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Abstract

The influence of quantum bath effects on the dynamics of a quantum two-level system linearly coupled to a harmonic bath is

studied when the coupling is both diagonal and off-diagonal. It is shown that the pure dephasing kernel and the non-adiabatic

quantum transition rate between Born–Oppenheimer states of the subsystem can be decomposed into a contribution from thermally

excited bath modes plus a zero point energy contribution. This quantum rate can be modewise factorized exactly into a product of a

mixed quantum subsystem-classical bath transition rate and a quantum correction factor. This factor determines dynamics of

quantum bath correlations. Quantum bath corrections to both the transition rate and the pure dephasing kernel are shown to be

readily evaluated via a mixed quantum-classical simulation. Hence, quantum dynamics can be recovered from a mixed quantum-

classical counterpart by incorporating the missing quantum bath corrections. Within a mixed quantum-classical framework, a

simple approach for evaluating quantum bath corrections in calculation of the non-adiabatic transition rate is presented.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

In this work, we study the influence of quantum bath

effects on the dynamics of the quantum subsystem using

a popular model of a two-level system linearly coupled

to the harmonic bath. We address an important issue of

quantum-classical correspondence in the context of non-
adiabatic (NA) transitions in condensed phase envi-

ronments with the emphasis on the role of quantum

corrections in calculation of NA transition rates and

evaluation of pure dephasing within a mixed quantum-

classical treatment.

A primary quantum bath effect directly related to the

NA transition rates and pure dephasing is quantum de-

coherence (loss of quantum correlation) in the degrees of
freedom of the environment, when coupled to the two-

level system. Interaction of the system with the environ-

ment brings about the appearance of certain classical
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features at the expense of quantum correlations [1,2]. The

problem of quantum coherence gave a significant stim-

ulus to numerous studies of simple quantum systems

[3–5]. In relation to NA molecular dynamics (MD) sim-

ulations, neglecting the quantum corrections can result in

both quantitative and qualitative errors [4–6].

Another manifestation of the quantum nature of a
harmonic bath is zero point energy [6,7]. At low tem-

perature, the lowest excited states of the bath modes are

mostly populated, and the effect of zero point motion is

pronounced. The role of zero point motion can be sig-

nificant even at room temperatures, if high frequency

modes of the bath are coupled to the quantum system.

The neglect of a contribution from zero point energy

may lead to an underestimation of the quantum NA
transition rates and pure dephasing. In the context of

NA MD simulations, zero point motion can be another

source of disagreement between the exact quantum and

mixed quantum-classical treatment.

We study the NA transitions employing a model of a

two-level system coupled to a harmonic bath [8–12].

This model has been extensively treated in literature [13–

18]. In the present work, we consider a general case
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when the system-bath coupling is both diagonal and

off-diagonal in the basis of two-level eigenstates. The di-

agonal coupling includes displacements of the equilib-

rium positions of the bath modes associated with initial

and final states potential surfaces. The off-diagonal in-
teraction is realized via the NA coupling of the two-level

system to momenta of the bath modes. Most recently,

this model was used by Egorov et al. [19] to probe the

accuracy of several mixed quantum-classical approxi-

mations in calculating the NA transition rates, and by

Golosov and Reichman [20] in their master equation

approach to charge transfer processes. We study the

impact of quantum bath effects on the dynamics of the
quantum system by following the evolution of the two-

level system in the relaxation time scale. We utilize the

Liouville–von Neumann formulation of quantum me-

chanics. This formalism allows to study an approach to

equilibrium in both classical and quantum systems [21–

25] and thus, facilitates the study of quantum-classical

correspondence.

A common approach to studies of quantum dynamics
in the condensed phases is to utilize a mixed quantum-

classical treatment (i.e., quantum subsystem in a classical

bath). These methods provide a theoretical background

for various quantum-classical MD schemes widely im-

plemented in studies of inter- and intramolecular transfer

and redistribution of energy in condensed media chemi-

cal systems [4–6,26–30]. Within this treatment, one esti-

mates the full quantum (FQ) rates from the results of
mixed quantum-classical simulations. In general, the

exact solution to this problem is not known. To take

into account quantum bath effects, several approximate

schemes have been proposed [6,27,28], and due to the

approximate nature of these mixed quantum-classical

schemes, it is important to establish their accuracy.

Prezhdo and Rossky [6] have used Kubo�s generating
function method [31] to examine the source of limitations
of mixed quantum-classical approaches in studies of NA

transitions. Prezhdo and Rossky [6] approximated wave

functions of the bath modes by frozen Gaussians. In the

present work, we put this result on an analytical foun-

dation. Using the model of a two-level quantum system

coupled to a harmonic bath, we analytically establish the

validity of mixed quantum-classical approximations in

evaluating the quantum NA transition rate. We extend
the validity of a mixed quantum-classical treatment to

evaluating pure dephasing. We show that the quantum

NA transition rate for the present model admits factor-

ization into its mixed quantum-classical counterpart and

a ‘‘quantum bath correction factor’’, a well-defined

quantity encapsulating all the quantum features of the

bath. We show that quantum bath corrections to both

the NA transition rate and pure dephasing can be ex-
pressed in terms of classical quantities and thus, are

readily evaluated within a mixed quantum-classical

framework. Hence, one is able to ‘‘repair’’ a mixed
quantum-classical treatment to reproduce the true

quantum dynamics.

The model is described in Section 2. In Section 3, we

derive the master equation for the reduced density ma-

trix and analyze the FQ NA transition rate and the pure
dephasing kernel. In Section 4, we present an approach

to evaluating quantum bath corrections in terms of

classical quantities in calculation of the NA transition

rate and pure dephasing. A numerical example is pre-

sented in Section 5. In Section 6 we conclude. Technical

details are given in Appendices.
2. The model

Consider a two-level system given by the ground j0i
and excited j1i states with the energy splitting �hxel,

coupled to a set of harmonic oscillators with masses mj

and frequencies xj, j ¼ 1; 2; . . . ;N . The Hamiltonian is

H ¼ H0 þ V ; ð1Þ

where

H0 ¼ Hej1ih1j þ Hgj0ih0j
¼ ðHb þ �hxelÞj1ih1j þ ðHb þ DÞj0ih0j ð2Þ

and

V ¼ V01j0ih1j þ V10j1ih0j: ð3Þ

The H0-part of the Hamiltonian stands for the unper-

turbed energy of the two-level system and the bath,

whereas the V -part stands for the ‘‘off-diagonal’’ inter-

action. We assumed that bath modes are not distorted

between states, and ignored mode mixing. Then, the

‘‘diagonal’’ coupling D is

D ¼
X
j

mjx
2
jdjqj þ

1

2

X
j

mjx
2
jd

2
j ; ð4Þ

where qj and dj stand for the coordinate and the dis-
placement of the jth oscillator from its equilibrium po-

sition. This form of diagonal coupling would arise when

the two potential energy surfaces corresponding to the

two states of the two-level system are described by two

multidimensional harmonic surfaces which differ only in

equilibrium positions. Hb is the bath Hamiltonian,

Hb ¼
X
j

p2j
2mj

 
þ 1

2
mjx

2
j q

2
j

!
: ð5Þ

We introduce the creation aþj and annihilation aj oper-
ators for each jth oscillator of the bath,

aþj ¼ mjxj

2�h

� �1=2
qj

�
� i

pj
mjxj

�
;

aj ¼
mjxj

2�h

� �1=2
qj

�
þ i

pj
m x

�
:

ð6Þ
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In Eq. (3) V01 and V10 represent the weak coupling be-

tween adiabatic Born–Oppenheimer states

V10 ¼
X
j

� i�h
mj

h1jrjj0ip̂pj ¼ �h
X
j

V 10
j ðaþj � ajÞ ð7Þ

and V01 ¼ ðV10Þ�, where V 10
j ¼ h1jrjj0ið�hxj=2mjÞ1=2.

