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Abstract

The influence of quantum bath effects on the dynamics of a quantum two-level system linearly coupled to a harmonic bath is
studied when the coupling is both diagonal and off-diagonal. It is shown that the pure dephasing kernel and the non-adiabatic
quantum transition rate between Born—Oppenheimer states of the subsystem can be decomposed into a contribution from thermally
excited bath modes plus a zero point energy contribution. This quantum rate can be modewise factorized exactly into a product of a
mixed quantum subsystem-classical bath transition rate and a quantum correction factor. This factor determines dynamics of
quantum bath correlations. Quantum bath corrections to both the transition rate and the pure dephasing kernel are shown to be
readily evaluated via a mixed quantum-classical simulation. Hence, quantum dynamics can be recovered from a mixed quantum-
classical counterpart by incorporating the missing quantum bath corrections. Within a mixed quantum-classical framework, a
simple approach for evaluating quantum bath corrections in calculation of the non-adiabatic transition rate is presented.

© 2003 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we study the influence of quantum bath
effects on the dynamics of the quantum subsystem using
a popular model of a two-level system linearly coupled
to the harmonic bath. We address an important issue of
quantum-classical correspondence in the context of non-
adiabatic (NA) transitions in condensed phase envi-
ronments with the emphasis on the role of quantum
corrections in calculation of NA transition rates and
evaluation of pure dephasing within a mixed quantum-
classical treatment.

A primary quantum bath effect directly related to the
NA transition rates and pure dephasing is quantum de-
coherence (loss of quantum correlation) in the degrees of
freedom of the environment, when coupled to the two-
level system. Interaction of the system with the environ-
ment brings about the appearance of certain classical
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features at the expense of quantum correlations [1,2]. The
problem of quantum coherence gave a significant stim-
ulus to numerous studies of simple quantum systems
[3-5]. In relation to NA molecular dynamics (MD) sim-
ulations, neglecting the quantum corrections can result in
both quantitative and qualitative errors [4-6].

Another manifestation of the quantum nature of a
harmonic bath is zero point energy [6,7]. At low tem-
perature, the lowest excited states of the bath modes are
mostly populated, and the effect of zero point motion is
pronounced. The role of zero point motion can be sig-
nificant even at room temperatures, if high frequency
modes of the bath are coupled to the quantum system.
The neglect of a contribution from zero point energy
may lead to an underestimation of the quantum NA
transition rates and pure dephasing. In the context of
NA MD simulations, zero point motion can be another
source of disagreement between the exact quantum and
mixed quantum-classical treatment.

We study the NA transitions employing a model of a
two-level system coupled to a harmonic bath [8-12].
This model has been extensively treated in literature [13—
18]. In the present work, we consider a general case
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when the system-bath coupling is both diagonal and
off-diagonal in the basis of two-level eigenstates. The di-
agonal coupling includes displacements of the equilib-
rium positions of the bath modes associated with initial
and final states potential surfaces. The off-diagonal in-
teraction is realized via the NA coupling of the two-level
system to momenta of the bath modes. Most recently,
this model was used by Egorov et al. [19] to probe the
accuracy of several mixed quantum-classical approxi-
mations in calculating the NA transition rates, and by
Golosov and Reichman [20] in their master equation
approach to charge transfer processes. We study the
impact of quantum bath effects on the dynamics of the
quantum system by following the evolution of the two-
level system in the relaxation time scale. We utilize the
Liouville-von Neumann formulation of quantum me-
chanics. This formalism allows to study an approach to
equilibrium in both classical and quantum systems [21—
25] and thus, facilitates the study of quantum-classical
correspondence.

A common approach to studies of quantum dynamics
in the condensed phases is to utilize a mixed quantum-
classical treatment (i.e., quantum subsystem in a classical
bath). These methods provide a theoretical background
for various quantum-classical MD schemes widely im-
plemented in studies of inter- and intramolecular transfer
and redistribution of energy in condensed media chemi-
cal systems [4-6,26-30]. Within this treatment, one esti-
mates the full quantum (FQ) rates from the results of
mixed quantum-classical simulations. In general, the
exact solution to this problem is not known. To take
into account quantum bath effects, several approximate
schemes have been proposed [6,27,28], and due to the
approximate nature of these mixed quantum-classical
schemes, it is important to establish their accuracy.

Prezhdo and Rossky [6] have used Kubo’s generating
function method [31] to examine the source of limitations
of mixed quantum-classical approaches in studies of NA
transitions. Prezhdo and Rossky [6] approximated wave
functions of the bath modes by frozen Gaussians. In the
present work, we put this result on an analytical foun-
dation. Using the model of a two-level quantum system
coupled to a harmonic bath, we analytically establish the
validity of mixed quantum-classical approximations in
evaluating the quantum NA transition rate. We extend
the validity of a mixed quantum-classical treatment to
evaluating pure dephasing. We show that the quantum
NA transition rate for the present model admits factor-
ization into its mixed quantum-classical counterpart and
a ‘“quantum bath correction factor”, a well-defined
quantity encapsulating all the quantum features of the
bath. We show that quantum bath corrections to both
the NA transition rate and pure dephasing can be ex-
pressed in terms of classical quantities and thus, are
readily evaluated within a mixed quantum-classical
framework. Hence, one is able to “repair” a mixed

quantum-classical treatment to reproduce the true
quantum dynamics.

The model is described in Section 2. In Section 3, we
derive the master equation for the reduced density ma-
trix and analyze the FQ NA transition rate and the pure
dephasing kernel. In Section 4, we present an approach
to evaluating quantum bath corrections in terms of
classical quantities in calculation of the NA transition
rate and pure dephasing. A numerical example is pre-
sented in Section 5. In Section 6 we conclude. Technical
details are given in Appendices.

