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Influence of Surface Interactions on Folding and Forced Unbinding of Semiflexible Chains
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We have investigated the folding and forced unbinding transitions of adsorbed semiflexible polymer chains
using theory and simulations. These processes describe, at an elementary level, a number of biologically
relevant phenomena that include adhesive interactions between proteins and tethering of receptors to cell
walls. The binding interface is modeled as a solid surface, and the wormlike chain (WLC) is used for the
semiflexible chain (SC). Using Langevin simulations, in the overdamped limit we examine the ordering kinetics
of racquet-like and toroidal structures in the presence of an attractive interaction between the surface and the
polymer chain. For a range of interactions, temperature, and the persistencel jengtlobtained the monomer
density distributionn(x), (x is the perpendicular distance of a tagged chain end from the surface) for all of
the relevant morphologies. There is a single peak(k) inside the range of attractive forcds,for chains

in the extended conformations, whereas in racquet and toroidal structures there is an additionakpeak at

b. The simulated results fax(x) are in good agreement with theory. The formation of toroids on the surface
appears to be a first-order transition as evidenced by the bimodal distributigr)inrhe theoretical result
underestimates the simulatak) for x << b and followsn(x) closely forx > b; the calculated density agrees
exactly withn(x) in the rangex < b. The chair-surface interaction is probed by subjecting the surface
structures to a pulling forcd, The average extensiot¥( f)[] as a function of exhibits a sigmoidal profile

with sharp all-or-none transition at the unfolding force thresHatdf; which increases for more structured
states. Simulate@(f)Cdcompare well with the theoretical predictions. The critical foffgeis a function of

I/l for a fixed temperature, whetgandls are the length scales that express the strength of the intramolecular
and SC-surface attraction, respectively. For a fixkgdf. increases ak, decreases.

I. Introduction develop a theoretical approach that can be used in conjunction

] ) ) with AFM experiments to decipher biomoleculsurface in-
Interactions between biomolecules and surfaces are importantgractions.

in a number of biological phenomena. Binding and unbinding
of proteins from macromolecular complexes are involved in the
regulation of biological functionk.3 Adsorption of fibrinogen
influences the adhesion of leukocytes, microphages, or platelets
In addition, interaction between proteins, DNA, and RNA are
mediated by biological membran&s In the crowded cellular
conditions, proteirs protein and DNA-protein interactions take description of the interactions between semiflexible caiié
place in confined geometries in which surface interactions are - . ;

. . . . . and interfaces. The purpose of this paper is to address the
vital. For instance, interaction between P-selectin receptors and

. g . . .~ “following specific questions: (i) It is known that DNA, a
_the|r spe7cgf|c Ilgands IS medlaFed t_)y a flat a_nd shallow b|_nd|ng semiflexible polymer, undergoes a cedlobule transition in
interface’® Besides these situations, which are obviously

s L the presence of osmolytes or multivalent cati&8Simulations
relevant in biology, there are a number of situations in polymer L A 6
) . 9 . . : of semiflexible chains in poor solverRfs® have been used to
science in which interactions with surfaces are importakt. S "
. o L . . understand the kinetics and pathways of transitions from
These include nanolubrication, which involves interaction

between surfaces that are mediated by polvmers. Desian 0fextended conformations to collapsed toroidal structures. The
; . . Oy poly ) gn coil—globule transition in stiff chains in the bulk occurs through
nanoscale materials and biologically inspired self-assembling

. : a series of metastable racquet structdf@8.How does the
systems also requires an understanding of how heteropolymers

and biomolecules interact with surfaces. Recent advances inmteractlon with the surface alter the morphology and kinetics

atomic force microscopy®4has allowed a direct probe of the of such transitions? This question is relevant even for DNA

. . - . . collapse in cells where the DNA compaction takes place in the
energetics of interaction between adsorbed proteins with other fi : ith their | bi lecules i

biomolecules:*>1° The potential applications of polymer presence of interactions with their farge blomolecules In
surface models to a number of problems has prompted us tc)restncted spaces; (i) AFM experiments are Ilkely to provide

the most direct data for the strength of interaction between

semiflexible biomolecules. In these experiments, one of the
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There have been numerous studies of the adsorption of
flexible polymers adsorbed on solid surfaces that find applica-
tions in many aspects of colloidal and interface sciefié&12.20
However, many biomolecules, including DNA, RNA, and
proteins, are better described using wormlike chain (WLC)
modelst2122 Thus, it is important to provide a theoretical
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Adsorbing surface

Figure 1. Schematic of a semiflexible chain (blue) adsorbed on the
surface (yellow). The free endr,(n) makes an angle® = arc
cosfn-ny/|n|:|ny|] with the directionn, of the pulling forcef = fn,. For
clarity, the chain is shown as extended, which is realized only when
the SC-surface interaction is strong. The interaction between the
monomers of the chain and the surface is attractive in the range 0

< b wherex is the distance perpendicular to the surface. The strength
of the interaction isA. In the Langevin simulations, we replace the
square-well potential by the Lennardones potential (eq 17).

raise a question, namely, what are the adhesive forces between holX) =
semiflexible polymer and a surface? We address this question

using theory?27.28and simulations for a WLC model interacting
with a solid surface.