Here, h1jrjj0i is the matrix element of the jth bath

mode non-adiabatic coupling with rj being the gradient

operator of the jth-bath mode coordinate with respect

to the quantum subsystem wave functions. In Eq. (7) we

have neglected the jth-bath mode displacement of the

equilibrium position dj.
The statistical description in quantum mechanics is

given by the Liouville–von Neumann equation for the

density matrices [22,23]

i
o

ot
qðtÞ ¼ LHqðtÞ: ð8Þ

Here the ‘‘Liouvillian’’ LH is the commutator with the

Hamiltonian, i.e., LHq ¼ Hq� qH . We can decompose

LH into an unperturbed part L0 and an interaction LV:

LH ¼ L0 þ LV; ð9Þ

where L0 ¼ ð1=�hÞðH0 � 1� 1� H0Þ and LV ¼ ð1=�hÞðV �
1� 1� V Þ, respectively. For the case where the wave

function space is spanned by a complete orthonormal

basis
P

a jaihaj ¼ 1; hajbi ¼ dab, the Liouville space is

spanned by a complete orthonormal basis of the dyads

ja;bii � jaihbj, i.e.,
P

a;b ja;biihha;bj ¼ 1; hha;bja0;b0ii ¼
daa0db0b. The matrix element of an operator A in the wave

function space is given by hha; bjAii ¼ hajAjbi. Then, the
matrix element of the Liouville operator in the Liouville

space is given by

hha; bjLHja0; b0ii ¼ Haa0db0b � daa0Hb0b; ð10Þ

where Haa0 � hajH ja0i ¼ hha; a0jHii. The basis for the

Liouville space in the occupation number representation

is given by ja; bii ¼ jl1; fnjgN ; l01; fn0jg
N ii, where l1, l01

and nj, n0j are occupation numbers for the excited and

ground state Hamiltonians of the quantum system and

the bath, respectively.
3. Dephasing and NA transition rates

To derive the master equation for the reduced two-

level system density matrix, we introduce the projection

operators that specify system-bath correlation compo-

nents, such as distribution of the l-level system P ðm1Þ
l1

,

correlations between the l-level system and a single jth-
bath mode P ðm1;mjÞ

l1;nj
, and so on,

P ðm1Þ
l1

�
X
fnjg

jl1; fnjg; l01; fnjgiihhl1; fnjg; l01; fnjgj; ð11Þ
P
ðm1;mj0 Þ
l1;nj0

�
X
fnjgðj0 Þ

jl1; nj0 ; fnjgðj0Þ; l01; n0j0 ; fnjgðj0Þii

� hhl1; nj0 ; fnjgðj0Þ; l01; n0j0 ; fnjgðj0Þjð1� dmj0 ;0Þ;
ð12Þ

where m1 ¼ l01 � l1, mj0 ¼ n0j0 � nj0 . Here fnjgðj0 ;...Þ means

that the components nj0 ; . . . are excluded from the set

fnjg ¼ fn1; n2; . . .g. Next, we introduce operators

P ðm1Þ �
X
l1

P ðm1Þ
l1

; P ðm1mj0 Þ �
X
l1

X
nj0

P
ðm1;mj0 Þ
l1;nj0

; . . . ð13Þ

These are eigenprojectors of L0,

L0P ðm1mj0 ...Þ ¼ P ðm1mj0 ...ÞL0

¼ ðm1x1 þ mj0xj0 þ � � �ÞP ðm1mj0 ...Þ ð14Þ

and satisfy the completeness and orthonormality con-

ditionsX
m1

P ðm1Þ þ
X
j0

X
m1;mj0

P ðm1mj0 Þ þ � � � ¼ 1;

P ðm1mj0 ...ÞP ðl1lj0 ...Þ ¼ P ðm1mj0 ...Þdm1;l1dmj0 ;lj0 � � � : ð15Þ

To avoid heavy notation, we introduce the superscript
m � ðm1mj0 ; . . .Þ, and express (14) as L0P ðmÞ ¼ P ðmÞL0 ¼
wðmÞP ðmÞ, where wðmÞ � m1x1 þ mj0xj0 þ � � �. In this nota-

tion, the completeness and orthogonality relation (15)

become
P

m P
ðmÞ ¼ 1 and P ðmÞP ðlÞ ¼ dl;mP ðmÞ.

We also define the complements

QðmÞ � 1� P ðmÞ ð16Þ
such that ðP ðmÞÞ2 ¼ P ðmÞ, ðQðmÞÞ2 ¼QðmÞ, P ðmÞQðmÞ ¼QðmÞP ðmÞ ¼ 0

and L0P ðmÞ ¼ P ðmÞL0, L0QðmÞ ¼ QðmÞL0. It is useful to de-

compose the time evolution of the total density matrix

as [22,23]

P ðm1ÞqðtÞ ¼ P ðm1Þqðm1ÞðtÞ þ P ðm1Þqðm1Þ
np ðtÞ: ð17Þ

In Eq. (17) the first term on the right-hand side (RHS) is

the ‘‘privileged’’ component of the m1-correlation sub-

space [22,23] and obeys the Markovian evolution. The

second term is the ‘‘non-privileged’’ component and
corresponds to the memory effects which will not be

analyzed in the present work. We restrict ourselves to

the component of the m1-correlation subspace, since it

has a dominant contribution to the time evolution in the

relaxation time scale [22–25] (second order perturbation

theory). Then, the Liouville equation for the total den-

sity matrix is

i
o

ot
P ðm1Þqðm1ÞðtÞ ¼ hðm1ÞðzÞP ðm1Þqðm1ÞðtÞ; ð18Þ

where hðm1ÞðzÞ is the collision operator [22,23],

hðm1ÞðzÞ ¼ P ðm1ÞL0P ðm1Þ þ P ðm1ÞLVQðm1Þ

� 1

wðm Þ � L0 � i�
Qðm1ÞLVP ðm1Þ; ð19Þ
1
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where wðm1Þ is the eigenvalue of L0 acting on the eigen-

projector P ðm1Þ. Hereafter, we abbreviate qðm1Þ as q. We

assume that at the time t ¼ 0 the total density matrix is a

direct product

qðl1; fnjgN ; l01; fn0jg
N
; 0Þ ¼ qsðl1; l01; 0Þ �

Y
j

qbðnj; n0j; 0Þ

ð20Þ
where qsðl1; l01; 0Þ and qbðnj; n0j; 0Þ are the reduced

quantum subsystem and the jth-mode of the bath den-

sity matrices at time t ¼ 0, respectively.

Equations of motion for the coherence qsð1; 0; tÞ and
the excited state population qsð1; 1; tÞ enable us to esti-

mate the dephasing and the NA transition time scales,

respectively. These equations are derived in Appendix A

using Liouville space diagrams. We obtain:

qsð1; 0; tÞ ¼ qsð1; 0Þ0e�i ~xxeltCðtÞe�1
2
kqm
1!0

t; ð21Þ
where qsð1; 0Þ0 is qsð1; 0Þ at the time t ¼ 0. The renor-

malized frequency is

~xxel ¼ xel þ dxel ð22Þ

with the ‘‘off-diagonal’’ frequency shift (jdxelj � xel)

due to the NA system-bath coupling given by

dxel ¼ �
X
j

X
fmjg

jV 10
j j2jhfnjgN�1jfmjgN�1ij2

� P
1

DE � �hxel

� �
; ð23Þ

where P denotes the principal part and DE is the bath

energy gap. In Eq. (21) we have defined the quantum

correlation function

CðtÞ � Trb qb expT

i

�h

Z t0

0

DðtÞ dt
( )" #

; ð24Þ

where DðtÞ ¼ exp½iHbt=�h�D exp½�iHbt=�h�; T stands for

time ordering and Trb½qb � � �� denotes thermal average.