2. The model

Consider a two-level system given by the ground |0)
and excited |1) states with the energy splitting 7w,
coupled to a set of harmonic oscillators with masses m;

and frequencies w;, j=1,2,...,N. The Hamiltonian is
H=Hy+V, (1)
where

Hy = HJ1) (1] + Hy|0)(0)
= (Hy + ha)[1)(1] + (Hy + A)[0) (0] 2)

and

V= Vot |0) (1] + Vio[1)(O]. 3)

The Hj-part of the Hamiltonian stands for the unper-
turbed energy of the two-level system and the bath,
whereas the V-part stands for the ““off-diagonal” inter-
action. We assumed that bath modes are not distorted
between states, and ignored mode mixing. Then, the
“diagonal” coupling A is

1
J J

where ¢; and 6, stand for the coordinate and the dis-
placement of the jth oscillator from its equilibrium po-
sition. This form of diagonal coupling would arise when
the two potential energy surfaces corresponding to the
two states of the two-level system are described by two
multidimensional harmonic surfaces which differ only in
equilibrium positions. H, is the bath Hamiltonian,

2
-y pio 15,
Hb— g (2—mj+5m_,-quj . (5)

We introduce the creation a; and annihilation a; oper-
ators for each jth oscillator of the bath,

b (M, ) 12 P
a‘] < Zh q’ m]a)] ’

m.w;\ 1/2 . D
“f:( éhj) (qj+1m;).>'
T
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In Eq. (3) ¥ and ¥}, represent the weak coupling be-
tween adiabatic Born—Oppenheimer states

%zZ——MWO—%ZWOfw (7)

and Vo = (Mo)', where /10 = (1|V,|0)(he;/2m;)" 2.
Here, (1|V;|0) is the matrix element of the Jjth bath
mode non-adiabatic coupling with V, being the gradient
operator of the jth-bath mode coordinate with respect
to the quantum subsystem wave functions. In Eq. (7) we
have neglected the jth-bath mode displacement of the
equilibrium position J;.

The statistical descrlptlon in quantum mechanics is
given by the Liouville-von Neumann equation for the
density matrices [22,23]

i pl0) = Lup). (8)

Here the “Liouvillian” Ly is the commutator with the
Hamiltonian, i.e., Lyp = Hp — pH. We can decompose
Ly into an unperturbed part Ly and an interaction Ly:

Ly =Ly + Ly, )

where Lo = (1/h)(Hy x 1 — 1 x Hp) and Ly = (1/k)(V x
1 — 1 x V), respectively. For the case where the wave
function space is spanned by a complete orthonormal
basis Y |o)(a| =1, (a|f) = d,p, the Liouville space is
spanned by a complete orthonormal basis of the dyads
[ B)) = [ (B, ey 3,16 B (s B = 1, (s Blos ) =
0.0y g. The matrix element of an operator 4 in the wave
function space is given by ((a; f|4)) = («|4|S). Then, the
matrix element of the Liouville operator in the Liouville
space is given by

((o; BILulo's B)) =

where H,, = (a|H|o') = ((o;o/|H)). The basis for the
Liouville space in the occupation number representation
is given by |o; B)) = |11, {n,}"; 1, {n'}")), where 1, I
and n;, n’; are occupation numbers for the excited and
ground state Hamiltonians of the quantum system and
the bath, respectively.

Hydpy — 0o Hyyg, (10)

3. Dephasing and NA transition rates

To derive the master equation for the reduced two-
level system density matrix, we introduce the projection
operators that specify system-bath correlation comFo—
nents, such as distribution of the /-level system P,
correlations between the /-level system and a single jth-
bath mode P,”n’ 7. and so on,

P =3 A B A (s g, (1)

{n;}

(vi,vy)
le,;/ Z |llv”/’{”/}(/ I, /»{”j}(/)>>

{n}
X<<llanj'a{nj}(j’)’ 1 ,/7{’1}}0 |( - MO)a
(12)
where vi =1} — I, vy =n}, —n;. Here {n;} , means

that the components 7y, ... are excluded from the set
{n;} = {m,ny,...}. Next, we introduce operators

P =3P, pevy) ZZ ,l“n‘,’ (13)
Vl,/

I
These are eigenprojectors of L,
LOP(VIV/-/.“) — P(vlvj/..,)LO
.)P(v]vj/,..) (14)

and satisfy the completeness and orthonormality con-
ditions

ZP”_FZZPHH =1,

Vi ViV

— P(‘l‘j’m)é"l‘/‘l5‘)/’"/‘/ R (15)

= (v1w1 —+ Vip + .-

P(L]\/-/,“)P(/ll/tj/m>

To avoid heavy notation, we introduce the superscript
v=(vvy,...), and express (14) as LyP" =PV, =
wPU - where w") = viw; + vyw, +---. In this nota-
tion, the completeness and orthogonality relation (15)
become >, P =1 and PVPW = 5, PV

We also define the complements

oM =1-pv (16)
such that (P®)? = PO, (QW)2 = o, PO QM) = P =
and LyP") = PV L, LyQ"Y = QL. It is useful to de-
compose the time evolution of the total density matrix
as [22,23]

P"p(f) = (“)p”)()‘i‘P‘lP (1). (17)

In Eq. (17) the first term on the right-hand side (RHS) is
the “privileged”” component of the v,-correlation sub-
space [22,23] and obeys the Markovian evolution. The
second term is the ‘“‘non-privileged” component and
corresponds to the memory effects which will not be
analyzed in the present work. We restrict ourselves to
the component of the v,-correlation subspace, since it
has a dominant contribution to the time evolution in the
relaxation time scale [22-25] (second order perturbation
theory). Then, the Liouville equation for the total den-
sity matrix is

. 0 , 1) (v
I&P(Vl)p("l)(t) _ 9(‘1)(2)})(‘1)10(‘1)(07 (18)
where 6" (z) is the collision operator [22,23],

0(\’1)(2) — P("I)LOP("1> +P(V1)LVQ(\’1)
1
% 7Q(V1)va("1), (19)
W) — LO
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where wy,,) is the eigenvalue of L, acting on the eigen-
projector PU"1). Hereafter, we abbreviate p("") as p. We
assume that at the time ¢ = 0 the total density matrix is a
direct product

p(llv{nj}N§ lll’ {n;'}N§0) = ps(l1, 1/170) ® Hpb(nj’n}’o)
J

(20)

where py(/1,11,0) and py(n;,n},0) are the reduced
quantum subsystem and the jth- mode of the bath den-
sity matrices at time ¢ = 0, respectively.

