc, andls will determine the morphology of the surface-induced
structures. It also follows that the response to applied force
measured in terms of force-extension profiles will depend on
lp, lc, andls. In this paper, we explore a range of values ofkBT
and ls to predict the force-extension curves for semiflexible
chains in poor solvents.

II. Theory

Consider a semiflexible chain interacting with a flat surface
with the SC-surface potential beingUads. Force f ) f‚nx is
applied to one end of the chain (Figure 1). The equilibrium chain
configuration is described using the conditional probabilityG(xN,
x1; f) of finding the taggedNth monomer atxN given that the
monomer,x1, is anchored at the surface, wherex ) (r , n)
includes position vectorr ) (x, y, z) and orientation vectorn,
respectively. Because of axial symmetry, the free end orientation
is specified by the angleθ between its tangent vector and the
x axis and distance from the surface,x (Figure 1), and the
conditional probabilityG(xN, θN; x1, θ1; f ) can be used instead
of G(xN, x1; f). In the limit L f ∞, G(xN, θN; x1, θ1; f ) is
dominated by the ground state,ψ0, so that

ε0 ) E0/N is the equilibrium free energy per monomer andâ )
1/kBT. If the SC is modeled as a wormlike chain (WLC), then
ψ0 satisfies22,27,28

whereuads ) Uads/N is the adsorption potential per monomer
andγ ) cos[θ] (see Figure 1). To mimic the Lennard-Jones
chain-surface attractive interaction used in the Langevin
simulations (see Section III), we employ a piecewise continuous
potential, that is,uads) ∞ for x < 0, uads) -∆ for 0 e x e b
anduads ) 0 for x > b. The monomer density of the adsorbed
structures in the absence of force

normalized as∫dxn(x) ) N, is calculated by solving eq 2 without
the last termâlpγ fψ0.

The perturbative solution of eq 2 in the absence of theâlpγ f
term, due to Kuznetsov and Sung,27 to the first order in
correlation length parameterη) (4lp

2/ψ0)|d2ψ0/dx2| is outlined
in Appendix A. The solution is

whereh(x) is the Heaviside function, andC0, C1, C2, andC3

are constant coefficients;m1, m2, andk are given by

andφin ) â (uads(x) - ε0) < 0, φout ) -ε0 > 0. By using two
continuity requirements (A9) and the normalization, we can
obtain, respectively,ε0 and C0 and one ofC1, C2, or C3.
However, the two free constants are to be chosen such that a
minimum of ε0 is obtained. The minimal free energy corre-
sponding to the ground state forx e b is attained for (i)C1 *
0, C2 ) C3 ) 0 (i.e., the state withm ) m1) and (ii) C2 * 0, C1

) C3 ) 0 (m ) m2).
The perturbative solution of eq 2 ignores variation ofψ0 on

θ. Indeed, whenx . lp, ψ becomes nearly isotropic,ψ (x, θ)
) ψ(x). However, whenx ≈ b , lp, ψ0 should depend strongly
on the angleΘ ) π/2 + θ between the free end of the chain
and the surface (Figure 1). In this range-γ∂/∂x f Θ∂/∂x,
(1 - γ2) ∂2/∂γ2 f ∂2/∂Θ2, γ∂/∂γ f 0, γ f f -Θf and eq 2
simplifies, that is

The methodology for solving eq 6 has been presented by
Semenov in ref 28 and is outlined in Appendix B. The general
solution forx > b (uads ) 0) is

whereC0 andC1 are constants and the confluent hypergeometric
function Ψ(ø, ω, z) is Ψ(ø, ω, z) ≡ 1/Γ(ø)∫0

∞dτ τø-1 (1 +

Figure 1. Schematic of a semiflexible chain (blue) adsorbed on the
surface (yellow). The free end (r , n) makes an angleθ ) arc
cos[n‚nx/|n|‚|nx|] with the directionnx of the pulling forcef ) fnx. For
clarity, the chain is shown as extended, which is realized only when
the SC-surface interaction is strong. The interaction between the
monomers of the chain and the surface is attractive in the range 0e x
e b wherex is the distance perpendicular to the surface. The strength
of the interaction is∆. In the Langevin simulations, we replace the
square-well potential by the Lennard-Jones potential (eq 17).