CðtÞ plays an important role in the forthcoming analysis

ofNA transition rates, and is discussed in the next section.

The explicit evaluation of CðtÞ has been done by many

authors [14,15,17–19,27,31,32]. Up to the second order in

the cumulant expansion we have (b ¼ ðkBT Þ�1
) [32]

CðtÞ ¼ exp
X
j

mjxjd
2
j

2�h
½ð2�nnj

(
þ 1Þðcosxjt � 1Þ

� i sinxjt�
)

¼ exp
1

2�h

Z 1

0

dxJðxÞx coth
b�hx
2

ðcosxt
��

� 1Þ

� i sinxt
��

; ð25Þ

where �nnj is the mean occupation number of the jth-bath
mode at temperature T, i.e., �nnj ¼ ½expð�hxj=kBT Þ � 1��1

,

and we have defined the ‘‘diagonal’’ spectral density

JðxÞ,

JðxÞ ¼
X
j

dðx� xjÞmjd
2
j : ð26Þ

Since the diagonal coupling is linear in bath coordi-

nates, Eq. (25) is exact to any order in the cumulant

expansion [32]. In Eq. (21) the quantum NA transition

rate is

kqm1!0 ¼
2p
�h
Trb qb

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2

2
4

� dðDE � �hxelÞ½ðnj þ 1Þt þ ðnjÞt�

3
5: ð27Þ

Franck–Condon factors jhfnjgN�1jfmjgN�1ij2 appearing

in Eq. (27) contain all the information about quantum

coherence in variables of the bath, and are evaluated in

the next section.

Eq. (27) for kqm1!0 appears naturally as a sum

kqm1!0 ¼ k01 þ k10 of ‘‘down’’ (k01 	 ðnj þ 1Þt) and ‘‘up’’
(k10 	 ðnjÞt) NA transition rates where ðnj þ 1Þt ¼
ðnj þ 1Þ exp½�ixjt� and ðnjÞt ¼ nj exp½ixjt�. Here, the

down rate k01 6¼ 0 as T ! 0 (spontaneous emission).

Using the fact that �nnj þ 1 ¼ �nnj exp½b�hxj�, we see that

upon performing thermal averaging in Eq. (27), we re-

cover detailed balance satisfied for each jth-bath mode.

Note that in Eq. (27) for kqm1!0, we may also separate

contributions from the thermally excited bath modes
and zero point energy (see also [7]) into a quantum high

energy (qhe) NA transition rate kqhe1!0 and a zero point

energy (zpe) correction kzpe1!0, i.e., kqm1!0 ¼ kqhe1!0 þ kzpe1!0,

where

kqhe1!0 ¼
2p
�h
Trb qb

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2

2
4

� dðDE � �hxelÞ2nj0 cosxjt

3
5 ð28Þ

and

kzpe1!0 ¼
2p
�h
Trb qb

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2

2
4

� dðDE � �hxelÞðcosxjt � i sinxjtÞ

3
5; ð29Þ

nj0 is the occupation number of the jth-mode at t ¼ 0.
The zero point energy contribution (29) is important

at low temperature where primarily the lower excited

states of bath modes are populated, or even at room

temperature if the two-level system interacts with high
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frequency modes. Let us study the evolution of the ex-

cited state. The equation of motion for qsð1; 1; tÞ is

qsð1; 1; tÞ ¼
1

2

kqhe1!0

kqm1!0

ð1� e�kqm
1!0

tÞ þ qsð1; 1Þ0e�kqm
1!0

t; ð30Þ

where qsð1; 1Þ0 is qsð1; 1Þ at t ¼ 0. In the limit of large t,
we obtain

qsð1; 1; tÞ !
1

2

kqhe1!0

kqhe1!0 þ kzpe1!0

: ð31Þ

At high temperature nj 
 1, qsð1; 1; tÞ ! 1=2, and the

two-level system wave function becomes a superposition

of the excited and ground states. In contrast, at low

temperature nj � 1, qsð1; 1; tÞ ! 0, and the same wave
function is dominated by the ground state contribution.

We would have obtained the incorrect time dependence

for qsð1; 1; tÞ, had we neglected the zero point energy

contribution. We would have obtained qsð1; 1; tÞ ! 1=2
in both limits. This implies that the neglect of zero point

motion is inconsistent with the dynamics (no sponta-

neous emission at zero temperature) and violates the

detailed balance condition [16].
Let us now study the coherence. In the exponent in

Eq. (25) for the quantum correlation function, the

imaginary part can be viewed as the ‘‘diagonal’’ fre-

quency shift. This part of the two-level system frequency

modulation is due to the adiabatic fluctuations in the

total energy gap

dx0
elðtÞ ¼ � 1

2�h

Z 1

0

dxJðxÞx sinxt: ð32Þ

The real part in the exponent in Eq. (25) corresponds to
pure dephasing [14,15,17,18]

dðtÞ ¼ �
X
j

mjxjd
2
j

2�h
ð2�nnj þ 1Þð1� cosxjtÞ

¼ � 1

2�h

Z 1

0

dxJðxÞx coth
b�hx
2

ð1� cosxtÞ: ð33Þ

As in the case of the FQ NA transition rate in Eq. (33),

we may separate contributions from the thermally ex-
cited bath modes and zero point energy. Indeed, in the

limit of zero temperature (coth b�hx=2 ! 1) we obtain

the zero point energy contribution to pure dephasing,

dzpeðtÞ ¼ 1=2�h
R1
0

dxJðxÞxðcosxt � 1Þ, a result previ-

ously obtained by Reichman et al. [17].

For strong diagonal coupling, we can expand sinxt
and cosxt in Taylor series retaining terms to second

order in time, and Eq. (21) for qsð1; 0; tÞ becomes

qsð1; 0; tÞ � qsð1; 0Þ0e�i~~xx~xxelte�dt2e�
1
2
kqm
1!0

t ð34Þ

with

~~xx~xxel ¼ xel þ dxel þ dx0
el ¼ ~xxel þ

1

2�h

Z 1

0

dxJðxÞx2 ð35Þ
and

d ¼ 1

2�h

Z 1

0

dxJðxÞx
3

2
coth

b�hx
2

: ð36Þ

If the two-level system wave function is given by a linear

superposition of eigenstates, jWsi ¼ c0j0i þ c1j1i, then

the off-diagonal elements of the reduced density matrix

undergo a trivial ‘‘rotation’’ due to the factor exp½�i~~xx~xxelt�,
and decay in time as a result of decrease of the ‘‘corre-
lation amplitude’’ exp½�1=2kqm1!0t � dt2� (total dephas-

ing). Here, we have three time scales. For times of the

order of the inverse of the two-level system renormalized

frequency, t 	 1=~~xx~xxel, qsð1; 0; tÞ undergoes unitary evolu-

tion. For times longer than the inverse of the renormal-

ized frequency and of the order of the pure dephasing

time (sdeph ¼ d�1=2), 1=~~xx~xxel � t 	 sdeph, the dynamics of

phase coherence is determined by pure dephasing with a
quadratic time dependence (	 exp½�ðt=sdephÞ2�). Finally,
for times of the order of the inverse of the quantum NA

transition rate t 	 1=kqm1!0, the phase coherence undergoes

an exponential decay (	 exp½�1=2kqm1!0t�). As time pro-

gresses, the correlation amplitude decays to zero, and a

superposition of eigenstates dynamically evolves into a

statistical mixture: jWsihWsj ! jc0j2j0ih0j þ jc1j2j1ih1j.
4. FQ vs mixed quantum-classical treatment