Equations of motion for the coherence p,(1,0,¢) and
the excited state population p,(1,1,¢) enable us to esti-
mate the dephasing and the NA transition time scales,
respectively. These equations are derived in Appendix A
using Liouville space diagrams We obtain:

p(1,0,1) = p,(1,0)ge ' C(r)e H, (21)

where p,(1,0), is p,(1,0) at the time ¢ = 0. The renor-
malized frequency is

Wel = Wel + 0 (22)

with the “off-diagonal” frequency shift (|0we| < we)
due to the NA system-bath coupling given by

dwa= = > P {m P

Jo Ami}

1
X P(AE o >, (23)

where P denotes the principal part and AFE is the bath
energy gap. In Eq. (21) we have defined the quantum
correlation function

C(t) =Try lpb expr {% /Ot’ A1) dtH , (24)

where A(¢) = expliHyt/h]Aexp|—iHypt/h); T stands for
time ordering and Try[p, - -] denotes thermal average.
C(2) plays an important role in the forthcoming analysis
of NA transition rates, and is discussed in the next section.
The explicit evaluation of C(¢) has been done by many
authors [14,15,17-19,27,31,32]. Up to the second order in

the cumulant expansion we have (8 = (k7)) [32]
C(t) = exp 7 [(27; 4+ 1)(cos w;t — 1)
J

- isincu_,-t]}
= exp { / doJ(w

- isinwt} }, (25)

where 7; is the mean occupation number of the jth- bath
mode at temperature 7, i.e., 7i; = [exp(hw;/kgT) — 1!

[c:othﬁ2 (coswt —1)

and we have defined the ‘““diagonal” spectral density
J(@),

w) = Z (o — w;)m;8’. (26)

Since the diagonal coupling is linear in bath coordi-
nates, Eq. (25) is exact to any order in the cumulant
expansion [32]. In Eq. (21) the quantum NA transition
rate is

m 2n _ _
k%o = =T ooy D IR m

{m;} J

X O(AE — hoa)[(n; + 1), + (n)),]| - (27)

Franck-Condon factors \({nj}Nfl\{mj}Nflﬂz appearing
in Eq. (27) contain all the information about quantum
coherence in variables of the bath, and are evaluated in
the next section.

Eq. (27) for k", appears naturally as a sum
k?HO = ko1 + k1o of “down” (ko1 ~ (n] l)t) and “up”
(ko ~ (n;),) NA transition rates where (n;+1), =
(nj + 1)exp[—iw;f] and (n;), = n;expliw;f]. Here, the
down rate ko #0 as T — 0 (spontancous emission).
Using the fact that 7; + 1 = n;exp[fhw;], we see that
upon performing thermal averaging in Eq. (27), we re-
cover detailed balance satisfied for each jth-bath mode.
Note that in Eq. (27) for ", we may also separate
contributions from the thermally excited bath modes
and zero point energy (see also [7]) into a quantum high
energy (qhe) NA transition rate kqho and a zero point
energy (zpe) correction k7, ie., ki™) = kI + k7,
where

. 2m
K% = 2T oy > > I PIm {m 1

{m} J
X O(AE — liwg)2nj cos w;t (28)
and
zpe 2
K% =5 Tro |9y ) DI P Iy  Hm P
{m}J
X O0(AE — hwg)(cos w;t — isinw;t) | , (29)

nj is the occupation number of the jth-mode at ¢ = 0.
The zero point energy contribution (29) is important
at low temperature where primarily the lower excited
states of bath modes are populated, or even at room
temperature if the two-level system interacts with high
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frequency modes. Let us study the evolution of the ex-
cited state. The equation of motion for p (1, 1,7) is
gqhe

pu(1 1) = 3 HR0 (1 — ) 4 p (1), (30)
2K,
where p(1,1), is p,(1,1) at £ = 0. In the limit of large ¢,
we obtain
1 kqhe

1,1,6) » - — =% 31
S ¥ o
At high temperature n; > 1, p,(1,1,¢#) — 1/2, and the
two-level system wave function becomes a superposition
of the excited and ground states. In contrast, at low
temperature n; < 1, py(1,1,¢#) — 0, and the same wave
function is dominated by the ground state contribution.
We would have obtained the incorrect time dependence
for p,(1,1,¢), had we neglected the zero point energy
contribution. We would have obtained p,(1,1,7) — 1/2
in both limits. This implies that the neglect of zero point
motion is inconsistent with the dynamics (no sponta-
neous emission at zero temperature) and violates the
detailed balance condition [16].

Let us now study the coherence. In the exponent in
Eq. (25) for the quantum correlation function, the
imaginary part can be viewed as the “diagonal” fre-
quency shift. This part of the two-level system frequency
modulation is due to the adiabatic fluctuations in the
total energy gap

1 o0
daiy(t) = _ﬁ/o dwJ () sin wt. (32)

The real part in the exponent in Eq. (25) corresponds to
pure dephasing [14,15,17,18]

d(t) = — T L (27; 4+ 1)(1 — cos w;t)
= ,L/ dos (@)ocoth P2 (1 — coswr).  (33)
21 ), 2

As in the case of the FQ NA transition rate in Eq. (33),
we may separate contributions from the thermally ex-
cited bath modes and zero point energy. Indeed, in the
limit of zero temperature (coth ffiw/2 — 1) we obtain
the zero point energy contribution to pure dephasing,
d®(t) = 1/2n [;° dwJ(w)w(coswt — 1), a result previ-
ously obtained by Reichman et al. [17].