n(x) ) ∫dθψ0
2(x, θ) (3)
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τ)ω-ø-1 e-τz where Γ(ø) ≡ ∫0
∞dτ τø-1 exp[-τ] is a Gamma

function.29 To describe the chain in the rangex e b, we assume
that ψ0 is of the form of eq 7 andC0 and C1 depend onx.
Substituting eq 7 into eq 6, we obtain

where Fnm ≡ (gm/κ, fn)/(fn, fn), n, m ) 0, 1, and (gn, gm) ≡
∫-∞

∞ dκκ e-κ3/9 gn(κ) gm(κ) (see eq B2). We solve eq 8 subject to
the conditionφ(x) ) φin for x e b andφ(x) ) φout for x > b.
From the solutions of eq 8 in Appendix B we obtain:

wherex-D ) φout(2lp)1/3xF01F10-F11F00. In eq 9, the Kum-
mer functionΦ(k, l, x) is defined byΦ(k, l, x) ≡ 1 + ∑m)1

∞

(k)m/(l)m xm/m! with (k)0 ) 1, (k)1 ) k and (k)m ) k(k + 1)...(k
+ m - 1).29 We getC0(x) by substituting eq 9 forC1

in andC1
out

into the second eq 8 andψ0(x, Θ; f ) can now be obtained by
using eq 7.

In the presence of pulling force,ψ0 is nearly isotropic, that
is, ψ0(x, θ; f ) ≈ ψ0(x; f ). This allows us to analyze force-
extension profiles by employing the perturbative treatment
outlined above. Solution to eq 2 is given by

where ψ0(x) is given by eq 4. The average extension as a
function of applied force can be computed using

where partition functionZ(f ) is Z(f ) ) ∫dθN ∫dθ1 ∫dxN ∫dx1

G(xN, θN; x1, θ1; f ).
The perturbation theory is strictly valid only when the

condensation lengthlc . lp. In practice, we find that the first-
order perturbation theory gives results that are in very good
agreement with simulations even whenlc ≈ lp. Kuznetsov and
Sung also discovered that the perturbation theory is remarkably
successful outside the regime of applicability.27

III. Langevin Dynamics Simulations

We model a semiflexible chain (SC) byN ) 100 connected
beads of bond lengtha and the contour lengthL ) 100a. In the
absence ofUads and f ) 0, we assume that the dynamics is
governed by the overdamped Langevin equation

whereê is the friction coefficient,U ) Uchain ) Ubond + Ubend

+ ULJ is the chain internal energy due to bond potentialUbond,
bend potentialUbend, and interbead interaction potentialULJ

(hydrodynamic interactions are ignored). The random force
gj(t) obeys Gaussian statistics

We solve eq 12 for eachxj with unit tangent vectoruj )
(xj+1-xj)/a, wherej ) 1, 2, ...,N. The stretching potential,Ubond,
is

whereA andσ are constants, and

where the constantS is a measure of chain stiffnes, and
cos[æj,j+1] ) (xj+1-xj)(xj-1-xj)/σ2 is the bend angle. The
interaction between beads is given by the 12-6 Lennard-Jones
potential

where∆xij is the distance between beadsi and j, andB is the
magnitude of interaction.ULJ is an effective interaction that
accounts for excluded volume interactions and counterion
induced attraction, which in DNA is due to screening of the
charges. The persistence length of the chain,lp, can be roughly
estimated by usinglp ) a/(1 - cos[〈æj,j+1〉]) where 〈æj,j+1〉 )
(N - 1)-1 ∑j)1

N-1 æj,j+1 is the average angle between adjacent
beeds.