Within the framework of MD calculation of the NA

transition rates, one is faced with the problem of infer-

ring the FQ rate from results of the mixed quantum-

classical simulations. In the context of calculating the

NA transition rates, evaluation of quantum corrections
renders ‘‘factorizability’’ of the FQ rate into its mixed

quantum-classical counterpart times a factor which en-

compasses all quantum features of the thermal bath. To

show this in Eq. (27) we evaluate the Franck–Condon

factors and sum over the final states. We obtain

kqm1!0 ¼ Tr qb

X
j

jV 10
j j2

Z
dt eixelt½ðnj

"
þ 1Þt þ ðnjÞt�

�
Y
j

hnjjeiHbt=�he�iðHbþDÞt=�hjn0ji
#

¼
X
j

jV 10
j j2

Z
dt eixelt½ðnj

*
þ 1Þt þ ðnjÞt�

� expT

(
� i

�h

Z t0

0

dtDðtÞ
)+

T

: ð37Þ

We had already encountered the last factor appearing in

the second line on the RHS in Eqs. (21) and (25). This is

the quantum correlation function given by the time-

ordered exponential of the difference in action associ-

ated with the initial and final state potential surfaces,
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CðtÞ ¼ h
Q

jhnjðtÞjn0jðtÞiiT ¼ hexpTf�i=�h
R
dtDðtÞgiT . Mi-

croscopically, this function is the thermally averaged

product of the bath mode initial and final state wave

functions and therefore determines the dynamics of

quantum bath correlations. As these wave functions
cease to overlap, these correlations vanish [6].

To compute a mixed quantum-classical counterpart

to the FQ NA transition rate, we take the ‘‘classical

bath limit’’ (i.e., the classical limit �h ! 0 in variables of

the bath) in the quantum correlation function CðtÞ in

Eq. (37). Calculation is presented in Appendix B. We

obtain

kq-c1!0 ¼ Trb qb

X
j

jV 10
j j2

Z
dteixel t½ðnj

"
þ 1Þt þ ðnjÞt�

� lim
�h!0

Y
j

hnjðtÞjn0jðtÞi
( )#

¼
X
j

jV 10
j j2

Z
dteixelt½ðnj

*
þ 1Þt þ ðnjÞt�

� exp

(
� i

�h

Z t0

0

dtDðtÞ
)+

T

: ð38Þ

Note that in the above expression, the time-ordered

exponential appearing in the RHS of Eq. (37) is re-

placed with the usual classical correlation function. A
similar expression for kq-c1!0 with a (higher order) con-

tribution from displacement of the bath mode equi-

librium positions to the amplitude of the off-diagonal

coupling has been discussed by Egorov et al. [19,33],

and without zero point energy contribution by Staib

and Borgis [28]. For the case of static off-diagonal

coupling, the expression for kq-c1!0 (without a prefactor

½ðnj þ 1Þt þ ðnjÞt�) has been exploited by many authors
[19,27,32–34].

We now proceed to derive an analytic expression

relating the FQ and mixed quantum-classical NA tran-

sition rates. We start from expressions (37) and (38) for

kqm1!0 and kq-c1!0, and introduce the FQ (nqm1!0;j) and mixed

quantum-classical (nq-c1!0;j) rates defined for each jth-
bath mode

nqm1!0;j ¼ jV 10
j j2

Z
dt eixelt� i

�h

R t0

0
DðtÞ dt½ðnj þ 1Þt þ ðnjÞt�QðtÞ

ð39Þ

and

nq-c1!0;j ¼ jV 10
j j2

Z
dt eixelt� i

�h

R t0

0
DðtÞ dt½ðnj þ 1Þt þ ðnjÞt�;

ð40Þ

such that kqm1!0 ¼
P

jhn
qm
1!0;jiT and kq-c1!0 ¼

P
jhn

q-c
1!0;jiT . In

Eqs. (39) and (40) we have defined the ‘‘quantum bath

correction factor’’ QðtÞ,
QðtÞ �
expT � i

�h

R t0

0
dtDðtÞ

exp � i
�h

R t0

0
dtDðtÞ

n o : ð41Þ

Comparing now expressions (39) and (40) for nqm1!0;j and

nq-c1!0;j, we obtain the following ‘‘factorization’’:

kqm1!0 ¼
X
j

nqm1!0;j

D E
T
¼
X
j

hnq-c1!0;j½QðtÞ�iT : ð42Þ

The above expression is one of the main results of the

present work. Considering the form of Eq. (42),
factorization should be understood as a modewise

Fourier transformation of the NA coupling amplitude

weighted quantum bath correction factor. The weight

(½ðnj þ 1Þt þ ðnjÞt�) determines a share of the jth-bath
mode contribution to the NA transition amplitude in

the total FQ rate. The quantum correction factor QðtÞ
takes into account all quantum features of the thermal

bath ignored in a mixed quantum-classical evaluation
of the NA transition rate, and is given as a ratio of

the FQ correlation function to its quantum-classical

counterpart.

Factorization (42) provides analytical grounds for

evaluating the quantum bath corrections. Note also that

it is exact, i.e., summing over all thermally averaged

rates for each jth-bath mode

hnq-c1!0;j½QðtÞ�iT ¼hnqm1!0;jiT

¼jV 10
j j2

Z
dteixelt coth

bh�xj

2
cosxjt

�
� isinxjt

�

�exp
1

2h�

Z 1

0

dxJðxÞx coth
bh�x
2

��

�ðcosxt�1Þ� isinxt
��

ð43Þ

we recover the FQ rate

kqm1!0 ¼
X
j

hnqm1!0;jiT

¼
Z

dxJ 0ðxÞ
Z

dt eixelt coth
b�hx
2

cosxt
�

� i sinxt
�

� exp
1

2�h

Z 1

0

dxJðxÞx coth
b�hx
2

��
ðcosxt � 1Þ

� i sinxt
��

; ð44Þ

where following Egorov et al. [19], in addition to the

spectral density JðxÞ, we have defined the other (off-
diagonal) spectral density J 0ðxÞ,

J 0ðxÞ ¼
X
j

jV 10
j j2dðx� xjÞ: ð45Þ

We now proceed to presenting a simple perturbat-

ive approach that accounts for quantum harmonic

bath corrections. This approach can be implemented in

calculation of NA transition rates within a mixed
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quantum-classical framework. Consider the high tem-

perature approximation to the quantum correlation

function CðtÞ. Within this approximation, the thermal

weight in CðtÞ is given by the first order term (2=b�hx) in
the Taylor expansion of coth b�hx=2. This allows us to
rewrite CðtÞ as
CðtÞ�ChtðtÞQðtÞ

¼ exp
1

2h�

Z 1

0

dxJðxÞx 2

bh�
xðcosxt

��
�1Þ� isinxt

��

�exp
1

2h�

Z 1

0

dxJðxÞx
bh�x

6

""(
þ���

�
ðcosxt�1Þ

��
;

ð46Þ

where the first exponential factor appearing on the RHS

of the second equality is the high temperature approxi-

mation to the quantum correlation function ChtðtÞ. Note

that ChtðtÞ differs from CðtÞ in that the quantum en-

semble averaging over initial states of the bath is re-

placed by the classical ensemble averaging over initial

position and momentum. The second exponential factor

stands for the low temperature quantum bath correction
to ChtðtÞ, and is given by QðtÞ. Since ChtðtÞ takes care of
high temperature contributions, QðtÞ picks up low tem-

perature corrections to the decay of quantum bath

correlations.