In the absence of the surface, the morphologies of the
semiflexible chain (SC) are determined by thermal fluctuations
and an interplay of the chain persistence lendth, and
intramolecular condensation lengdth= /I ks T/u., whereT is
the temperature andg, is the effective intramolecular attractive
energy per unit lengtf In the presence of a surface another

length scalds = 4/I ks T/U,qs Whereuagsis the attractive S€

surface interaction energy per unit length, plays an essential

role in the determination of the structures. The interplay,of

I, andls will determine the morphology of the surface-induced
structures. It also follows that the response to applied force
measured in terms of foreeextension profiles will depend on

lp, lc, andls. In this paper, we explore a range of valueskgf
andls to predict the force-extension curves for semiflexible
chains in poor solvents.

Il. Theory

Consider a semiflexible chain interacting with a flat surface
with the SC-surface potential beintyags Forcef = f-ny is
applied to one end of the chain (Figure 1). The equilibrium chain
configuration is described using the conditional probabiBityy,
x1; f) of finding the tagged\th monomer aky given that the
monomer,X;, is anchored at the surface, whete= (r, n)
includes position vectar = (X, y, 2 and orientation vecton,
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whereuags = UagdN is the adsorption potential per monomer
andy = cosp] (see Figure 1). To mimic the Lennardones
chain—surface attractive interaction used in the Langevin
simulations (see Section IIl), we employ a piecewise continuous
potential, that iSpags= o for X < 0, Uaggs= —Afor0 < x<b
anduags= 0 for x > b. The monomer density of the adsorbed
structures in the absence of force

n() = [doy,’(x, 6) ®3)

normalized agdxn(x) = N, is calculated by solving eq 2 without
the last termplgy fyo.

The perturbative solution of eq 2 in the absence ofihe f
term, due to Kuznetsov and Sufgjo the first order in
correlation length parameter= (4I§I1po)|d21p0/dx2| is outlined
in Appendix A. The solution is

xﬁ)

xym,
2,

2,

7)ot

x«/|—<)
|

+ C, sin

h(b — x)(Cl sin(

X
+C, cos(

Po(X) = Coh(x — b) expg —

o (4)

whereh(x) is the Heaviside function, an@o, Ci, C,, andCs
are constant coefficientsyy, mp, andk are given by

¢in

M o= G 66+ 8|1\ 1+ L
k=250 4 6, )6 + do)|~1+ LB Lo | (5

8 ou ou 56+ oy,

and ¢i ﬁ (Uadix) - 60) <0, pouit = —€g > 0. By USing two
continuity requirements (A9) and the normalization, we can
obtain, respectivelygo, and Cp and one ofCi, Cy, or Ca.
However, the two free constants are to be chosen such that a
minimum of ¢y is obtained. The minimal free energy corre-
sponding to the ground state frr< b is attained for (i)C; =
0,C,=C3=0 (i.e., the state witlm = ny) and (ii)C, = 0, Cy
=C3=0 (M= ny).

The perturbative solution of eq 2 ignores variatiorygfon
0. Indeed, wherx > |, y becomes nearly isotropig; (x, 60)
= y(X). However, whenx ~ b < |, 9o should depend strongly

respectively. Because of axial symmetry, the free end orientationon the angle® = 7/2 + 0 between the free end of the chain

is specified by the anglé between its tangent vector and the
x axis and distance from the surface(Figure 1), and the
conditional probabilityG(xn, On; X1, 01; f) can be used instead
of G(xn, X1; f). In the limit L — oo, G(xn, On; X1, 01; ) is
dominated by the ground statgy, so that

G(Xns O X015 T) & Xy, 015 T (X Oni T)eXpl—SNeg]
1)
€0 = Eo/N is the equilibrium free energy per monomer ghet

1/KgT. If the SC is modeled as a wormlike chain (WLC), then
o satisfied?27.28

RN My
y— Z)IW_‘_ﬂlprwO_

B(UygdX) — €9 (2)

Yy

_ _ro 2
Ay 5 T A=)

and the surface (Figure 1). In this range/d/ox — ©aloX,
1 — y? 3¥3y? — 33002, yoloy — 0,y f — —Of and eq 2
simplifies, that is

g

%o 1 "o _
X

Ie) =
2|p 902

200~ 4 W) = Dy ©)