For strong diagonal coupling, we can expand sin w¢
and coswt in Taylor series retaining terms to second
order in time, and Eq. (21) for py(1,0,¢) becomes

po(1,0,1) = p,(1,0),e Pale " e ! (34)

with

~ 1 oo
Dl = W + 0w + 00} = e + 7 / doJ(w)w*  (35)
0

and

1 o0
d=—
2h J,

3
deos () 2 coth P2 (36)
2 2

If the two-level system wave function is given by a linear
superposition of eigenstates, |¥s) = co|0) + ¢;|1), then
the off-diagonal elements of the reduced density matrix
undergo a trivial “‘rotation” due to the factor exp[—ide1],
and decay in time as a result of decrease of the “corre-
lation amplitude” exp[—1/2k{™",t — dr*] (total dephas-
ing). Here, we have three time scales. For times of the
order of the inverse of the two-level system renormalized
frequency, ¢ ~ 1/@q, ps(1,0,¢) undergoes unitary evolu-
tion. For times longer than the inverse of the renormal-
ized frequency and of the order of the pure dephasing
time (Taeph = d~'/%), 1/@a < t ~ Taepn, the dynamics of
phase coherence is determined by pure dephasing with a
quadratic time dependence (~ exp[—(¢/ rdeph)Q]). Finally,
for times of the order of the inverse of the quantum NA
transition rate ¢ ~ 1/k{™,, the phase coherence undergoes
an exponential decay (~ exp[—1/2k{"¢]). As time pro-
gresses, the correlation amplitude decays to zero, and a
superposition of eigenstates dynamically evolves into a
statistical mixture: | ¥,) (Y| — |col*]0) (0] 4 |e1|*[1)(1].

4. FQ vs mixed quantum-classical treatment

Within the framework of MD calculation of the NA
transition rates, one is faced with the problem of infer-
ring the FQ rate from results of the mixed quantum-
classical simulations. In the context of calculating the
NA transition rates, evaluation of quantum corrections
renders “factorizability” of the FQ rate into its mixed
quantum-classical counterpart times a factor which en-
compasses all quantum features of the thermal bath. To
show this in Eq. (27) we evaluate the Franck—Condon
factors and sum over the final states. We obtain

K, =Tr

%ZWW/MWWWM+%M
J

% H<n/ |eiHbt/he—i(Hb+A)t/h |n;>‘|
J

ZZOWW/MWWWW+%M

xexpr{—% /O ' th(t)}> . (37)

T

We had already encountered the last factor appearing in
the second line on the RHS in Eqs. (21) and (25). This is
the quantum correlation function given by the time-
ordered exponential of the difference in action associ-
ated with the initial and final state potential surfaces,
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C(t) = (1, m0) W (1)) = {expr{—i/h [ drA@W)})y. Mi-
croscopically, this function is the thermally averaged
product of the bath mode initial and final state wave
functions and therefore determines the dynamics of
quantum bath correlations. As these wave functions
cease to overlap, these correlations vanish [6].

To compute a mixed quantum-classical counterpart
to the FQ NA transition rate, we take the “‘classical
bath limit” (i.e., the classical limit # — 0 in variables of
the bath) in the quantum correlation function C(¢) in
Eq. (37). Calculation is presented in Appendix B. We
obtain

q-c
kl~>0 - Trb

oo S ITF [ e 1), + ()
J

. {lin | <n_,-<r>n;<r>>}

-3 <| P [ ares G+ 1), 5 )

X eXp { —% /Ot/ th(t)}> . (38)

Note that in the above expression, the time-ordered
exponential appearing in the RHS of Eq. (37) is re-
placed with the usual classical correlation function. A
similar expression for 4, with a (higher order) con-
tribution from displacement of the bath mode equi-
librium positions to the amplitude of the off-diagonal
coupling has been discussed by Egorov et al. [19,33],
and without zero point energy contribution by Staib
and Borgis [28]. For the case of static off-diagonal
coupling, the expression for k™, (without a prefactor
[(n; + 1), + (n;),]) has been exploited by many authors
[19,27,32-34].

We now proceed to derive an analytic expression
relating the FQ and mixed quantum-classical NA tran-
sition rates. We start from expressions (37) and (38) for
k'™ and k"%, and introduce the FQ (¢ ) and mixed
quantum-classical (514) ) rates defined for each jth-
bath mode

= 1708 [ e 0 4 1)+ ) Jo)
(39)

and

1%0/ Vlol /dtelwdt hf dt f 1)1 + (nj)l]7
(40)

such that /") = 37 (&% ), and K7, = 37 ,(&1%, )7 In

1-0,/ 10,/

Egs. (39) and (40) we have defined the “quantum bath
correction factor” Q(¢),

N expy { —i fg th(t)} | )

a exp{ i th(t)}

Comparing now expressions (39) and (40) for &{™ ;and
1<0,» we obtain the following “factorization”:
K =2 (&%), = D (e 0, [0 (42)
J J

The above expression is one of the main results of the
present work. Considering the form of Eq. (42),
factorization should be understood as a modewise
Fourier transformation of the NA coupling amplitude
weighted quantum bath correction factor. The weight
([(n; + 1), 4+ (n;),]) determines a share of the jth-bath
mode contribution to the NA transition amplitude in
the total FQ rate. The quantum correction factor Q(¢)
takes into account all quantum features of the thermal
bath ignored in a mixed quantum-classical evaluation
of the NA transition rate, and is given as a ratio of
the FQ correlation function to its quantum-classical
counterpart.