As b�hx is a measure of importance of quantum bath

effects (�hx) compared with the characteristic thermal

motion (b�1), we Taylor expand QðtÞ in Eq. (46) in

powers of the exponent. Then, substituting the result-
ing expression into Eq. (43), we obtain a relation re-

flecting Bohr�s correspondence principle for NA

transition rates

hnqm1!0;ji ¼ jV 10
j j2

Z
dt eixelt coth

b�hxj

2
cosxjt

�
� i sinxjt

�

� exp
1

2�h

Z 1

0

dxJðxÞx 2

b�hx

��

� ðcosxt � 1Þ � i sinxt
��

� 1

�
þ 1

2�h

Z 1

0

dxJðxÞx b�hx
6

þ � � �
��

� ðcosxt � 1Þ þ � � �
�
: ð47Þ

In Eq. (47) the first term of the expansion corresponds to

the high temperature limit (HT) of hnqm1!0;ji, and is given

by HT NA transition rate

hnht1!0;ji ¼ jV 10
j j2

Z
dt eixelt coth

b�hxj

2
cosxjt

�
� i sinxjt

�

� exp
1

2�h

Z 1

0

dxJðxÞx 2

b�hx
ðcosxt

��
� 1Þ

� i sinxt
��

: ð48Þ
The rest of the terms are quantum corrections to

hnht1!0;ji, and to the lowest order are given by

hnc1!0;ji ¼ jV 10
j j2

Z
dt eixelt coth

b�hxj

2
cosxjt

�
� i sinxjt

�

� ½lnQhtðtÞ� exp 1

2�h

Z 1

0

dxJðxÞx
�

� 2

b�hx
ðcosxt

�
� 1Þ � i sinxt

��
ð49Þ

with

lnQhtðtÞ ¼ 1

2�h

Z 1

0

dxJðxÞx b�hx
6

þ � � �
� �

ðcosxt � 1Þ

¼
X
j

mjxjd
2
j

2�h
b�hxj

6

�
þ � � �

�
ðcosxjt � 1Þ:

ð50Þ

Since in Eqs. (49) and (50) the classical HT correlation

function ChtðtÞ is corrected by the factor lnQhtðtÞ given
by the real part of the exponent of ChtðtÞ with the sta-

tistical weight adjusted as 2=b�hxj ! ½b�hxj=6þ � � �� for
each jth-bath mode, quantum corrections are now ex-

pressed in terms of the classical correlation function and

thus, can be computed within the same mixed quantum-
classical method.

Let us now turn to analyzing the pure dephasing

kernel (see Eq. (33)). Since the real part in the exponent

of CðtÞ determines the pure dephasing kernel (33), the

HT approximation can also be used to evaluate pure

dephasing within a mixed quantum-classical framework.

We obtain

dðtÞ¼� 1

2�h

Z 1

0

dxJðxÞx 2

b�hx

�
þb�hx

6
þ�� �

�
ð1� cosxtÞ

¼ dhtðtÞþdcðtÞ ð51Þ

with

dhtðtÞ ¼ � 1

2�h

Z 1

0

dxJðxÞx 2

b�hx
ð1� cosxtÞ; ð52Þ

dcðtÞ ¼ � 1

2�h

Z 1

0

dxJðxÞx b�hx
6

�
þ � � �

�
ð1� cosxtÞ:

ð53Þ
In Eq. (51), dhtðtÞ corresponds to the HT approximation

to the pure dephasing and dcðtÞ represents the low tem-

perature quantum bath corrections to dhtðtÞ. As in the

case of the NA transition rate, both terms can be readily

evaluated within a mixed quantum-classical treatment.
Within the HT method, the time correlation function

ChtðtÞ can be calculated by using a standard MD

propagation scheme by replacing the quantum thermal

ensemble averaging over the initial bath states with the

classical ensemble average over the position and mo-

mentum of bath modes propagated with the arithmetic

average of the initial and final state unperturbed
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Hamiltonians. Thus, our HT semiclassical approxima-

tion is equivalent to the average classical limit (or ACL

approximation) previously considered by Egorov et al.

[19,35].

The results obtained in this section allow us to con-
clude, and this is the main result of the present work, that

within the harmonic bath approximation, and with a

constant non-adiabatic electronic coupling matrix ele-

ment, the quantum bath corrections to both the NA

transition rate and the pure dephasing kernel can be

evaluated within a mixed quantum-classical framework.

These quantities govern the dynamics of the quantum

system phase coherences and population. The separa-
bility of the quantum corrections allows for a well defined

approximation in which only the quantum component is

evaluated in the harmonic approximation, based on ac-

curate classical simulation. This provides a well pre-

scribed formalism in the same spirit as alternative

approximate forms implemented earlier [6,7,27,34].
Fig. 1. Semi-log plots of the reduced two-level system transition rate K
with static coupling vs the reduced energy gap w: FQ rate (data points)

and mixed quantum-classical rate with quantum bath corrections

(solid lines) are compared for low (b� ¼ 4:0, panel a), intermediate

(b� ¼ 1:0, panel b) and high (b� ¼ 0:25, panel c) reduced temperature

b� for weak (A ¼ 2:0) and strong (A ¼ 8:0) diagonal coupling.
5. Numerical example

To see that the semiclassical approximation derived

in the previous section can be accurate in low order, we

compare here the FQ NA transition rate for the slightly

simpler case of static off-diagonal coupling [19,31]

kqm1!0 � jV 10j2
Z þ1

�1
dt eixelt exp

1

2�h

Z 1

0

dxJðxÞx
�

� coth
b�hx
2

ðcosxt � 1Þ � i sinxt
� ��

ð54Þ

with the HT NA transition rate [35]

kht1!0 � jV 10j2
Z þ1

�1
dt eixelt exp

1

2�h

Z 1

0

dxJðxÞx
�

� 2

b�hx
ðcosxt

�
� 1Þ � i sinxt

��
ð55Þ

adjusted by including the lowest order quantum bath

corrections, namely

kc1!0 � jV 10j2
Z þ1

�1
dteixelt ln½Q1ðtÞ� exp

1

2�h

Z 1

0

dxJðxÞx
�

� 2

b�hx
ðcosxt

�
� 1Þ � i sinxt

��
: ð56Þ

The quantum bath correction factor, to lowest order, is

Q1ðtÞ � exp
1

2�h

Z 1

0

JðxÞxb�hx
6

ðcosxt
�

� 1Þ
�
; ð57Þ

where subscript 1 denotes the first order correction.

Following earlier work by Egorov et al. [35], we chose a
Gaussian spectral density for harmonic bath modes

JðxÞ ¼ Affiffiffiffiffiffiffiffiffiffi
2pr2

p exp
ðx� hxiÞ2

2r2

" #
ð58Þ

with the width r, centered around the average bath

frequency hxi. We assumed that the off-diagonal cou-
pling is weak (V 10 ¼ 0:1) and that the two levels are

coupled to optical phonons with narrow dispersion

(r=hxi), i.e., we choose r ¼ 0:1. We performed calcu-

lation for the weak (A ¼ 2:0) and strong (A ¼ 8:0) di-

agonal coupling strength A � md2=2�h at low (b� ¼ 4:0),
intermediate (b� ¼ 1:0) and high (b� ¼ 0:25) reduced

temperature b� ¼ b�hhxi.
In Fig. 1 we display semi-logarithmic plots of the FQ

transition rate (data points) and semiclassical approxi-
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mation (solid lines) scaled by hxi, i.e., K ¼ k1!0=hxi vs
the reduced energy gap w � xel=hxi. We see that this

leading order semiclassical approximation shows an

excellent agreement with FQ at intermediate and high

temperature in the whole range of w and only slightly
overestimates FQ at low temperature for large values of

w (cf. Fig. 1 of [19]). This agreement is somewhat better

for larger strength of coupling A (upper curves).
6. Concluding remarks

We have studied the dissipative dynamics in a two-
level system linearly coupled to the thermal bath, with

an emphasis on the important role played by quantum

corrections in evaluation of non-adiabatic (NA) tran-

sition rates and pure dephasing. All degrees of free-

dom of the bath have been treated in the harmonic

approximation. We have considered the case when the

interaction of the two level system with the bath is

both diagonal and off-diagonal. We assumed that the
diagonal coupling is modeled by the set of displaced

but undistorted bath modes. The off-diagonal coupling

has been realized through the NA coupling of the

two-level system to the momenta of the relevant

modes.