Similar models have been used in previous studies to probe
the chain collapse in poor solvents.20,26 In the presence of the
adsorbing surface, the motion ofjth bead is governed by eq 12
with U ) Uchain+ Uads, whereUadsis the surface-SC potential

In eq 17,∆xi is the bead-surface distance and∆ and b are,
respectively, the depth and range of the attractive forces. We
setB ) 1.0, σ ) a ) 1 andb ) 3a, and useA ) 400B, S )
30B, 60B, and 120B and∆ ) 1.5B, 2.0B, and 2.5B. This makes
ULJ, Ubond, Ubend, andUads to scale in units ofεh ) kBT andεl

) σ is the unit length. The choiceA ) 400B allows for 5% of
thermal fluctuations in the bond distance and permits us to run
simulations with longer time steps without affecting bond
relaxation time. The unit of time isτ ) êσ2/εh, whereê ) 44.0
is the friction coefficient of the chain in water atT ) 300 K.
The system of eq 12 is integrated with a step sizeδt ) 2 ×
10-2τ and the total time ist ) Ntotδt whereNtot is the number
of integration steps. We express time either in units ofτ or in
terms ofNtot.

IV. Results

A. Surface-Induced Structural Transitions. It is known that
in the absence of the surface SC undergoes a collapse transition
when the solvent is poor, that is, when the attractive monomer-
monomer interactions dominate (eq 16) so thatlc > lp. The
collapse is a result of a competition between intramolecular
attraction and bending energy due to chain stiffness. Unlike in
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Surface Interactions on Semiflexible Chains J. Phys. Chem. B, Vol. 109, No. 46, 200521981



flexible polymers, the low energy collapsed conformation is a
torus that maximizes intramolecular contacts and minimizes the
bending penalty. Before simulating the force-extension curves
of adsorbed SC, it is necessary to characterize the structures
that are obtained when interacting with the surface.

To simulate the low free-energy structures that result in the
presence of the surface, we first thermalized an extended chain
at high temperaturekBT ) 3.0 for Ntot ) 1 × 106 steps. By
gradually decreasing the temperature, bulk structures were
thermalized for (1-10) × 107 steps and used in adsorption
experiments. Interactions with the attractive surface was switched
on at distance∆x ) 2b away from the bead with shortestx,
and the SC was adsorbed onto the surface one bead at a time.
The structures were allowed to relax for∼1-20 × 106 steps
depending onkBT, S, and∆. The progress of adsorption was
monitored by analyzing time traces ofULJ, Uads, U, and the
radius of gyration,Rg, of the SC. We generated 500 adsorbed
structures atkBT ) 1.0, 1.25, and 1.5 forS ) 30B, 60B, and
120B and∆ ) 1.5B, 2.0B, and 2.5B.

Typical structures are presented in Figure 2. The geometry
of the SC adsorbed onto the surface ranges from partially or
fully extended configuration withlp/a ≈ 18 to partially structured
one-, two- and three-racquet states withlp/a ≈ 16.0, 15.5, and
15.0, respectively, to fully ordered toroidal states withlp/a ≈
13.5. Similar structures have been observed in recent studies
of collapse of semiflexible chains in the bulk.20,26 For the
interaction parameters used in our simulations,ls/lc ≈ o(1). Thus,
the attractive SC-surface interaction facilitates adsorption of
the SC without significantly altering its morphology compared
to the bulk case. Forls . lc, the lowest free-energy structures
are extended.

To compare the kinetics of structure formation on the surface
and in the bulk, we also simulated collapsed structures in the
absence of the adsorbing surface. By analyzing the temporal
profiles of Rg, ULJ, and lp, we found that on average, chains
attain structured configurations on a faster time scale when

adsorbed on the surface. The search for the ground (toroidal)
state is more efficient when the chain is constrained to evolve
on the 2D surface where the SC quickly minimizes its free
energy in reducedd ) 2 space by sliding surface motion (lateral
diffusion).

B. Kinetics of Surface-Induced Ordering.Typically, surface-
induced ordered structures form by a two step processB0 f S0

f St. Starting from the bulk stateB0, extended surface transient
S0 emerges during the fast first step with theB0 f S0 transition
occurring withinNtot ) 1-3 × 106. In the slower second step,
S0 f St, extended transient structures explore the free-energy
landscape in search of the toroidal state,St, which occurs in
about 3- 20 × 106 steps depending onS, ∆, and temperature.
Transition fromS0 to St is realized via rapid formation of either
a surface loop or an intermediate toroid-like motif with larger
Rg (smaller winding number) or through a sequence of longer
lived racquet statesS0 f S1 f ... f St, whereSn, n ) 0, 1, 2,
... denotes conformations with number of racquets equal to zero
(extended chain) one, two, and so forth.

