
Different ensembles in molecular dynamics simulations 
 
 
I. Microcanonical (NVE) ensemble 
 
 
Molecular dynamics (MD) is the method of simulating kinetic and thermodynamic 
properties of molecular systems using Newton equations of motions. Usually numerical 
integration of equation of motions in MD is accomplished using Verlet algorithm. If all 
the forces, which appear in the Newton equation of motions, are related to the potential 
energy of the system, then the total energy of the system E=Ekin+Epot is conserved. If the 
total number of atoms N and the volume V (of the unit cell) are also kept constant, then 
the MD simulations are said to be performed in the microcanonical (NVE) ensemble. 
Generally, if the simulation system is sufficiently large, the small part of it may be 
considered as a canonical system. For large NVE systems the fluctuations in temperature 
are small, and it may be considered approximately constant. There are situations, in 
which temperature must be kept constant. For example, studying temperature induced 
unfolding of proteins requires precise temperature control. Therefore, for these classes of 
problems MD must reproduce an isothermal ensemble, such as canonical NVT ensemble, 
in which the number of particles, volume, and temperature are fixed.  
 
 
II. Rescaling of velocities  
 
 
The most straightforward way of temperature control is based on velocity rescaling. The 
distribution of velocities is drawn from the Maxwell-Boltzmann (MB) distribution 
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where vi,a  is the α (=x,y,z) component of the velocity of the atom i. From Eq. (1) we 
obtain that the average kinetic energy per degree of freedom (associated with the velocity 
component vi,α ) is related to temperature T (the equipartion theorem) as 
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where <…> brackets indicate the ensemble average. Because the ensemble average 
corresponds to the average over velocities of all atoms, then for the finite size system one 
may define an instantaneous temperature T(t) 
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where Nf  is the number of degrees of freedom. T(t) does not coincide with T used to 
generate velocity distribution in Eq. (1), and it fluctuates between successive generations 
of random velocities. To keep the temperature T(t) = T,  one can rescale the velocities as 
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This temperature control method does not reproduce canonical ensemble. To show this 
let us compute the variance in temperature in canonical system 
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where (we set kB=1) B
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The averaging in Eqs. (6,7) is done using Eq. (1) by considering multiple realizations of 
the simulation system of N(=Nf//3) atoms.  Since Eq. (7) can be written as  
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we obtain  
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In writing Eq. (9) we took into account that 
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Thus, even in canonical system instantaneous temperature T(t) does fluctuate and fixing it 
(=T) seriously perturbs the canonical ensemble. In fact, velocity rescaling does not 
reproduce any known type of ensemble. It is usually used for equilibration purposes, 
when a new distribution of velocities (Eq. (1)) is generated every step and scaled using 
Eq. (4) to a prescribed temperature. Rescaling of velocities alone (without generating a 
velocity distribution using Eq. (1)) does not equilibrate the system well, because it tends 
to prolong existing temperature differences (between solvent and solute).  
 
NAMD uses several keywords to control velocity rescaling (Box 1). The keyword 
rescaleFreq specifies the frequency (in steps) of rescaling velocities, and the keyword 
rescaleTemp sets the target temperature. The keyword temperature determines the 
temperature, at which the initial velocity distribution (Eq. (1)) is drawn.  
 
 
III. Weak coupling with heat bath 
 
 
Temperature may also be controlled using the method of weak coupling to a thermal bath 
proposed by Berendsen (J. Chem. Phys. 81, 3684 (1984)). In this case coupling either 
removes or adds energy to the system to maintain constant temperature. The velocities 
are scaled at each step so that the rate of temperature change is given by 
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where T0 is the target temperature. Eq. (12) implies that if T<T0, the temperature will 
increase, but if T>T0, the heat will be removed. Let the velocities be rescaled as 
vi,a’=λvi,a. Then the change in kinetic energy upon rescaling is 
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Eq. (13) can be converted to express temperature change as 
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Approximating dΤ/dt with ΔΤ/Δt  we get 
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which gives the relation between scaling factor λ, the time step Δt and the coupling 
constant (the time interval between heat exchanges with the bath) τ. If Δt<<τ, then Eq. 
(15) implies that no rescaling takes place and we recover microcanonical ensemble. If 
Δt=τ, then the standard velocity rescaling occurs (Section II). The usual compromise 
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value for τ is 0.4 ps, which results in modest temperature fluctuations. The Berendsen 
thermostat does not strictly fix the temperature, but leads to exponential relaxation of 
instantaneous temperatures to a target one. Also from physical viewpoint the coupling to 
heat bath can be viewed as addition of a friction term –γmv to the Newton equations of 
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There is no clear proof that Berendsen thermostat reproduces canonical distribution. 
Berendsen and coworkers have shown that weak coupling (τ > 0.01 ps) does lead to 
correct canonical averages, but still perturbs the fluctuations of various quantities. 
 