We derived equations of motion for the reduced two-

level system density matrix. The obtained Markovian

equations are a good description of the dissipative dy-
namics in the relaxation time scale after the initial Zeno

period has lapsed [24,25,36]. We have extracted and

analyzed the full quantum (FQ) NA transition rate and

the expression for pure dephasing. We have shown that

for this case both the FQ NA transition rate and the

pure dephasing kernel can be manifestly decomposed

into a contribution from the average thermal excitations

of bath modes plus the zero point energy contribution.
The latter may affect the excited (kqhe1!0=2k

qm
1!0) and

ground (1=2ð1� kzpe1!0=k
qm
1!0Þ) state population due to the

non-vanishing zero point energy contribution to the

amplitude of NA coupling. Neglect of zero point energy

contribution violates detailed balance and is inconsis-

tent with dynamics. Zero point energy contribution is

non-negligible at any finite temperature. An extracted

zero point energy contribution to the pure dephas-
ing kernel confirms the result previously obtained by

Reichman et al. [17] that pure dephasing may occur at

zero temperature.

The time evolution of populations of two levels is

trivially exponential. However, the time evolution of

coherences is less trivial. In the strong diagonal and

weak off-diagonal coupling case, we have three time

scales. For the times of the order of the inverse of the
two level renormalized frequency t 	 1=~~xx~xxel, the evolu-

tion of phase coherence is unitary. Here, both diagonal

and off-diagonal system-bath interactions contribute to
the frequency modulation. For times shorter than the

relaxation time but longer than the inverse of the

two-level system renormalized frequency (1=~~xx~xxel < t �
1=2kqm1!0), energy dissipation is negligible and the

two-level system phase coherence undergoes a pure de-
phasing (	 exp½�t2=s2deph�), with a quadratic time de-

pendence. Finally, at times of the order of the relaxation

time, t 	 1=kqm1!0, phase coherence decays exponentially,

and the two-level system wave function evolves into a

statistical mixture.

We have studied the quantum-classical correspon-

dence in the context of NA transition rates with an

emphasis on quantum bath correlation function. This
function plays a twofold role. First, in the exponent of

this function, the real part determines pure dephasing,

whereas the imaginary part yields a diagonal frequency

modulation to the two-level system renormalized fre-

quency. Second, the time evolution of this function

determines the dynamics of quantum coherence in

variables of the bath. Taking the classical bath limit in

the quantum correlation function, we arrive at a cor-
responding classical counterpart, i.e., a mixed quan-

tum-classical rate. This reflects the quantum-classical

correspondence principle. Comparing expressions for

the FQ and mixed quantum-classical rates shows that

the latter is missing the quantum correction factor

incorporating the quantum features of the thermal

bath ignored in a mixed quantum-classical evaluation

of the NA transition rate. This fact was first noticed
by Borgis and Staib [28], and has been used by

Prezhdo and Rossky [6] to show decomposition of the

quantum NA transition rate into its mixed quantum-

classical counterpart and the quantum correction fac-

tor for the case where bath modes wave functions can

be approximated by frozen Gaussians. In the present

work, we have demonstrated that for the case when a

thermal bath can be modeled by the set of harmonic
oscillators, this decomposition is rigorous and that

within a mixed quantum-classical treatment, quantum

bath corrections to both the NA transition rate and

the pure dephasing kernel can be readily evaluated.

Hence, true quantum dynamics can be recovered from

a well chosen mixed quantum-classical description for

this important model.

Although in mixed quantum-classical propagation
schemes the quantum nature of the environment is

ignored, mixed quantum-classical simulation data

may supply sufficient information to construct a semi-

classical approximation to the quantum correlation

function, an important ingredient in evaluating both

the quantum NA transition rate and pure dephasing.

We have presented a simple approach that offers a

systematic way of evaluating the quantum harmonic
bath corrections based on results of mixed quantum-

classical simulation data. In our approach we utilized

the high temperature (HT) semiclassical approximation
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to the quantum correlation function (also known as

the ACL) [19,35]).

The fact that in the HT (or ACL) approach, the time

correlation function can be calculated using a classical

MD propagation scheme by replacing the quantum av-
eraging over the initial bath states with the classical av-

erage over the position and momentum of modes

propagated with the arithmetic average of unperturbed

Hamiltonians associated with the initial and final states

of the two-level system, is not new [19,35]. A new element

in our analysis is an analytical foundation for realization

that the quantum bath corrections to semiclassical NA

transition rates and pure dephasing kernels can be both
rigorously defined and systematically evaluated in terms

of classical quantities within the same semiclassical

approximation.

In view of the above findings, one is motivated to

perform a model calculation of NA transition rates

based on the developed HT semiclassical method cor-

rected with respect to quantum bath effects and assess its

accuracy by direct comparison with results for the FQ
rate [37].
Fig. 2. The second order corr
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Appendix A. Derivation of the master equation

The total Hamiltonian acquires the following quan-

tized form:

H ¼ f�hxel þ Hbgj1ih1j þ fDþ Hbgj0ih0j
þ
X
j

fV 01
j ðaþj � ajÞj0ih1j þ V 10

j ðaþj � ajÞj1ih0jg

ðA:1Þ

We use the correlation diagrams accumulated in Fig. 2.

Here straight lines correspond to the quantum subsystem,

curved lines stand for the jth-bath mode. The direction of
reading is denoted by arrows. If in the direction of reading

the line of the jth mode converges (diverges) to that of the
elation space diagrams.
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quantum system, then the mode of the bath looses (gains)

a quantum of energy and the quantum system gains

(looses) a quantum of energy. These processes are repre-

sented by vertices (ajjiihiþ 1j and aþj jiihi� 1j). The ma-

trix element of the collision operator is

hhl1; fnjgN ; l01; fn0jg
N jhð1ÞðzÞjl001; fn00j g

N
; l0001 ; fn000j g

N ii
¼ hhl1; fnjgN ; l01; fn0jg

N jP ð1ÞL0P ð1Þjl001; fn00j g
N
; l0001 ; fn000j g

Nii

þ hhl1; fnjgN ; l01; fn0jg
N jP ð1ÞLVQð1Þ 1

z� L0

� Qð1ÞLVP ð1Þjl001; fn00j g
N
; l0001 ; fn000j g

Nii: ðA:2Þ

Using the unperturbed part of the Hamiltonian (A.1),

we calculate a contribution from the L0-part (He ¼ Hb þ
�hxel, Hg ¼ Hb þ D)

hhl1;fnjgN ; l01;fn0jg
N jP ð1Þ½fHejiihij þHgji� 1ihi� 1jg1� 1

�fHejiihij þHgji� 1ihi� 1jg�P ð1Þjl001;fn00j g
N
; l0001 ;fn000j g

N ii
¼ h�xelðdl0

1
;l1�1� dl0

1
;l1þ1Þ

� dl00
1
;l1dl000

1
;l0
1
dn00k ;nkdn000k ;n0k

þDE; ðA:3Þ

where

DE ¼ hhl1; fnjgN ; l01; fnjg
N j½ðHb þ DÞ � 1

� 1� Hb�dl0
1
;l1þ1 þ ½Hb � 1

� 1� ðHb þ DÞ�dl0
1
;l1�1jl1; fnjgN ; l01; fnjg

N ii:
ðA:4Þ

Now we calculate the LV-part of the collision operator.