The methodology for solving eq 6 has been presented by
Semenov in ref 28 and is outlined in Appendix B. The general
solution forx > b (Uags= 0) is

3

U’o(X: ®) =

n=0,1

63 ox @

whereCp andC; are constants and the confluent hypergeometric
function W(y, o, 2) is Y(y, w, 2 = UL (y)/edr 71 (1 +
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7)?7 71 e7 where'(y) = fodr 71 exp[-7] is a Gamma
function2® To describe the chain in the ranges b, we assume
that o is of the form of eq 7 andCy and C; depend onx.
Substituting eq 7 into eq 6, we obtain

dc, 13 )
™ _¢(X)( ) (FooCo + ForX "Cy)

dCl 13
X ¢(X)( ) (FixG + F1,Cy) C)
where Fpm = (gn/k, T)/(fo, fr), N, m= 0, 1, and ¢n, gm) =

JZ dick €79 gi(x) gm(x) (see eq B2). We solve eq 8 subject to
the conditiong(X) = ¢i, for x < b and¢(X) = ¢ou for x > b.
From the solutions of eq 8 in Appendix B we obtain:

Ciln(x) _ C263/2\/_ x2/3( 3 \/_X2/3)3/2
x cp(p +32 —3J_ xz’a)h(b ~x)
Co(x) = o 32/ D, (,o, _ % 3 \/—_Dm)h(x —b) (9)

wherev'—D = ¢ou(2lp)*3\/FoiF 15— F1:F oo IN €9 9, the Kum-
mer function®(k, |, x) is defined by®(k, I, x) =1+ 3.,
K/ (Dm xMmlt with (kK)o = 1, ()1 = kand K)m = k(k + 1)...k
+ m — 1)2° We getCy(X) by substituting eq 9 fo€)' and C""
into the second eq 8 angy(x, ®; f) can now be obtained by
using eq 7.

In the presence of pulling forceyo is nearly isotropic, that
is, Yo(x, 0; ) ~ yo(x; f). This allows us to analyze foree
extension profiles by employing the perturbative treatment
outlined above. Solution to eq 2 is given by

Po(x; F) = po(e’?™

(10)
where yo(X) is given by eq 4. The average extension as a
function of applied force can be computed using

11 d
BZ(F)df

where partition functiorZ(f) is Z(f) = fdOn fdO1 fdxy SdXq
G(XN, HN; X1, 01; f)

The perturbation theory is strictly valid only when the
condensation length > |,. In practice, we find that the first-

X(f)= 2 ————7(f) (11)
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(hydrodynamic interactions are ignored). The random force
gj(t) obeys Gaussian statistics

GO=0, GG )= 6kgTE0;O(t — t)

We solve eq 12 for eachy; with unit tangent vectow;
(X+1—Xj)/a, wherej = 1, 2, ...,N. The stretching potential)yong

(13)

is
N—-1
Upond= _ZZ(|XJ = ¥jal” — 0), (14)
20°1=
whereA and o are constants, and
—1
(15)

Ubend: EZ(]- + Coskpj,j+1])2
=

where the constan§ is a measure of chain stiffnes, and
cospjj+a] = (Xjr1—X)(Xj-1—Xj)/0? is the bend angle. The
interaction between beads is given by the 12-6 Lenndohes

potential
o 12
S| -2
<] AXIJ

whereAx; is the distance between beddandj, andB is the
magnitude of interactionUy; is an effective interaction that
accounts for excluded volume interactions and counterion
induced attraction, which in DNA is due to screening of the
charges. The persistence length of the chigjrcan be roughly
estimated by using, = a/(1 — cos[¢;;+1) where [;;+10=

(N — 1)t Y5! ¢jj+1 is the average angle between adjacent
beeds.

Similar models have been used in previous studies to probe
the chain collapse in poor solverifs®In the presence of the
adsorbing surface, the motion joifi bead is governed by eq 12
with U = Uchain+ Uags WhereUgygsis the surface SC potential

b
Uads: AZ
T

AX;
In eq 17,Ax; is the bead-surface distance and andb are,
respectively, the depth and range of the attractive forces. We
setB=1.0,0 = a= 1 andb = 3a, and useA = 400B, S=
30B, 60B, and 12 andA = 1.5B, 2.0B, and 2.1. This makes
U3, Upong Upens @andUgqgsto scale in units ok, = kgT ande

o \6

AX;

U,=B (16)

6
17)

AX

order perturbation theory gives results that are in very good = ¢ is the unit length. The choica& = 400B allows for 5% of

agreement with simulations even whigr |,. Kuznetsov and

thermal fluctuations in the bond distance and permits us to run

Sung also discovered that the perturbation theory is remarkablysimulations with longer time steps without affecting bond

successful outside the regime of applicabifity.