Factorization (42) provides analytical grounds for
evaluating the quantum bath corrections. Note also that
it is exact, i.e., summing over all thermally averaged
rates for each jth-bath mode

(G000 r = (&% )r
102 iwet ﬁh .
=|V°1" | dte'™" | coth=—~ cos w;t —isinw;t
i Pho
xexp{Zh/O doJ(w)w {coth 5
X (coswt—1) —isinwt} } (43)

we recover the FQ rate

k‘llfo = Z< ?30,j>7

J

= /de’(w) / drea [cothﬁhTw cos wt — isinwt}
| 7
X exp { T /0 dwJ(w)w {coth ‘BTw(cos wt—1)

—1 sinwt} } , (44)

where following Egorov et al. [19], in addition to the
spectral density J(w), we have defined the other (off-
diagonal) spectral density J'(w),

w) = Z 7°75(0 — o). (45)

We now proceed to presenting a simple perturbat-
ive approach that accounts for quantum harmonic
bath corrections. This approach can be implemented in
calculation of NA transition rates within a mixed
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quantum-classical framework. Consider the high tem-
perature approximation to the quantum correlation
function C(¢). Within this approximation, the thermal
weight in C(¢) is given by the first order term (2/fAw) in
the Taylor expansion of coth ffziw/2. This allows us to
rewrite C(¢) as

C()=C"(n0(1)
:exp{% /0 " do ()0 [ﬁw(coswt— 1) —1smwt} }
xexp{%/ﬂxdaﬂ(w)w[ /37:» --~](coswt—l)]},

—+

(46)
where the first exponential factor appearing on the RHS
of the second equality is the high temperature approxi-
mation to the quantum correlation function C"(¢). Note
that C"(¢) differs from C(¢) in that the quantum en-
semble averaging over initial states of the bath is re-
placed by the classical ensemble averaging over initial
position and momentum. The second exponential factor
stands for the low temperature quantum bath correction
to CM(¢), and is given by Q(¢). Since C(¢) takes care of
high temperature contributions, Q(¢) picks up low tem-
perature corrections to the decay of quantum bath
correlations.

As fhw is a measure of importance of quantum bath
effects (hiw) compared with the characteristic thermal
motion (f!), we Taylor expand Q(¢) in Eq. (46) in
powers of the exponent. Then, substituting the result-
ing expression into Eq. (43), we obtain a relation re-
flecting Bohr’s correspondence principle for NA
transition rates

( ?ﬂo,ﬁ = Vj10|2/dtei‘”°"{coth

X eXp { 21h /OO de(w)w{ﬁ;w

X (coswt — 1) — isinwt] }

e
x (cos ot — 1)+---}. (47)

In Eq. (47) the first term of the expansion corresponds to
the high temperature limit (HT) of (£ ), and is given
by HT NA transition rate

pho;
2

it — isina)jt}

. h
<f1ﬁo,> V,-10|2/dte"“°"{coth’82w’

X eXp { 21h /OO de(a))w[ﬁhzw(coswt -1
— isinwt] } (48)

it — isinwjt}

The rest of the terms are quantum corrections to
(ilﬂo j> and to the lowest order are given by

<f1ﬂoj> V10|2 / drelet [cothﬂ

x [In Q™(¢) exp{ / dowJ(w

(coswt — 1) — isinwt} } (49)

cosw;t — 1sinwjt}

2
ﬁh
with

In O"(¢) Zh/dJ {

m;;0; { Bheo; L
7 { 6 + -+ p(coswt —1).

~-](cosa)t— 1)

(50)

Since in Eqgs. (49) and (50) the classical HT correlation
function CM(¢) is corrected by the factor In Q" (¢) given
by the real part of the exponent of CM(¢) with the sta-
tistical weight adjusted as 2/ffiw; — [fliw;/6 + - -] for
each jth-bath mode, quantum corrections are now ex-
pressed in terms of the classical correlation function and
thus, can be computed within the same mixed quantum-
classical method.

Let us now turn to analyzing the pure dephasing
kernel (see Eq. (33)). Since the real part in the exponent
of C(t) determines the pure dephasing kernel (33), the
HT approximation can also be used to evaluate pure
dephasing within a mixed quantum-classical framework.
We obtain

d(t):—%/ooodaﬂ(w) {ﬁTJrﬁhTer ](l —coswt)
=d"(t) +d°(1) (51)
with
nt 1 [~ 2
d"(t) = ~ 3 doJ(w )wﬁT(l — coswt), (52)
/ doJ(w [ﬁi;w '}(l—coswt).
(53)

In Eq. (51), d"(¢) corresponds to the HT approximation
to the pure dephasing and d°(¢) represents the low tem-
perature quantum bath corrections to d™(z). As in the
case of the NA transition rate, both terms can be readily
evaluated within a mixed quantum-classical treatment.
Within the HT method, the time correlation function
C"(f) can be calculated by using a standard MD
propagation scheme by replacing the quantum thermal
ensemble averaging over the initial bath states with the
classical ensemble average over the position and mo-
mentum of bath modes propagated with the arithmetic
average of the initial and final state unperturbed
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Hamiltonians. Thus, our HT semiclassical approxima-
tion is equivalent to the average classical limit (or ACL
approximation) previously considered by Egorov et al.
[19,35].

The results obtained in this section allow us to con-
clude, and this is the main result of the present work, that
within the harmonic bath approximation, and with a
constant non-adiabatic electronic coupling matrix ele-
ment, the quantum bath corrections to both the NA
transition rate and the pure dephasing kernel can be
evaluated within a mixed quantum-classical framework.
These quantities govern the dynamics of the quantum
system phase coherences and population. The separa-
bility of the quantum corrections allows for a well defined
approximation in which only the quantum component is
evaluated in the harmonic approximation, based on ac-
curate classical simulation. This provides a well pre-
scribed formalism in the same spirit as alternative
approximate forms implemented earlier [6,7,27,34].