We present calculation for diagram (1) in Fig. 1. The
other diagrams can be calculated in a similar way. For

the propagator we obtain

l1; fnjgN ; l01; fn0jg
N 1

H0 � 1� 1� H0 � z












��

� l001; fn00j g
N
; l0001 ; fn000j g

N
��

! 1

DE � �hxel � i�
: ðA:5Þ

The vertices are

hhl1 � 1; nj þ 1; fnjgN�1
; l01; n

0
j; fn0jg

N�1jaþj ji� 1i

� hijl1; nj; fnjgN�1; l01; n
0
j; fn0jg

N�1ii

¼ ðnj þ 1Þ1=2e�ixjtdKrl0
1
;l1�1hfnjg

N�1jfn0jg
N�1i; ðA:6Þ

hhl1; nj; fnjgN�1; l01; n
0
j; fn0jg

N�1jajjiihiþ 1jl1 � 1; nj þ 1;

� fnjgN�1
; l01; n

0
j; fn0jg

N�1ii

¼ ðnj þ 1Þ1=2e�ixjtdKrl0
1
;l1þ1hfnjg

N�1jfn0jg
N�1i; ðA:7Þ

where hfnjgN�1jfn0jg
N�1i stands for the overlap of the

remaining N � 1 bath modes wave functions. Calcula-

tion of vertices (A.6) and (A.7) can be generalized to the

case of l-level quantum system coupled to the bath. We

obtain the contribution from diagram (1):
1

�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2l1ðnj þ 1Þt

� 1

DE � �hxel � i�
qðl1; nj; l01; nj; fnjg

N�1Þ: ðA:8Þ

Contributions to (LV)-part of the collision operator from

diagrams (2)–(8) are calculated similarly. We obtain:

ð2Þ : 1
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2ðnjÞtðl1 þ 1Þ

� 1

�hxel � DE � i�
qðl1; nj; l01; nj; fnjg

N�1Þ;

ð3Þ : 1
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2l01ðnj þ 1Þt

� 1

�hxel � DE � i�
qðl1; nj; l01; nj; fnjg

N�1Þ;

ð4Þ : 1
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2ðnjÞtðl01 þ 1Þ

� 1

DE � �hxel � i�
qðl1; nj; l01; nj; fnjg

N�1Þ;

ð5Þ : 1
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2ðl1l01Þ

1
2

� ðnj þ 1Þt
1

�hxel � DE � i�

� q l1
�

� 1; nj þ 1; l01 � 1; nj þ 1; fnjgN�1
�
;

ð6Þ : 1
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2ðnjÞt

� ½ðl1 þ 1Þðl01 þ 1Þ�
1
2

1

DE � �hxel � i�

� q l1
�

þ 1; nj � 1; l01 þ 1; nj � 1; fnjgN�1
�
;

ð7Þ : 1
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2ðnjÞt

� ½ðl1 þ 1Þðl01 þ 1Þ�
1
2

1

�hxel � DE � i�

� q l1
�

þ 1; nj � 1; l01 þ 1; nj � 1; fnjgN�1
�
;

ð8Þ : 1
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2

� ðl1l01Þ
1
2ðnj þ 1Þt

1

DE � �hxel � i�

� qðl1 � 1; nj þ 1; l01 � 1; nj þ 1; fnjgN�1Þ;

ðA:9Þ
where ðnj þ 1Þt ¼ ðnj þ 1Þ0 exp½�ixjt� and ðnjÞt ¼ ðnjÞ0
exp½ixjt�. We express the propagator in terms of the

principal part and the delta function as
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1

x� i�
! P

1

x

� �

 pidðxÞ: ðA:10Þ

Now we sum over contributions (A.8) and (A.9), add a

contribution from the L0-part (A.2) and substitute the
resulting expression into Eq. (18) of the main text. We

obtain the master equation for the total density matrix

of the l-level system and the bath (l > 2)
o

ot
qðl1; nj; l01; nj; fnjg

N�1
; tÞ

¼ �i ~xxel

��
� 1� D

�h

�
dl0

1
;l1�1

� ~xxel

�
� D

�h
� 1

�
dl0

1
;l1þ1

�
qðl1; nj; l01; nj; fnjg

N�1Þ

þ 2p
�h

X
fmjg

X
j

jV 10
j j2dðDE � �hxelÞ

� jhfnjgN�1jfmjgN�1ij2

� ðl1l01Þ
1
2ðnj

�
þ 1Þtqðl1 � 1; nj þ 1;

�l01 � 1; nj þ 1; fnjgN�1
; tÞ

� l1 þ l01
2

ðnj þ 1Þtqðl1; nj; l01; nj; fnjg
N�1

; tÞ

þ ððl1 þ 1Þðl01 þ 1ÞÞ
1
2ðnjÞt

� q l1
�

þ 1; nj � 1; l01 þ 1; nj � 1; fnjgN�1
; t
�

� ðl1 þ 1Þ þ ðl01 þ 1Þ
2

ðnjÞt

� q l1; nj; l01; nj; fnjg
N�1

; t
� ��

; ðA:11Þ

where l0 ¼ l� 1.

To get equations of motion for the reduced two-level

system density matrix we need to project Eq. (A.11)

onto the two-level sector by restricting interaction to
those that are relevant for the two-level system. To ob-

tain the equation for qsð1; 0; tÞ, we set l1 ¼ 1 and l01 ¼ 0

in (A.11) (here only diagrams (1) and (4) contribute). We

obtain

o

ot
qð1; nj; 0; nj; fnjgN�1

; tÞ

¼ �i ~xxel

�
� D

�h

�
qð1; nj; 0; nj; fnjgN�1

; tÞ

� 2p
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2dðDE� �hxelÞ

� 1

2
½ðnj þ 1Þt þ ðnjÞt�qð1; nj; 0; nj; fnjg

N�1
; tÞ:

ðA:12Þ
After integrating and using the factorizability condition

(20), we obtain Eq. (21) of the main text. Similarly, to

obtain the equation for qsð1; 1; tÞ, we set l1 ¼ 1 and

l01 ¼ 1 in Eq. (A.11) (only diagrams (1), (3), (5) and (8)

contribute). We obtain
o

ot
qð1; nj; 1; nj; fnjgN�1

; tÞ

¼ 2p
�h

X
fmjg

X
j

jV 10
j j2jhfnjgN�1jfmjgN�1ij2dðDE� �hxelÞ

� fðnjÞt � ½ðnj þ 1Þt þ ðnjÞt�qð1; nj; 1; nj; fnjg
N�1

; tÞg:
ðA:13Þ

After integrating and using (20), we obtain Eq. (21) of

the main text.
Appendix B. A classical bath limit

We use the coherent state representation of a har-

monic oscillator [38,39]. A decomposition of the number

eigenstates jni in terms of the set of coherent states fjaig
defined as

jai ¼ mx
p�h

� �1
4

exp

�
� mx

2�h
ðq� qðtÞÞ2 þ i

�h
pðtÞðq

� qðtÞÞ þ i

�h
SðtÞ

�
ðB:1Þ

is given by

jni ¼
X
a

jaihajni; ðB:2Þ

where the expansion coefficients hajni are

Ca;n ¼ hajni ¼ haj0i ða
�Þn

ðn!Þ
1
2

¼ ða�Þn

ðn!Þ
1
2

e�
1
2
jaj2 : ðB:3Þ

Here the complex number a � ðqþ ipÞ=
ffiffiffiffiffi
2�h

p
¼ jajei/ is

an eigenvalue of the annihilation operator acting on the

coherent state jai as ajai ¼ ajai, and the modulus jaj is
related to the mean excitation of the oscillator �nn as
�nn ¼ hajaþajai=hajai ¼ jaj2. The expansion coefficient

hajni determines a probability of finding an oscillator in

the nth-level in the coherent state jai, and is given by the
Poisson distribution,