Ill. Langevin Dynamics Simulations

We model a semiflexible chain (SC) by = 100 connected
beads of bond lengthand the contour length = 100a. In the
absence olUygsandf = 0, we assume that the dynamics is
governed by the overdamped Langevin equation

S
3 i T ax, +g(®)

(12)
whereé is the friction coefficientlU = Uchain = Upond + Ubend
+ Uy, is the chain internal energy due to bond potenitlgng
bend potentialUpeng and interbead interaction potentidl ;

relaxation time. The unit of time is = £0%/en, Where& = 44.0
is the friction coefficient of the chain in water @at= 300 K.
The system of eq 12 is integrated with a step size= 2 x
10727 and the total time i$ = N0t whereNy: is the number
of integration steps. We express time either in units of in
terms ofNiot.

IV. Results

A. Surface-Induced Structural Transitions. It is known that
in the absence of the surface SC undergoes a collapse transition
when the solvent is poor, that is, when the attractive monemer
monomer interactions dominate (eq 16) so that |,. The
collapse is a result of a competition between intramolecular
attraction and bending energy due to chain stiffness. Unlike in



21982 J. Phys. Chem. B, Vol. 109, No. 46, 2005 Barsegov and Thirumalai

adsorbed on the surface. The search for the ground (toroidal)
state is more efficient when the chain is constrained to evolve

7 on the 2D surface where the SC quickly minimizes its free

M b . - .

- 1 ] energy in reduced = 2 space by sliding surface motion (lateral
2 S diffusion).

B. Kinetics of Surface-Induced Ordering. Typically, surface-
induced ordered structures form by a two step proBgss &
¥ — §. Starting from the bulk statB,, extended surface transient
S emerges during the fast first step with tBBg— S transition
occurring withinNyt = 1—3 x 1P, In the slower second step,
e S — S, extended transient structures explore the free-energy
landscape in search of the toroidal ste®g,which occurs in
about 3— 20 x 1(f steps depending o8 A, and temperature.
Transition fromS to S is realized via rapid formation of either
oot oot a surface loop or an intermediate toroid-like motif with larger
Ry (smaller winding number) or through a sequence of longer
lived racquet state§g — S — ... — S, whereS,, n=0, 1, 2,
... denotes conformations with number of racquets equal to zero
(extended chain) one, two, and so forth.

The number of “metastable” racquets depends on the chain
flexibility. We observed configurations with= 6 for S= 30B
and ksT = 1.25. Simulated profiles oRy, Upj, Uags and U
Figure 2. Top view of the typical structures (blue) adsorbed on the indicate that evolution from extended to toroidal states follows
surface (yellow) forS= 1208, A = 1.58, andksT = 1.0. Extended  several pathways. Four out of five simulation runs followed the
(S), one-racquets), two-racquet$), three-racqueisy), and toroidal g opeme gutlined above. Similar diverse pathways have been
structures &) are obtained in a single trajectory that is terminatet at b d by N hi d Yoshikat®awh ded th
= 4 x 10 5z. The equilibrium structure under these conditions is the observed by INoguchi and voshikaivawho recorde €
toroid. lifetime of intermediates species for abdig; = 2.0 x 10°.