The number of “metastable” racquets depends on the chain
flexibility. We observed configurations withn ) 6 for S) 30B
and kBT ) 1.25. Simulated profiles ofRg, ULJ, Uads, and U
indicate that evolution from extended to toroidal states follows
several pathways. Four out of five simulation runs followed the
scheme outlined above. Similar diverse pathways have been
observed by Noguchi and Yoshikawa20 who recorded the
lifetime of intermediates species for aboutNtot ) 2.0 × 105.
Our results indicate that attractive surface forces increase the
lifetimes of metastable intermediates for stiff chains at low
temperature. In a few simulation runs, toroidal structures were
not observed during as many as 20× 106 steps. Hence, attractive
surface forces facilitate the formation of toroidal state primarily
when formation of toroid-like intermediate motif is involved.

The dynamics ofRg, ULJ, Uads, andU for the structures in
Figure 2 show that increasingly more ordered states are also
energetically favorable (Figure 3).Rg, U, andULJ decrease and
Uabs increases in the sequenceS0 f S1 f S2 f S3 f St. Rg

fluctuates around larger values for extended states. Variations
in ULJ, Uads, andU increasing in the sequence ofS1 f S2 f S3

f St transitions are due to the formation of SC-surface contacts.
For the structures in Figure 2, the formation ofS1 at Ntot ≈ 2.0
× 106 is mediated by a surface-loop motif followed by slow
sliding motion;S2 forms early atNtot ≈ 5.0× 105 and remains
unchanged (time dependence ofRg or ULJ). The dynamics of
ULJ, Uads, andU show formation ofS3 via S1 at Ntot ≈ 1.0 ×
105 followed by transitionS1 f S3 atNtot ≈ 7.0× 106. Similarly,
traces of the same quantities forSt point at three-step transition,
S0 f S1 f S3 f St occurring, respectively, atNtot ≈ 5.0× 105,
1.5 × 106, and 4.0× 106, followed by chain compaction due
to sliding motion.

In agreement with theoretical arguments,28 monomer profiles
of stiff chains (S ) 120B, lp/b . 1) are described by the
succession of short near-surface loops of length, lp/a between
chain-surface contact and by the combination of short and long
loops of the length. lp/a for S) 30B and lp/b ≈ 1. Decrease
in lp/b and temperature favors the formation of chain-surface
contacts by enabling more beads to be inside the range of surface
forces. This results in the formation of higher ordered states
S4, S5, S6, and St. In contrast, at higher temperatures and
increased∆ andS, surface structures with increased conforma-
tional free energy become unstable and unfold into extended
configurations (data are not shown). We quantified the geometry
of surface structures (Figure 2) by binning bead-surface
distances,xj, into the density histogram,n(x). The monomer

Figure 2. Top view of the typical structures (blue) adsorbed on the
surface (yellow) forS ) 120B, ∆ ) 1.5B, andkBT ) 1.0. Extended
(S0), one-racquet (S1), two-racquet (S2), three-racquet (S3), and toroidal
structures (St) are obtained in a single trajectory that is terminated att
) 4 × 10-5τ. The equilibrium structure under these conditions is the
toroid.
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density profiles for∆ ) 1.5B andkBT ) 1.0 are compared in
Figure 4 for S ) 70B (left) and S ) 50B (right panels).
Transition from less-structured to more-structured states is
accompanied by an increased ratio of the number of bead-
bead to bead-surface contacts. The density distribution,n(x),
is single-peaked atx ) b/2 and decays to zero asx f b for
extended states and increases its density atx ≈ b in the sequence
S1 f S2 f S3 f St.