5. Numerical example

To see that the semiclassical approximation derived
in the previous section can be accurate in low order, we
compare here the FQ NA transition rate for the slightly
simpler case of static off-diagonal coupling [19,31]

+00 ) 1 0
K, = |V1°|2/ dre' exp | — / doJ (w)w
oo 2% J,
7 .
X [cothﬂTw (coswt —1) — 1sma)t” (54)
with the HT NA transition rate [35]
+00 ) 1 00
K, = |V1°|2/ dte ™’ exp —/ doJ(w)w
oo 2% Jo

« {ﬁhiw (coswr — 1) — isinwt” (55)

adjusted by including the lowest order quantum bath
corrections, namely

+o00 oo
K = |V10|2/ drel*a' In[Q (1)) exp {21?1/ doJ(w)w
—00 0
2
X Lﬁl—w(cos wt—1)— isinwt” . (56)

The quantum bath correction factor, to lowest order, is

01() = exp [i / J(@)0P™ (coswt — 1)} .57
2n 6

where subscript 1 denotes the first order correction.

Following earlier work by Egorov et al. [35], we chose a

Gaussian spectral density for harmonic bath modes

Nor7ohiad [(w _20<2w ! 1 (58)

with the width o, centered around the average bath
frequency (w). We assumed that the off-diagonal cou-

J(w) =

pling is weak (V' =0.1) and that the two levels are
coupled to optical phonons with narrow dispersion
(6/{w)), i.e., we choose ¢ = 0.1. We performed calcu-
lation for the weak (4 = 2.0) and strong (4 = 8.0) di-
agonal coupling strength 4 = md* /27 at low (f* = 4.0),
intermediate (f* = 1.0) and high (8" = 0.25) reduced
temperature f* = ph{w).

In Fig. 1 we display semi-logarithmic plots of the FQ
transition rate (data points) and semiclassical approxi-

Log[K]

Fig. 1. Semi-log plots of the reduced two-level system transition rate K
with static coupling vs the reduced energy gap w: FQ rate (data points)
and mixed quantum-classical rate with quantum bath corrections
(solid lines) are compared for low (f* = 4.0, panel a), intermediate
(p* = 1.0, panel b) and high (8* = 0.25, panel ¢) reduced temperature
B* for weak (4 = 2.0) and strong (4 = 8.0) diagonal coupling.
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mation (solid lines) scaled by (w), i.e., K = kj_o/{®) vs
the reduced energy gap w = we/{w). We see that this
leading order semiclassical approximation shows an
excellent agreement with FQ at intermediate and high
temperature in the whole range of w and only slightly
overestimates FQ at low temperature for large values of
w (cf. Fig. 1 of [19]). This agreement is somewhat better
for larger strength of coupling A4 (upper curves).

6. Concluding remarks

We have studied the dissipative dynamics in a two-
level system linearly coupled to the thermal bath, with
an emphasis on the important role played by quantum
corrections in evaluation of non-adiabatic (NA) tran-
sition rates and pure dephasing. All degrees of free-
dom of the bath have been treated in the harmonic
approximation. We have considered the case when the
interaction of the two level system with the bath is
both diagonal and off-diagonal. We assumed that the
diagonal coupling is modeled by the set of displaced
but undistorted bath modes. The off-diagonal coupling
has been realized through the NA coupling of the
two-level system to the momenta of the relevant
modes.

We derived equations of motion for the reduced two-
level system density matrix. The obtained Markovian
equations are a good description of the dissipative dy-
namics in the relaxation time scale after the initial Zeno
period has lapsed [24,25,36]. We have extracted and
analyzed the full quantum (FQ) NA transition rate and
the expression for pure dephasing. We have shown that
for this case both the FQ NA transition rate and the
pure dephasing kernel can be manifestly decomposed
into a contribution from the average thermal excitations
of bath modes plus the zero point energa/ contribution.
The latter may affect the excited (k\"5,/2k!",) and
ground (1/2(1 — ki, /k{™,)) state population due to the
non-vanishing zero point energy contribution to the
amplitude of NA coupling. Neglect of zero point energy
contribution violates detailed balance and is inconsis-
tent with dynamics. Zero point energy contribution is
non-negligible at any finite temperature. An extracted
zero point energy contribution to the pure dephas-
ing kernel confirms the result previously obtained by
Reichman et al. [17] that pure dephasing may occur at
zero temperature.

The time evolution of populations of two levels is
trivially exponential. However, the time evolution of
coherences is less trivial. In the strong diagonal and
weak off-diagonal coupling case, we have three time
scales. For the times of the order of the inverse of the
two level renormalized frequency ¢ ~ 1 /cf)el, the evolu-
tion of phase coherence is unitary. Here, both diagonal
and off-diagonal system-bath interactions contribute to

the frequency modulation. For times shorter than the
relaxation time but longer than the inverse of the
two-level system renormalized frequency (1/(?)61 <tk
1/2k™,), energy dissipation is negligible and the
two-level system phase coherence undergoes a pure de-
phasing (~ exp[—#*/7j,,,]), with a quadratic time de-
pendence. Finally, at times of the order of the relaxation
time, # ~ 1/k{™,, phase coherence decays exponentially,
and the two-level system wave function evolves into a
statistical mixture.