NAMD offers Berendsen thermostat as an extra option for temperature control. The 
keywords tCouple and tCoupleTemp switch the Berendsen coupling on and specify the 
bath temperature T0, respectively. The keywords tCoupleFile and tCoupleCol indicate 
the name of the PDB file and the specific column with the reversed value of the coupling 
constant 1/τ, respectively. The column may correspond to coordinate, occupancy, or 
temperature factor fields. The advantage of Berendsen thermostat is simplicity and easy 
control over temperature coupling.  
 
 
IV. Stochastic coupling 
 
 
A simple method for temperature control was proposed by Andersen (J. Chem. Phys. 72, 
2384 (1980)). In this method each atom at each integration step is subject to small 
probability to experience collision with heat bath. Let us denote the frequency of 
collisions as ν. If collisions are uncorrelated, then the probability of next collision event 
is given by a Poisson distribution P(t)=νexp(-νt). In the limit of small time steps Δt (i.e., 
<< 1/ν) the probability of collision is νΔt. If an atom collides with the heat bath, its 
velocity is drawn from a MB distribution. Importantly, the velocities of other atoms are 
not affected.  
 
It has been rigorously shown that by mixing deterministic MD with stochastic collisions 
Andersen thermostat creates a Markov process. Therefore, Andersen thermostat does 
correspond to canonical (NVT) ensemble. It is important to keep in mind that Andersen 
thermostat breaks the continuity of MD trajectories and does not preserve energy and 
momentum.  In fact, Andersen thermostat leads to a series of microcanonical simulations, 
which are randomly interrupted, when the system is transferred to a new energy level. 
The values of ν should be chosen as a result of a compromise between two factors. Rare 
collisions do not create sufficient temperature fluctuations and the system remains close 
to microcanonical. Too frequent collisions effectively turn Andersen scheme into velocity 
reassignment.  
 
The algorithm implementing Andersen thermostat is shown in Box 2 (p. 142 in Frenkel 
and Smit book), which shows that MD based on Andersen thermostat reproduces 
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canonical ensemble. The comparison of MD and analytical results demonstrates excellent 
agreement (Fig. 6.2 in Frenkel and Smit book). Of special importance is Fig. 6.3, which 
shows that diffusion coefficient depends on the collision frequency. Effectively, 
collisions with the heat bath decorrelate atoms’ velocities and reduce their diffusion 
coefficients. If collisions are rare (ν is small), the dependence of the average atom 
displacement Δr2(t) is close to a “true” one, but increasing the frequency progressively 
leads to slower diffusion behavior. Therefore, one cannot use Andersen thermostat to 
compute dynamic quantities, such as lifetime of water hydrogen bonds. NAMD does not 
implement Andersen thermostat as an option for temperature control.  
 
 
V. Nose-Hoover method 
 
 
Nose and Hoover proposed a method that generates a canonical ensemble (J. Chem. Phys. 
81, 511 (1984); Mol. Phys. 52, 255 (1984); Phys. Rev. A 31, 1695 (1985)). The sketch of 
the Nose-Hoover approach is as follows. Let us add to the energy function a fictitious 
degree of freedom (coordinate) s, which represents a heat bath. The potential energy 
associated with s is (3N+1)kBT ln s, where 3N+1 is the total number of degrees of 
freedom. The kinetic energy related to s is Q(ds/dt) /2, where Q plays the role of 
fictitious mass. Consider an extended system, which includes a real system and a heat 
bath represented by s, and assume that the extended system is microcanonical. It can be 
shown that MD simulations of extended system produce a canonical ensemble in the real 
system due to heat exchange between fictitious degree of freedom and real system. The 
coupling between the two is controlled by Q. Small Q leads to high frequency oscillations 
of energy coupled with s and frequent collisions with the real system. In the limit of large 
Q microcanonical ensemble of real system is retained. The notable complication of Nose-
Hoover thermostat is that time interval in the extended system Δt’ does not correspond to 
the real time Δt and must be scaled according to Δt=sΔt’.  