C. Forced Unfolding of Surface-Adsorbed Structures.To
unfold the surface-ordered structures, these structures were
initially allowed to thermalize atkBT ) 1.0 forNtot ) 2 × 106.
We then ancored theC terminus of the chain at the surface and
pulled its N terminus with constant forcef via the harmonic
spring with the spring constantksp ) 0.36 pNnm-1 in the
direction perpendicular to the surface. Simulation runs were
terminated after evolution of chain extensionx(Ntot) had reached
equilibrium.x(Ntot) of the structures of Figure 2 are presented
in Figure 5 for f ) 9.75, 18.3, 24.4, and 30.5pN. Chain
extension reaches a saturation plateau in the first 8× 107 steps
as the chain restoring force approachesf. Not unexpectedly,
the unfolding threshold force increases with the extent of
ordering in the sequenceS0 f S1 f S2 f S3 f St. At f ) 9.75
pN, only S0 unfolds in 1.0× 107 steps. When the force is
increased tof ) 18.3 pN, S0, S1, S2, andS3 unbinds from the
surface in 3.5× 107, 3.6× 107, 4.0× 107, and 6.0× 107 steps,
respectively. Atf ) 24.4pN, all structures reach the stretched
state in 2-4 × 107 steps. From the dynamical trajectories ofx
obtained for∆ ) 1.5B and kBT ) 1.0, we constructed the

average extension,〈x〉, as a function off. In Figure 6 we compare
〈x〉 versusf traces for extended, one-racquet, three-racquet, and
toroidal structures of Figure 2 (S) 120B, top panel) and more
flexible four-, five-, and seven-racquet and toroidal conforma-
tions obtained forS ) 30B. Unbinding of surface-anchored
structures undergoes a highly cooperative all-or-none transition
as the unfolding force thresholdf ) fc is increased from 7.3 to
15.8 pN (S ) 120B) to 15.9-17.7 pN (S ) 30B) for more
compact racquet and toroidal states.

D. Comparison between Theory and Simulations.We
analyzed the simulation results for the monomer density and
the averaged extension as a function of the pulling force by
using perturbative treatment (see eqs 3-5) in the entire range
of x < L. For the proximal limitx , lp < L we use the exact
expressions in eqs 7 and 9. The density distributions and force-
extension profiles for the extended conformation were ap-
proximated by chosing the ground state withm ) m1 (m1 <
m2, see eq 5). The choicem ) m1 corresponds to isotropic-like
unstructured surface state with no preferred orientation of the
chain beads. Histograms of structured two-, three-racquet, and
toroidal conformations were analyzed with the choicem ) m2

corresponding to nematic-like ordered states.27 To account for
the difference between the shape of attractive potentialUadsused
in the simulations and the theoretical calculation we used, in
the actual fit, the rescaled potential depth∆T ) r ∆sim for the
same rangebT ) bsim ) 1, wherer ) (b∆T)-1 ∫0

∞dx uads(x) is
the ratio between volume of Lennard-Jones attractive layer and

Figure 3. Dependence of radius of gyration,Rg/a (top left), intramolecular attractive interaction,ULJ (eq 16), surface potential,Uads (eq 17), and
internal energy,U ()Ubend + Ubond + ULJ) displayed as functions of time, measured in units ofτ. The five curves in each panel correspond to
extended (black), one-racquet (red), two-racquet (green), three-racquet (blue), and toroidal (magenta) structures of Figure 2.
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b∆T used in theory. The density profiles,n(x), for known values
of b, kBT, and∆T were fitted to the simulated monomer density
histograms and force-extension profiles to obtain parameters
ε0 (eq 1) andlp. The theoretical results for the density,n(x),
and the average extension,〈x(f)〉, computed from eqs 3 and 11,
respectively, using these parameters are shown in Figures 4 and
6.

Monomer Density Distributions.Although the theoretical
results forn(x) slightly underestimate the simulated density for

structured states for 0< x/b < 0.5 and overestimates it forx/b
> 1.6, the agreement between perturbation theory and simulation
data is surprisingly good in the range ofx/b ≈ 1 (Figure 4).
The agreement between theory and simulations improves for
more structured racquet and toroidal conformations. In particu-
lar, the theoretical profiles capture the positions of density peaks
both inside the layer atx/b ≈ 0.5 and at the boundary. Although
there is some residual density at largex/b because of thermal
fluctuations of chain ends, especially for less structured extended