We have studied the quantum-classical correspon-
dence in the context of NA transition rates with an
emphasis on quantum bath correlation function. This
function plays a twofold role. First, in the exponent of
this function, the real part determines pure dephasing,
whereas the imaginary part yields a diagonal frequency
modulation to the two-level system renormalized fre-
quency. Second, the time evolution of this function
determines the dynamics of quantum coherence in
variables of the bath. Taking the classical bath limit in
the quantum correlation function, we arrive at a cor-
responding classical counterpart, i.e., a mixed quan-
tum-classical rate. This reflects the quantum-classical
correspondence principle. Comparing expressions for
the FQ and mixed quantum-classical rates shows that
the latter is missing the quantum correction factor
incorporating the quantum features of the thermal
bath ignored in a mixed quantum-classical evaluation
of the NA transition rate. This fact was first noticed
by Borgis and Staib [28], and has been used by
Prezhdo and Rossky [6] to show decomposition of the
quantum NA transition rate into its mixed quantum-
classical counterpart and the quantum correction fac-
tor for the case where bath modes wave functions can
be approximated by frozen Gaussians. In the present
work, we have demonstrated that for the case when a
thermal bath can be modeled by the set of harmonic
oscillators, this decomposition is rigorous and that
within a mixed quantum-classical treatment, quantum
bath corrections to both the NA transition rate and
the pure dephasing kernel can be readily evaluated.
Hence, true quantum dynamics can be recovered from
a well chosen mixed quantum-classical description for
this important model.

Although in mixed quantum-classical propagation
schemes the quantum nature of the environment is
ignored, mixed quantum-classical simulation data
may supply sufficient information to construct a semi-
classical approximation to the quantum correlation
function, an important ingredient in evaluating both
the quantum NA transition rate and pure dephasing.
We have presented a simple approach that offers a
systematic way of evaluating the quantum harmonic
bath corrections based on results of mixed quantum-
classical simulation data. In our approach we utilized
the high temperature (HT) semiclassical approximation
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to the quantum correlation function (also known as
the ACL) [19,35)).

The fact that in the HT (or ACL) approach, the time
correlation function can be calculated using a classical
MD propagation scheme by replacing the quantum av-
eraging over the initial bath states with the classical av-
erage over the position and momentum of modes
propagated with the arithmetic average of unperturbed
Hamiltonians associated with the initial and final states
of the two-level system, is not new [19,35]. A new element
in our analysis is an analytical foundation for realization
that the quantum bath corrections to semiclassical NA
transition rates and pure dephasing kernels can be both
rigorously defined and systematically evaluated in terms
of classical quantities within the same semiclassical
approximation.

In view of the above findings, one is motivated to
perform a model calculation of NA transition rates
based on the developed HT semiclassical method cor-
rected with respect to quantum bath effects and assess its
accuracy by direct comparison with results for the FQ
rate [37].
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Appendix A. Derivation of the master equation

The total Hamiltonian acquires the following quan-
tized form:

H = {hwa + Ho}[1)(1] + {A + H, }[0) 0]
+ Z{ij(af —a)|0)(1] + V" (a] — a;)[1){0[}

(A.1)

We use the correlation diagrams accumulated in Fig. 2.
Here straight lines correspond to the quantum subsystem,
curved lines stand for the jth-bath mode. The direction of
readingis denoted by arrows. If in the direction of reading
the line of the jth mode converges (diverges) to that of the

Tk ng — 1 Tk
(2) L ;L +1 b
l’lnk l’lnk
Iin lin
4 17k 17k
( ) lll l'l +1 li

N

ng
11\ h+1,n -1
! 14+1,nk—1

1/
Tk

ng + 1
ling -1
I -1

ng +1

Fig. 2. The second order correlation space diagrams.
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quantum system, then the mode of the bath looses (gains)
a quantum of energy and the quantum system gains
(looses) a quantum of energy. These processes are repre-
sented by vertices (a,]i) (i + 1| and a;[i)(i — 1[). The ma-
trix element of the collision operator is
(W s 1 L} 0O @I (s 1 ()Y )
= (b, A} 1 A Y [ POLPO Y LY 1 {0 3Y))
1
N,y N
+ ({5 1 g} |P(1)LVQ(1)Z_—LO
x QWL P, {1 (YY), (A.2)
Using the unperturbed part of the Hamiltonian (A.1),
we calculate a contribution from the Ly-part (H, = Hy, +
ha, Hg =H, + A)
(T, g} 1 Y PO TLHLNi) G + Hyli = 1) (i = 131 = 1
x {HL[i) (il + Heli = 1) (i = 1P A Y5 07 {nf )
= hwel(él’l‘ll—l - 51’1,11+1)
X 5111/71151/1//’1,1(3 " 5 "oy +AE7 (A3)

N ey
where

AE = (I, {n}"; 1, An Y [(Hy + A) x 1
— 1 X Hy|oy jy1 + [Hy % 1
— 1 x (Hy + Moy |1, AnyY5 1, {ndY)).
(A4)

Now we calculate the Ly-part of the collision operator.
We present calculation for diagram (1) in Fig. 1. The
other diagrams can be calculated in a similar way. For
the propagator we obtain

H() x1—-1x H() —Zz

<<117 {n}"; 1), ()"
1

" AN, gm m\N
x Iy, {ni 35 1 {n >>HAE—ha)el—1e (A5)
The vertices are
(=1 + 1 A 10 An Y e i = 1)
X <i|117 nj, {nj}N_l; 1/17 I’l;-, {n;‘}N_l»

= (4 )P (Y, ()

1

(B {0 0 Y i) G+ 1T = 1my 41,
< An}" B A )

= (n+ 1)e sy (I Y, (AT)

where <{nj}N71|{n}}N71> stands for the overlap of the
remaining N — 1 bath modes wave functions. Calcula-
tion of vertices (A.6) and (A.7) can be generalized to the
case of /-level quantum system coupled to the bath. We
obtain the contribution from diagram (1):

3 S I P+ 1),

{mi} J

1 ! N-1
" AE — o — iep(ll’n/’ Ly {n} ) (A-8)

Contributions to (Ly)-part of the collision operator from
diagrams (2)—(8) are calculated similarly. We obtain:

@) 30 SR Hom o), (1 4+ 1)
{mi}J
1
" how — AE — ic

1 - - ’
()5 SO IR T Hm Y O P (4 1),
{mi} J
o 1
hwel — AE —ic

@) : % {Z: S IO o} ) (0 + 1)
1
X AE —ha =i

(5)55 32 S P om0

{mi} 7

p(l,mg 1y {n ),
p(Liyng Iy {n 3V,

Iy Uy {n YY),

1
’hwel — AE —ie

x p(ll L+ L0 — 1+ 1;{n,}N*1),

(6) : % Do ORI Hm O (),

{mi} J

< [(L+ 1)+ 1)

x (n;+1)

1
AE — liwg — 1€

x p(h = LI+ 1 — 1;{n,-}N*1),
1 _ _
()5 S0 STV PRI oy ) ),
tm}

x [(h + 1) + D]

Ol—

1
hog — AE — ie
x p(ll +1Ln— L+ 1n— 1;{n,v}N’1),
1 - -
(8) 15> D I LI {m P
{m}J
-
tAE—h(J)e]—iG
x p(lh — Lmy+ ;1 = 1,ny + 1 {n 3",

< (L1 (n; + 1)

(A.9)

where (n; +1), = (n; + 1), exp[—iw;f] and (n;), = (1)),
explim;f]. We express the propagator in terms of the
principal part and the delta function as
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! . HP(%) F mio(x).

. (A.10)

Now we sum over contributions (A.8) and (A.9), add a
contribution from the Ly-part (A.2) and substitute the
resulting expression into Eq. (18) of the main text. We
obtain the master equation for the total density matrix
of the /-level system and the bath (/ > 2)

d , .
&P(ll,nﬁ Iong {n ¥ )

- A
= —1{ l:a)el —1x 5}54,111

- A , _
- |:wel 7 X 1] 51’1,11+1}P(11a”j5 llv”j;{”j}N 1)
27
+= > POPS(AE — o)

{m;} J

1} P
{0+ Dot = 141

Iy =L+ 1:{n}" 1)
B ller—l,l(”f + Dol byngs {n} 1)
(1 + 1)),

(Lt ; (I +1) ),

X p(h,nj; Ih,nj; {nj}N",t) }’

where ' =[+ 1.

To get equations of motion for the reduced two-level
system density matrix we need to project Eq. (A.11)
onto the two-level sector by restricting interaction to
those that are relevant for the two-level system. To ob-
tain the equation for p (1,0,¢), weset /; =1 and /{ =0
in (A.11) (here only diagrams (1) and (4) contribute). We
obtain

0 _
&p(lvnj;oﬂ/lj; {nj}N lat)
_ i)~ A 1.7n::0.1:: N-1,
= -1 wel_% P( y 15 Y, 13 {nj} 7t)

Z I LARIS!

{'”/} J
[(nj + 1)1 + (”j)z]ﬂ(lvnﬁ O7nj; {n_i}Nilvt)

(A.11)

" Hm " PO(AE — ho)

1

2

(A.12)

After integrating and using the factorizability condition

(20), we obtain Eq. (21) of the main text. Similarly, to

obtain the equation for p (1,1,7), we set /; =1 and

/y =11in Eq. (A.11) (only diagrams (1), (3), (5) and (8)
contribute). We obtain

0 _
ap(hnn 17n/'; {nj}N lat
S S R m ) PS(AE — o)
{m,} J
X {(nj t [(nj + 1)t + (nj)t]p(Lnj; 17nj; {nj}Nilat)}-

(A.13)

After integrating and using (20), we obtain Eq. (21) of
the main text.

Appendix B. A classical bath limit

We use the coherent state representation of a har-
monic oscillator [38,39]. A decomposition of the number
eigenstates |n) in terms of the set of coherent states {|o)}
defined as

) = (22 exp | =520~ a(0)* + 10

is given by
Z| (afn), (B.2)

where the expansion coefficients (x|n) are

Con = () = (a0) ) = T i (B.3)
(n1)> (nl)?

Here the complex number o« = (¢ +ip)/v/2h = |ale is
an eigenvalue of the annihilation operator acting on the
coherent state |o) as alo) = o), and the modulus || is
related to the mean excitation of the oscillator n as
i = (a|a*ala)/(ao) = |o. The expansion coefficient
(x|n) determines a probability of finding an oscillator in
the nth-level in the coherent state |o), and is given by the
Poisson distribution,

2 O(|2n _ n'"e”

2 —|a |
Pﬂy“ = |<7’l|0€>‘ =€ i n| }’l' (B4)
The bath mode wave function overlap is given as

— My, 1 o ﬁ“)%(ﬁ;’)%’
(n|n") Ze AP, ﬁ o), (B.5)

()

where 7i,; = 1/2(|of* + |o/*) = 1/2(7i, +71,,), and Ad,, =
n'¢, —ne, is the phase difference. The overlap of two
coherent states |o) and |o) is

() = exp | AS(0) =2 g~ 1 A0

2 aqlopo)]. (B6)

where AS is a difference in phases associated with the
excited and ground state wave functions, and we have
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introduced the relative displacements in position

Aq(t) = (q(t) — ¢'(¢))/2 and momentum Ap(¢) = (p(t)—
p'(1))/2, around their average values g(¢) = (q(¢)+

q'(1)/2 and p(t) = (p(¢) + p/(¢))/2, respectively. In
terms of relative and average variables the phase dif-
ference becomes

AS(H)=S'(F)—S(7)

=Ah{%mwm@—%mﬂwmm+A®}
(B.7)

where A(¢) is given by Eq. (4) in the main text. Taking
the classical limit (# — 0) in Eq. (B.6) and using (B.7),
we obtain

lim(zlot) = 8t Jo 444 (B.8)

Then, in the limit # — 0 a product of the Franck-
Condon factors becomes

lim({n;}|{n’}) = H Ze*ﬁw‘ﬁrimﬁmlj
h—0 ‘ ' -

d

)}

/Ilv
J
O ) s,

(n)(r)*

- -
TS pe s _ il om0
J o

(B.9)
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