Our results indicate that attractive surface forces increase the

flexible polymers, the low energy collapsed conformation is a lifetimes of metastable intermediates for stiff chains at low
torus that maximizes intramolecular contacts and minimizes the témperature. In a few simulation runs, toroidal structures were
bending penalty. Before simulating the foroextension curves ~ Not observed during as many as 20.0° steps. Hence, attractive
of adsorbed SC, it is necessary to characterize the structuresurface forces facilitate the formation of toroidal state primarily
that are obtained when interacting with the surface. when formation of toroid-like intermediate motif is involved.
To simulate the low free-energy structures that result in the ~ The dynamics oRy, UL, Uags andU for the structures in
presence of the surface, we first thermalized an extended chainFigure 2 show that increasingly more ordered states are also
at high temperaturégT = 3.0 for Niit = 1 x 1P steps. By energetically favorable (Figure 3y, U, andU,; decrease and
gradually decreasing the temperature, bulk structures wereUapsincreases in the sequenfe— S — S — § — S Ry
thermalized for (+10) x 107 steps and used in adsorption fluctuates around larger values for extended states. Variations
experiments. Interactions with the attractive surface was switchedin ULj, Uads andU increasing in the sequence &f— S — S
on at distanceAx = 2b away from the bead with shortest — S transitions are due to the formation of S€urface contacts.
and the SC was adsorbed onto the surface one bead at a timg-or the structures in Figure 2, the formationSafat Nyt ~ 2.0
The structures were allowed to relax ferl—20 x 10° steps x 10° is mediated by a surface-loop motif followed by slow
depending orksT, S, andA. The progress of adsorption was ~ sliding motion;S; forms early atNiot ~ 5.0 x 10° and remains
monitored by analyzing time traces bk j;, Uags U, and the unchanged (time dependenceRfor U.j). The dynamics of
radius of gyrationRy, of the SC. We generated 500 adsorbed UL, Uags andU show formation ofS; via § at Niet ~ 1.0 x
structures aksT = 1.0, 1.25, and 1.5 fo& = 30B, 60B, and 10° followed by transitiors; — S at Ny &~ 7.0 x 108, Similarly,
120B andA = 1.58, 2.0B, and 2.1. traces of the same quantities fpoint at three-step transition,
Typical structures are presented in Figure 2. The geometry S — St — S — S occurring, respectively, &t ~ 5.0 x 10,
of the SC adsorbed onto the surface ranges from partially or 1.5 x 10, and 4.0x 1C?, followed by chain compaction due
fully extended configuration withy/a = 18 to partially structured  to sliding motion.
one-, two- and three-racquet states wila ~ 16.0, 15.5, and In agreement with theoretical argumefitsnonomer profiles
15.0, respectively, to fully ordered toroidal states wita ~ of stiff chains § = 120B, Iy/b > 1) are described by the
13.5. Similar structures have been observed in recent studiessuccession of short near-surface loops of lergth/a between
of collapse of semiflexible chains in the b@2® For the chain—surface contact and by the combination of short and long
interaction parameters used in our simulatidgiis,~ o(1). Thus, loops of the length> |/a for S= 30B andly/b ~ 1. Decrease
the attractive S€surface interaction facilitates adsorption of in /b and temperature favors the formation of chasurface
the SC without significantly altering its morphology compared contacts by enabling more beads to be inside the range of surface
to the bulk case. Fdg > |, the lowest free-energy structures forces. This results in the formation of higher ordered states
are extended. S, S, S, and S. In contrast, at higher temperatures and
To compare the kinetics of structure formation on the surface increased\ andS surface structures with increased conforma-
and in the bulk, we also simulated collapsed structures in the tional free energy become unstable and unfold into extended
absence of the adsorbing surface. By analyzing the temporalconfigurations (data are not shown). We quantified the geometry
profiles of Ry, ULy, andl,, we found that on average, chains of surface structures (Figure 2) by binning beadrface
attain structured configurations on a faster time scale when distancesy;, into the density histogranm(x). The monomer

]
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Figure 3. Dependence of radius of gyratioRy/a (top left), intramolecular attractive interactiod,; (eq 16), surface potential)ags(eq 17), and
internal energylJ (=Upenda + Unond + ULy) displayed as functions of time, measured in unitg.oThe five curves in each panel correspond to
extended (black), one-racquet (red), two-racquet (green), three-racquet (blue), and toroidal (magenta) structures of Figure 2.

density profiles forA = 1.5B andkgT = 1.0 are compared in
Figure 4 forS = 70B (left) and S = 50B (right panels).

average extensio[Jas a function of. In Figure 6 we compare
XOversud traces for extended, one-racquet, three-racquet, and

Transition from less-structured to more-structured states is toroidal structures of Figure (= 120B, top panel) and more

accompanied by an increased ratio of the number of bead
bead to beadsurface contacts. The density distributiofx),
is single-peaked at = b/2 and decays to zero as— b for
extended states and increases its densitysab in the sequence
S5 S

C. Forced Unfolding of Surface-Adsorbed StructuresTo

unfold the surface-ordered structures, these structures were

initially allowed to thermalize atsT = 1.0 for Nyt = 2 x 1CP.

We then ancored th€ terminus of the chain at the surface and
pulled its N terminus with constant forcévia the harmonic
spring with the spring constarks, = 0.36 pNnmt in the
direction perpendicular to the surface. Simulation runs were
terminated after evolution of chain extensii{i;) had reached
equilibrium. x(Nywi) of the structures of Figure 2 are presented
in Figure 5 forf = 9.75, 18.3, 24.4, and 30.pN. Chain
extension reaches a saturation plateau in the fisstl®’ steps

as the chain restoring force approactiedlot unexpectedly,
the unfolding threshold force increases with the extent of
ordering in the sequen® — S — S — S — S. At f=9.75