Pn;a ¼ jhnjaij2 ¼ e�jaj2 jaj
2n

n!
¼ �nnne��nn

n!
: ðB:4Þ

The bath mode wave function overlap is given as

hnjn0i ¼
X
aa0

e��nnaa0 þiDUaa0
ð�nnaÞ

n
2ð�nn0

a0 Þ
n0
2

ðn!Þ
1
2ðn0!Þ

1
2

haja0i; ðB:5Þ

where �nnaa0 ¼ 1=2ðjaj2 þ ja0j2Þ ¼ 1=2ð�nna þ �nn
0
a0 Þ, and DUaa0 ¼

n0/a0 � n/a is the phase difference. The overlap of two

coherent states jai and ja0i is

haja0i ¼ exp
i

�h
DSðtÞ

�
� mx

�h
DqðtÞ2 � 1

�hmx
DpðtÞ2

þ 2i
�h
DqðtÞ�ppðtÞ

�
; ðB:6Þ

where DS is a difference in phases associated with the

excited and ground state wave functions, and we have
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introduced the relative displacements in position

DqðtÞ ¼ ðqðtÞ � q0ðtÞÞ=2 and momentum DpðtÞ ¼ ðpðtÞ�
p0ðtÞÞ=2, around their average values �qqðtÞ ¼ ðqðtÞþ
q0ðtÞÞ=2 and �ppðtÞ ¼ ðpðtÞ þ p0ðtÞÞ=2, respectively. In

terms of relative and average variables the phase dif-
ference becomes

DSðt0Þ � S0ðt0Þ � Sðt0Þ

¼
Z t0

0

dt
2

m
DpðtÞ�ppðtÞ

�
� 2mx2DqðtÞ�qqðtÞ þ DðtÞ

�
;

ðB:7Þ

where DðtÞ is given by Eq. (4) in the main text. Taking

the classical limit (�h ! 0) in Eq. (B.6) and using (B.7),

we obtain

lim
�h!0

haja0i ¼ daa0e
i
�h

R t0

0
dtDaa0 ðtÞ: ðB:8Þ

Then, in the limit �h ! 0 a product of the Franck–

Condon factors becomes

lim
�h!0

hfnjgjfn0jgi ¼
Y
j

X
aa0

e��nnaa0 ;jþiDUaa0 ;j

�
ð�nna;jÞ

nj
2 ð�nn0a0 ;jÞ

n0
j
2

ðnj!Þ
1
2ðn0j!Þ

1
2

daa0e
i
�h

R t0

0
dtDaa0 ;jðtÞ

¼
Y
j

X
a

Paje
i
�h

R t0

0
dtDajðtÞ ¼ e

i
�h

R t0

0
dtDðtÞ

:

ðB:9Þ
References

[1] E.P. Wigner, in: P. Meystre, M.O. Scully (Eds.), Quantum Optics,

Experimental Gravity, and Measurement Theory, Plenum Press,

New York, 1983.

[2] D. Giulini et al., Decoherence and the Appearance of a Classical

World in Quantum Theory, Springer, New York, 1996.

[3] W.G. Unruh, W.H. Zurek, Phys. Rev. D 40 (1989) 1071.

[4] E.R. Bittner, P.J. Rossky, J. Chem. Phys. 103 (1995) 8130.

[5] E.R. Bittner, P.J. Rossky, J. Chem. Phys. 107 (1997) 8611.

[6] O.V. Prezhdo, P.J. Rossky, J. Chem. Phys. 107 (1997) 5863.

[7] J.S. Bader, B.J. Berne, J. Chem. Phys. 100 (1994) 8359.

[8] A.G. Redfield, Adv. Mag. Reson. 1 (1965) 1.
[9] D. Oxtoby, Adv. Chem. Phys. 40 (1979) 1.

[10] C.P. Slichter, Principles of Magnetic Resonance, third ed.,

Springer, Berlin, 1990.

[11] A. Nitzan, R.J. Silbey, J. Chem. Phys. 60 (1974) 4070.

[12] A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A.

Garg, W. Zwerger, Rev. Mod. Phys. 69 (1987) 1.

[13] R. Silbey, R.A. Harris, J. Chem. Phys. 80 (1984) 2615.

[14] D. Hsu, J.L. Skinner, J. Chem. Phys. 81 (1984) 1604.

[15] J.L. Skinner, D. Hsu, J. Phys. Chem. 90 (1986) 4931.

[16] B.B. Laird, J. Budimir, J.L. Skinner, J. Chem. Phys. 94 (1991)

4391.

[17] D. Reichman, R.J. Silbey, A. Suarez, J. Chem. Phys. 105 (1996)

10500.

[18] D.R. Reichman, R.J. Silbey, J. Chem. Phys. 104 (1996)

1506.

[19] S.A. Egorov, E. Rabani, B.J. Berne, J. Chem. Phys. 110 (1999)

5238.

[20] A.A. Golosov, D.R. Reichman, J. Chem. Phys. 115 (2001) 9848;

J. Chem. Phys. 115 (2001) 9862.

[21] I. Prigogine, Non-Equilibrium Statistical Mechanics, Wiley, New

York, 1962.

[22] T. Petrosky, I. Prigogine, Adv. Chem. Phys. 99 (1997) 1.

[23] T. Petrosky, I. Prigogine, Chaos Soliton. Fract. 7 (1996)

441.

[24] T. Petrosky, V. Barsegov, in: V. Gurzadyan, R. Ruffini (Eds.),

Advanced Studies in Astrophysics and Cosmology: The Chaotic

Universe, World Scientific, Singapore, 1999.

[25] V. Barsegov, T. Petrosky, Phys. Rev. E 65 (2002) 046102;

T. Petrosky, C.O. Ting, V. Barsegov, Chaos Soliton. Fract. 16

(2003) 381.

[26] J.C. Tully, J. Chem. Phys. 93 (1990) 1061.

[27] E. Neria, A. Nitzan, J. Chem. Phys. 99 (1993) 1109.

[28] A. Staib, D. Borgis, J. Chem. Phys. 103 (1995) 2642.

[29] T.H. Murphrey, P.J. Rossky, J. Chem. Phys. 103 (1995)

6665.

[30] O.V. Prezhdo, P.J. Rossky, J. Chem. Phys. 107 (1997) 825.

[31] R. Kubo, Y. Toyozawa, Prog. Theor. Phys. 13 (1955) 160.

[32] S. Mukamel, Principles of Nonlinear Optical Spectroscopy,

Oxford University Press, New York, 1995;

S. Mukamel, J. Chem. Phys. 77 (1982) 173.

[33] E. Rabani, S.A. Egorov, B.J. Berne, J. Chem. Phys. 109 (1998)

6376.

[34] E. Neria, A. Nitzan, Chem. Phys. 183 (1994) 351.

[35] S.A. Egorov, E. Rabani, B.J. Berne, J. Chem. Phys. 108 (1998)

1407.

[36] E.C.G. Sudarshan, B. Misra, J. Math. Phys. 18 (1977) 756.

[37] V. Barsegov, P.J. Rossky (unpublished).

[38] C.B. Chiu, E.C.G. Sudarshan, B. Misra, Phys. Rev. D 16 (1977)

520.

[39] J.R. Klauder, E.C.G. Sudarshan, Fundamentals of Quantum

Optics, Benjamin, New York, 1968.


	Constructing quantum dynamics from mixed quantum-classical descriptions
	Introduction
	The model
	Dephasing and NA transition rates
	FQ vs mixed quantum-classical treatment
	Numerical example
	Concluding remarks
	Acknowledgements
	Derivation of the master equation
	A classical bath limit
	References