Figure 4. Average monomer density profiles,n(x), as a function ofx/b for ∆ ) 1.5B andkBT ) 1.0 for extended (top), two-racquet (top middle),
three-racquet (bottom middle), and toroidal states (bottom panel). The left panel is forS) 70B, and the results forS) 50B are shown on the right.
Solid lines and dotted lines represent the results obtained using perturbative and exact theory, respectively.
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and racquet configurations, the ground state dominance ap-
proximation is clearly valid. The theoretically estimated con-
formational free energy per monomer and persistence length
for structuresS0 f S2 f S3 f St of Figure 4 decrease
respectively asε0/kBT ≈ -0.21 f -0.23 f -0.24 f -0.25
and lp/a ≈ 11.7 f 11.2 f 10.4 f 10.2 (for kBT ) 1.0, left
panels), andε0/kBT ≈ -0.23f -0.25f -0.26f -0.27 and
lp /a ≈ 11.3 f 11.0 f 10.2 f 10.1 (for kBT ) 1.25, right
panels). Not surprisingly, bothε0 and lp decrease for the same
structures askBT is increased because of enhanced chain
flexibility. In the proximal region, the exact calculation ofn(s)
for 0 e x/b e 0.5 for the same structure sequence shows a better
agreement with the simulated results. The fit parameters are
ε0/kBT ≈ -0.2f -0.24f -0.25f -0.28 andlp/a ≈ 12.3f
11.8 f 11.0 f 10.8 for kBT ) 1.0, andε0/kBT ≈ -0.19 f
-0.22f -0.24f -0.26 andlp/a ≈ 12.0f 11.6f 10.8f
10.6 forkBT ) 1.25.

Force-Extension CurVes.Apart from small deviations around
the unfolding threshold forces for all simulated surface struc-
tures, the fit of theoretical curves of the average extension versus
pulling force to simulated data points shows excellent agreement
between theory and simulations. The theoretical〈x(f)〉 curves
calculated using the perturbation theory follow closely the
simulated force-extension profiles both forS) 120B andS)
30B especially below (x/L e 0.1) and above (x/L g 0.9). The
unbinding threshold forces increase as 7.5pN < 10.5 pN <
12.5 pN < 16.5 pN in the sequenceS0 f S1 f S3 f St (S )
120B, top panel in Figure 6) and as 15pN < 15.5pN < 16.5
pN < 17.5pN in the sequenceS4 f S5 f S7 f St (S ) 30 B,

bottom panel in Figure 6). This implies that more flexible and/
or more structured surface chains are harder to unfold. However,
an “all-or-none” type of simulated unfolding transition shows
sharper growth than predicted by the theory. The theoretically
estimated conformational free energy per monomer and persis-
tence length for structuresS0 f S1 f S3 f St decrease,
respectively, asε0/kBT ≈ -0.12f -0.17f -0.20f -0.22
and lp/a ≈ 15 f 14.5 f 14.25 f 12.1 (top panel). For the
structuresS4 f S5 f S7 f St, ε0 decreases asε0/kBT ≈ -0.134
f -0.136f -0.141f -0.148 andlp/a ≈ 8.2 f 8.1 f 8.0
f 7.9 (bottom panel). Here too, increased chain flexibility
decreaseslp and lowersε0.

V. Conclusions

To provide insight into interactions between biomolecules
and membranes, we have considered collapse and forced
unbinding of semiflexible chains (SC) in the presence of an
adsorbing surface. The interaction of SC modeled using WLC,
which describes many of the physical properties of DNA,19

RNA,30 and proteins,31 with a surface into which the SC can
adsorb, is studied using theory and simulations. The morphol-
ogies of the SC in the presence of an adsorbing potential is
described in terms of three length scales, namely,lp, ls, andlc.
By restricting ourselves tolc ≈ ls, we have studied the effect of
interaction with the surface on coil-toroidal transition in DNA-
like chains. The simulations show that the rate of toroid
formation is impeded compared to the bulk because interaction
with the surface stabilizes many metastable racquet-like struc-
tures (Figure 1). The simulated equilibrium density profiles show

Figure 5. Dynamics of extensionx (in units of a) for a few trajectories at different values off applied to the chain ends of structures shown in
Figure 2. Timet is expressed in units ofτ. The colors correspond to the caption in Figure 3. The values off are displayed in the panels.
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that as the range of surface-SC interaction increases and
temperature decreases, which leads to a decrease inlp/ls, ordered
structures form. The peak ofn(x) at x ≈ b (the range of
interaction) grows aslp decreases. The bimodality in then(x)
distribution function suggests that the surface-induced toroid
formation is a first-order transition. The perturbative calculation
reproduces qualitatively all of the features in the simulated
density profiles.