pN, only & unfolds in 1.0x 107 steps. When the force is
increased td = 18.3pN, &, S, &, andS; unbinds from the
surface in 3.5¢< 107, 3.6 x 107, 4.0 x 107, and 6.0x 10’ steps,
respectively. Af = 24.4pN, all structures reach the stretched
state in 2-4 x 10’ steps. From the dynamical trajectoriesxof
obtained forA = 1.5B and kgT = 1.0, we constructed the

flexible four-, five-, and seven-racquet and toroidal conforma-
tions obtained forS = 30B. Unbinding of surface-anchored
structures undergoes a highly cooperative all-or-none transition
as the unfolding force threshofd= f. is increased from 7.3 to
15.8 pN (S = 120B) to 15.9-17.7 pN (S = 30B) for more
compact racquet and toroidal states.

D. Comparison between Theory and Simulations.We
analyzed the simulation results for the monomer density and
the averaged extension as a function of the pulling force by
using perturbative treatment (see e@s53 in the entire range

of x < L. For the proximal limitx < [, < L we use the exact
expressions in eqs 7 and 9. The density distributions and-force
extension profiles for the extended conformation were ap-
proximated by chosing the ground state with= m; (m, <

My, see eq 5). The choiada = my corresponds to isotropic-like
unstructured surface state with no preferred orientation of the
chain beads. Histograms of structured two-, three-racquet, and
toroidal conformations were analyzed with the chaices m,
corresponding to nematic-like ordered stefe$o account for

the difference between the shape of attractive potedtiglused

in the simulations and the theoretical calculation we used, in
the actual fit, the rescaled potential depth = r Agin, for the
same rangdr = bsm = 1, wherer = (bA7)™! fgdX UadX) is

the ratio between volume of Lennardones attractive layer and
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0 1 2 3 0 1 2 3

x/b x/b

Figure 4. Average monomer density profiles(x), as a function ok/b for A = 1.5B andkgT = 1.0 for extended (top), two-racquet (top middle),
three-racquet (bottom middle), and toroidal states (bottom panel). The left paneSisf@OB, and the results fod = 50B are shown on the right.
Solid lines and dotted lines represent the results obtained using perturbative and exact theory, respectively.

bAt used in theory. The density profila¥x), for known values structured states for 8 x/b < 0.5 and overestimates it forb

of b, ke T, andAr were fitted to the simulated monomer density > 1.6, the agreement between perturbation theory and simulation

histograms and foreeextension profiles to obtain parameters data is surprisingly good in the range xb ~ 1 (Figure 4).

€0 (eq 1) andl,. The theoretical results for the density(x), The agreement between theory and simulations improves for

and the average extensids(f)[) computed from eqs 3 and 11, more structured racquet and toroidal conformations. In particu-

respectively, using these parameters are shown in Figures 4 andar, the theoretical profiles capture the positions of density peaks

6. both inside the layer afb ~ 0.5 and at the boundary. Although
Monomer Density DistributionsAlthough the theoretical  there is some residual density at langb because of thermal

results fom(x) slightly underestimate the simulated density for fluctuations of chain ends, especially for less structured extended
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Figure 2. Timet is expressed in units af. The colors correspond to the

and racquet configurations, the ground state dominance ap-

proximation is clearly valid. The theoretically estimated con-
formational free energy per monomer and persistence length
for structuresS — S — S — S of Figure 4 decrease
respectively ago/ksT ~ —0.21— —0.23— —0.24— —0.25
andlya~ 11.7— 11.2— 10.4— 10.2 (forksT = 1.0, left
panels), ando/kgT ~ —0.23— —0.25— —0.26— —0.27 and
lp/a~ 11.3— 11.0— 10.2— 10.1 (for keT = 1.25, right
panels). Not surprisingly, botéy andl, decrease for the same
structures askgT is increased because of enhanced chain
flexibility. In the proximal region, the exact calculation ifs)
for 0 < x/b < 0.5 for the same structure sequence shows a better
agreement with the simulated results. The fit parameters are
eo/keT ~ —0.2— —0.24— —0.25— —0.28 andJa~ 12.3—
11.8— 11.0— 10.8 forksT = 1.0, andeg/kgT ~ —0.19 —
—0.22— —0.24— —0.26 andly/a~ 12.0— 11.6— 10.8—
10.6 forkgT = 1.25.