B
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This complication results in nonuniform integration step in the dynamics of real system. 
Nose-Hoover thermostat producing NVT ensemble is most often used in Charmm MD 
program, and is not implemented in NAMD.  
 
An important method of temperature control is Langevin dynamics. In NPT ensemble, 
pressure and temperature are kept constant. The NPT ensemble is used for comparison of 
MD simulations with experiments.  Temperature in NPT ensemble is controlled using 
Langevin method. The NPT ensemble is implemented in NAMD.  
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Box 1. Example of the NAMD configuration file for Aβ11-42 dimer  
  
# input system......  
structure  ab_m2_dimer_solv.psf                 
coordinates      ./output/ab_quench04149.coor    
bincoordinates   ./output/abi_quench04149.coor    
binvelocities     ./output/abi_quench04149.vel     
  
#..force field........................  
paratypecharmm on                      
parameters  par_all22_na.inp               
parameters  par_all22_prot.inp            
exclude  scaled1-4                 
1-4scaling       1.0                      
dielectric       1.0                      
switching  on                         
switchdist  8.0                    
cutoff  12.0              
pairlistdist 13.5                  
margin  0.0                    
stepspercycle 20                    
rigidBonds      all                    
rigiΔΤolerance  0.00001                 
rigidIterations 100   
  
# Ewald EL..........................  
PME             on                         
PMETolerance    0.000001               
PMEGridSizeX    32                   # grids for fast evaluation in Fourier sum     
PMEGridSizeY    32                   # note that 32=2

5

PMEGridSizeZ    32                   #  
  
#integrator ............  
timestep 1.0                               
fullElectFrequency  4                     
  
#output....................  
outputenergies 1000                    
outputtiming 1000                     
binaryoutput no                      
outputname output/ab_quench04150     
restartname     output/abi_quench04150  
restartfreq     10000                        
binaryrestart   yes                            
DCDfile         output/ab_quench04150.dcd    
dcdfreq  1000                       
  
#MD protocol..............  
seed             32204150                   
numsteps        40000                   
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temperature   300                       # temperature of initial MB velocity distribution  
 
#...........Velocity rescaling….. 
rescaleFreq     1    # frequency of velocities’ rescaling 
rescaleTemp    300   # target temperature for velocity rescaling 
 
#……………….OR Berendsen thermostat……………. 
tCouple  on   # turning Berendsen thermostat on 
tCoupleTemp  300   # target temperature  
tcoupleFile      ab_Berendsen.pdb # name of the pdb file with coupling constants 
tCoupleCol      O   # column in pdb file with coupling constants 
……………………………………………….. 
 
#reassignFreq 1                        
#reassignTemp   300  
#reassignIncr 0.001                    
#reassignHold 300                       
  
# periodic boundary conditions......  
cellBasisVector1   57.8   0.0  0.0             
cellBasisVector2    0.0  57.8  0.0               
cellBasisVector3    0.0   0.0 57.8                
cellOrigin                0.0   0.0  0.0               
wrapWater          on  
 
 
 

Box 2. Verlet integrator with Andersen thermostat 
 
program MDAndersen 
 
call init(temp)     # initialization of velocities and coordinates 
call force(f,en)     # computation of forces 
t=0 
do while(t< tmax) 
  call integrate(1,f,en,temp)   # applying Verlet algorithm for new positions 
  call force(f,en)    # getting forces for new position 
  call integrate(2,f,en,temp) # getting new velocities and attempting          

# collision   
  t = t + dt 
enddo 
stop 
end program MDAndersen 
 
subroutine integrate(switch,f,en,temp) 
 if(switch == 1)then    # first pass through the Verlet algorithm 
   do i=1,npart 
      x(i) = x(i) + dt*v(i)+dt*dt*f(i)/2  # new positions 
      v(i) = v(i) + dt*f(i)/2   # first half of new velocities  
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   enddo 
 elseif(switch == 2) then   # second pass through Verlet algorithm 
  tempa = 0     # current temperature initialization 
  do i=1,npart      
    v(i) = v(i) + dt*f(i)/2    # new velocities  
    tempa = tempa + v(i)*v(i)   # getting current temperature 
  enddo 
  tempa = tempa / npart 
  do i=1,npart     # applying Andersen thermostat 
     if(ranf() < nu*dt) v(i) = gauss()  # on particle I with the probability n*ΔΤ 
  enddo # velocities are drawn from Gaussian          

# distribution 
  endif 
  return 
end subroutine integrate 
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