We also considered the peeling and unbinding of adsorbed
structures by applying force. These results, which are of direct
relevance to AFM experiments,32 show that the forced unbinding
transition is surprisingly highly cooperative. For all structures
(racquet-like and toroids), unbinding occurs over a narrow force
range. The magnitude of the critical force,fc, for a fixed value
of T and ls increases aslp decreases. From general consider-
ations, we expect thatfc should be described by a scaling

Figure 6. The averaged reduced extension,〈x〉/L, as a function of constant forcef simulated for∆ ) 1.5B andkBT ) 1.0 for structures in Figure
2 (S ) 120B, top). The bottom panel shows force-extension profiles for four-, five-, seven-racquet, and toroidal configurations obtained forS )
30B (bottom panel). Data points for extended (four-racquet), one-racquet (five-racquet), three-racquet (seven-racquet), and toroidal structures are
given by red, green, blue, and black circles, respectively. Theoretical curves for these structures are given, respectively, by solid, dotted, dashed,
and dot-dashed lines.
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function g(y) wherey ) ls/lp for a fixed T. When y < yc (a
critical value), then adsorption is not free energetically favored.
Wheny > yc, thenfc should increase by an increasing function
of y. The increase infc can be achieved either by increasingls
for a fixed lp or by decreasinglp for fixed ls. Additional work
is required to elucidate the nature of the scaling functiong(y).
Quite surprisingly, we find that the force-extension profiles
can be calculated by using a simple perturbation theory even
though the nature of the unbinding transition is abrupt. The
present work shows that global properties of force-extension
characteristics of adsorbed biomolecules can be nearly quanti-
tatively predicted using the proposed theory.

It is now well established that elastic response of DNA, in
the absence of interaction with surfaces, depends sensitively
on the nature and concentration of counterions.32,33 Our work
shows that the force-extension curves in the presence of a
surface to which DNA is bound depends not only onls but also
on the morphology of the adsorbed structures. The novel
prediction that forced unbinding should occur cooperatively by
a first-order phase transition can be probed using single-molecule
experiments.
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Appendix A: PerturbatiVe Treatment of Adsorbed Chain
Statistics.We expandψ0 (eq 1) in terms of the Legendre
polynomials, that is

By using the following equations

we transform eq 2 without termâlpγ f ψ0 into (i g 0)

To the first few orders we have

ψ1 is given by the second eq A4 with the second term

determined byψ2 which is of the order of 8lp
3d3ψ0/dx3.

Neglecting this order forη , 1 we obtain

Including the second term in the third eq A4 and using eq A5
we obtain the first-order perturbation equation forψ1

whereφ ) â(uads- ε0). By substituting eq A6 into the first eq
A4 we arrive at the first-order perturbative equation forψ0

For the class of potentials considered here, the physical solution
of eq A7 that satisfies the boundary conditions

continuity requirements atx ) b

and normalization condition is given by eq 4.
Appendix B: Exact Treatment of the Chain Distribution in

the Proximal Range.Let us first consider the nonadsorbed chain
in the presence of weak potentialuads f 0. Assuming a self-
similar distribution,ψ0(x, Θ) ) xRg(κ) whereκ ) Θ(2lp/x)1/3,
we rewrite eq 6 withuads ) ε0 ) 0 as an eigenvalue problem
for g(κ)

Upon substitutionz ) κ3/9, eq B1 reduces to the following
equation

Under conditiong(z f ∞) f 0, the only solution to eq B2 is
g(z) ≈ Ψ(-R, 2/3,z) whereΨ(ø, ω, z) andΓ(ø) are defined in
the main text.ψ(x f 0, Θ < 0) f 0 defines the spectrum of
eigenvaluesRn ) 1/6-n, wheren ) 0, (1, (2, ... (see Appendix
B in ref 28). The requirement thatψ does not have knots is
satisfied forn ) 0 (R ) 1/6) andn ) 1 (R ) -5/6), and the
general solution foruads) 0 in the regionx > b is given by eq
7 of the main text.