Force—Extension Cures.Apart from small deviations around
the unfolding threshold forces for all simulated surface struc-

x/a

X/a
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04
t/e+05

Figure 5. Dynamics of extension (in units ofa) for a few trajectories at different values bapplied to the chain ends of structures shown in

0.6

caption in Figure 3. The valudsacé displayed in the panels.

bottom panel in Figure 6). This implies that more flexible and/
or more structured surface chains are harder to unfold. However,
an “all-or-none” type of simulated unfolding transition shows
sharper growth than predicted by the theory. The theoretically
estimated conformational free energy per monomer and persis-
tence length for structure§; — S — S — S decrease,
respectively, ago/ksT ~ —0.12— —0.17— —0.20— —0.22
andly/a ~ 15 — 14.5— 14.25— 12.1 (top panel). For the
structuress; — S — S — S, o decreases ag/kg T ~ —0.134

— —0.136— —0.141— —-0.148 andpy/a~ 8.2— 8.1— 8.0

— 7.9 (bottom panel). Here too, increased chain flexibility
decrease§, and lowerseg.

V. Conclusions

To provide insight into interactions between biomolecules
and membranes, we have considered collapse and forced
unbinding of semiflexible chains (SC) in the presence of an
adsorbing surface. The interaction of SC modeled using WLC,
which describes many of the physical properties of DNA,

tures, the fit of theoretical curves of the average extension versusRNA,20 and proteins$! with a surface into which the SC can
pulling force to simulated data points shows excellent agreementadsorb, is studied using theory and simulations. The morphol-

between theory and simulations. The theoretigéf)(Icurves
calculated using the perturbation theory follow closely the
simulated force-extension profiles both fo8 = 120B andS=
30B especially belowx/L < 0.1) and abovex(L = 0.9). The
unbinding threshold forces increase as @l < 10.5pN <
12.5pN < 16.5pNin the sequenc& — S — S — S (S=
120B, top panel in Figure 6) and as PN < 15.5pN < 16.5
pN < 17.5pNin the sequenc& — S — S — S (S= 308,

ogies of the SC in the presence of an adsorbing potential is
described in terms of three length scales, namiglys, andl..

By restricting ourselves t =~ |5, we have studied the effect of
interaction with the surface on ceitoroidal transition in DNA-

like chains. The simulations show that the rate of toroid
formation is impeded compared to the bulk because interaction
with the surface stabilizes many metastable racquet-like struc-
tures (Figure 1). The simulated equilibrium density profiles show
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Figure 6. The averaged reduced extensiaki/L, as a function of constant fordesimulated forA = 1.58 andkgT = 1.0 for structures in Figure

2 (S= 1208, top). The bottom panel shows foreextension profiles for four-, five-, seven-racquet, and toroidal configurations obtain&for

30B (bottom panel). Data points for extended (four-racquet), one-racquet (five-racquet), three-racquet (seven-racquet), and toroidal rgtructures a
given by red, green, blue, and black circles, respectively. Theoretical curves for these structures are given, respectively, by solid, edtted, dash
and dot-dashed lines.

that as the range of surfac8C interaction increases and We also considered the peeling and unbinding of adsorbed
temperature decreases, which leads to a decreggh,inrdered structures by applying force. These results, which are of direct
structures form. The peak ai(x) at x ~ b (the range of relevance to AFM experimentshow that the forced unbinding
interaction) grows as, decreases. The bimodality in timéx) transition is surprisingly highly cooperative. For all structures
distribution function suggests that the surface-induced toroid (racquet-like and toroids), unbinding occurs over a narrow force
formation is a first-order transition. The perturbative calculation range. The magnitude of the critical fordg,for a fixed value
reproduces qualitatively all of the features in the simulated of T andls increases a§, decreases. From general consider-
density profiles. ations, we expect that, should be described by a scaling
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function g(y) wherey = IJl, for a fixed T. Wheny < y. (a

critical value), then adsorption is not free energetically favored.

Wheny > vy, thenf; should increase by an increasing function
of y. The increase i, can be achieved either by increasigg
for a fixed |, or by decreasindy, for fixed |s. Additional work

is required to elucidate the nature of the scaling funcgfy).
Quite surprisingly, we find that the foreextension profiles

J. Phys. Chem. B, Vol. 109, No. 46, 20051987

determined byy, which is of the order of Bdyo/dx.
Neglecting this order fof; < 1 we obtain

2, dy,

24 BUgg— €g) OX (A5)

Y=

ads

Including the second term in the third eq A4 and using eq A5

can be calculated by using a simple perturbation theory evenya obtain the first-order perturbation equation for

though the nature of the unbinding transition is abrupt. The

present work shows that global properties of feregtension

characteristics of adsorbed biomolecules can be nearly quanti-

tatively predicted using the proposed theory.
It is now well established that elastic response of DNA, in

the absence of interaction with surfaces, depends sensitively

on the nature and concentration of counterig#s.Our work
shows that the forceextension curves in the presence of a
surface to which DNA is bound depends not onlylghut also

on the morphology of the adsorbed structures. The novel

prediction that forced unbinding should occur cooperatively by

a first-order phase transition can be probed using single-molecule

experiments.
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Appendix A: Perturbative Treatment of Adsorbed Chain
Statistics.We expandyyo (eq 1) in terms of the Legendre
polynomials, that is

0

Po(x.0) = Zwi (x)P; (cosp]) (A1)
By using the following equations
4P =i+ DR0)
(i + 1P 4(y) +iP_y(y)
PP (v) = e — (A2)
we transform eq 2 without terrfil,y f 1o into (i = 0)
D+ A=) i W)
20 VIT T T dx
i+ 1 dyia()
S 2i+3 dx (A3)
To the first few orders we have
B 2, dy, . B
Yo e e x O
S A A 4, dn
P 2 BlUage— €) BX 52+ HlUyge— €9) X
(i=1)
1/) = — 4Ip % — 6|p %
2 3(6+ BUygs— €0)) IX  7(6+ B(uygs— €)) dX
(i=2) (A4)

1 is given by the second eq A4 with the second term

o 2, dyo 4,
17724 ¢ dX 52+ ¢)

df 4, d( 2, dwo)

dX{3(6+ ¢) IX\2+ ¢ dx (A6)

where¢ = (uags — €0). By substituting eq A6 into the first eq
A4 we arrive at the first-order perturbative equation fay

647 d*y,
454(2 + ¢)%(6 + ¢) dx’*

4z dy,
3¢(2+ ) dx

—%=0
(A7)

For the class of potentials considered here, the physical solution
of eq A7 that satisfies the boundary conditions

dn
Yo(x=10)= 0, (X = ) — 0,&1/)0&% —0,n=1,2, ..
(A8)

continuity requirements at= b

d d
Po(X —b = 0)=yo(x—~b+0), d_xl/)0|xabfo = d_xll)o|x~b+o
(A9)

and normalization condition is given by eq 4.

Appendix B: Exact Treatment of the Chain Distribution in
the Proximal Rangd.et us first consider the nonadsorbed chain
in the presence of weak potentiglsgs— 0. Assuming a self-
similar distribution,yo(X, ®) = x%g(x) wherex = O(2l,/x),
we rewrite eq 6 withuags= €0 = 0 as an eigenvalue problem
for g(x)

s
e

(o]

wIx

+ (B1)

1 Y
P g

Lils|
oK

Upon substitutionz = «%/9, eq B1 reduces to the following
equation
d’g

dZ

Under conditiorg(z— ) — 0, the only solution to eq B2 is
0(2 ~ W(—a, 2/3,2) whereW(y, w, 2) andI'(y) are defined in
the main texty(x — 0, ® < 0) — 0 defines the spectrum of
eigenvalues,, = 1/6—n, wheren=0, +1, £2, ... (see Appendix
B in ref 28). The requirement that does not have knots is
satisfied forn = 0 (o = 1/6) andn = 1 (o = —5/6), and the
general solution fouags= 0 in the regiorx > bis given by eq
7 of the main text.

To solve eq 8, we substitut€, from the second equation
into the first equation and multiply by?3. We obtain

+ (2 +ag=0 (B2)

_\dg
32)

dz

2
439°Cy _2

dc, _
—2 73 X+ (Fu+ DXEFC, =0 (BI)
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whereD = ﬁoo |E11 - IE01|310 and |Enm = an¢(2|p)1/3, n, m=0,
1. Substitutingy = x3 into eq B3 and multiplying it by?, we
get

d’c, dc, _
YZV v Y(9F,; +9DY’)C, =0  (B4)
Using z = y? allows us to rewrite eq B4 as
dc, dc,
szy + /315 + (yoz+ fC =0 (BS)

whereyo = 9D, fo = 9F11, f1 = —4, andy, = 4. The general
solution of eq B5 is given by

C (X) — e3/2\/—_DX2/3
1

Cld>(p, — %, —3\/—_DX2/3)
+ cz(—3«/—_Dx2/3)3/ZCI>(p + g g —3«/—_Dx2/3)] (B6)

where c; and ¢, are constants and = (3 Fy3 — 2x/—_D)/
4J/-D. In eq B6,d(k, |, x) is the Kummer series defined in
the text. In the range & x < b, y1(x, ® = 0) diverges ag —
0. To avoid this divergence, we require th@d(x = 0) = 0.
This is satisfied wher; = 0. To ensure that;(x) — 0 asx —

oo for x > b, we setc, = 0. Substitutingp = ¢, and¢ = ¢out
into solutions for 0< x < b andx > b and using formulas
Dk, |, x) =eD( =k, 1, x), (d/(dxmMDk, I, x) = (K™/((I)-
md(k + m, | + m, X) we obtain eq 9.
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