To solve eq 8, we substituteC0 from the second equation
into the first equation and multiply byx2/3. We obtain

ψ0(x,θ) ) ∑
i)0

∞

ψi (x)Pi (cos[θ]) (A1)

d
dγ

Pi (γ) ) -i(i + 1)Pi (γ)

P1(γ)Pi (γ) )
(i + 1)Pi+1(γ) + iPi-1(γ)

2i + 1
(A2)

i(i + 1) + â(uads- ε0)

2lp
ψi (x) ) - i

2i - 1

dψi-1(x)

dx

- i + 1
2i + 3

dψi+1(x)

dx
(A3)

ψ0 )
2lp

3â(uads- ε0)

dψ1

dx
(i ) 0)

ψ1 ) -
2lp

2 + â(uads- ε0)

dψ0

dx
-

4lp
5(2 + â(uads- ε0))

dψ2

dx

(i ) 1)

ψ2 ) -
4lp

3(6 + â(uads- ε0))

dψ1

dx
-

6lp
7(6 + â(uads- ε0))

dψ3

dx

(i ) 2) (A4)

ψ1 ≈ -
2lp

2 + â(uads- ε0)

dψ0

dx
(A5)

ψ1 ≈ -
2lp

2 + φ

dψ0

dx
-

4lp
5(2 + φ)

d
dx[ 4lp

3(6 + φ)
d
dx( 2lp

2 + φ

dψ0

dx )] (A6)

64lp
4

45φ(2 + φ)2(6 + φ)

d4ψ0

dx4
+

4lp
2

3φ(2 + φ)

d2ψ0

dx2
- ψ0 ) 0

(A7)

ψ0(x ) 0) ) 0, ψ0(x f ∞) f 0,
dn

dxn
ψ0|xf∞ f 0, n ) 1, 2, ...

(A8)

ψ0(x f b - 0) ) ψ0(x f b + 0),
d
dx

ψ0|xfb-0 ) d
dx

ψ0|xfb+0

(A9)

- 1
κ

∂
2g

∂κ
2

+ κ

3
∂g
∂κ

) Rg (B1)

z
d2g

dz2
+ (23 - z)dg

dz
+ Rg ) 0 (B2)

x4/3
d2C1

dx2
- 2

3
x1/3

dC1

dx
+ (Fh11 + Dx2/3)C1 ) 0 (B3)
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whereD ) Fh00Fh11 - Fh01Fh10 andFhnm ) Fnmφ(2lp)1/3, n, m ) 0,
1. Substitutingy ) x1/3 into eq B3 and multiplying it byy2, we
get

Using z ) y2 allows us to rewrite eq B4 as

whereγ0 ) 9D, â0 ) 9Fh11, â1 ) -4, andγ2 ) 4. The general
solution of eq B5 is given by

where c1 and c2 are constants andF ) (3 Fh11 - 2x-D)/
4x-D. In eq B6,Φ(k, l, x) is the Kummer series defined in
the text. In the range 0e x e b, ψ1(x, Θ ) 0) diverges asx f
0. To avoid this divergence, we require thatC1(x ) 0) ) 0.
This is satisfied whenc1 ) 0. To ensure thatC1(x) f 0 asx f
∞ for x > b, we setc2 ) 0. Substitutingφ ) φin andφ ) φout

into solutions for 0e x e b and x > b and using formulas
Φ(k, l, x) ) ex Φ(l - k, l, x), (dm)/(dxm)Φ(k, l, x) ) ((k)m)/((l)-
m)Φ(k + m, l + m, x) we obtain eq 9.
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y2
d2C1

dy2
- 2y

dC1

dy
+ y2(9Fh11 + 9Dy2)C1 ) 0 (B4)

γ2z
d2C1

dz2
+ â1

dC1

dz
+ (γ0z + â0)C1 ) 0 (B5)

C1(x) ) e3/2x-Dx2/3[c1Φ(F, - 1
2
, -3x-Dx2/3)

+ c2(-3x-Dx2/3)3/2Φ(F + 3
2
,
5
2
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