
Computation of non-bonded interactions: Part 1 
 
Computation of non-local (non-bonded) interactions in the potential function Ep

non-local 

scales with the number of atoms as N2. For the large molecular systems which contain 
thousands of atoms this scaling makes the computation of Ep

non-local prohibitively slow. To 
reduce the computational costs several methods have been developed. These include (i) 
modifications of potential functions or forces (cut-off methods), (ii) generation of 
neighbor lists, and (iii) Ewald or multipole methods (for electrostatic interactions). In this 
lecture the first two approaches are discussed.  
 
 
I. Cut-off methods 
 
 
Generally the non-bonded potentials, such as van-der-Waals (represented by the Lennard-
Jones function) or electrostatic interactions are assumed spherically symmetric. 
Therefore, it is possible to modify the original non-bonded potential in such a way that it 
would decay faster at large distances r and become zero at some finite r. Three 
modification techniques are commonly used, which are based on truncation, switch, and 
shift functions. All three must satisfy several requirements: 
 

1. potential (or force) should remain minimally perturbed by modifying function at 
small distances; 

 
2. Modified potential (or force) must remain a smooth function. This requirement is 

crucial for molecular dynamics, Langevin dynamics, or minimization procedures. 
Violation of this requirement may result in catastrophic instability of the 
integration of equation of motions due to sudden variation of forces; 

 
3. Because energy is conserved in standard molecular dynamics simulations (NVE 

ensemble), modification of potentials or forces should not lead to noticeable 
energy drift.  

 
The general implementation of cut-off methods takes on the form 
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where S(r) is a function, which modifies the pairwise non-bonded potential Vij for a pair 
of atoms i and j (The meaning of the terms in Eq. (1) is discussed in the previous lecture).   
 
Truncation function: The most simple implementation of cut-off method is based on 
truncation of non-bonded interactions at r=a. In this case S(r) =1 for r ≤ a, and S(r)=0 at 
r > a. In general, truncation creates a discontinuity in the potential, which, strictly 
speaking, results in the infinite force at r=a. Because truncation violates all the 
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conditions outlined above (except (1)), its use is generally not recommended. However, if 
the potential function is already close to zero at r=a, the numerical error associated with 
the truncation is small. MOIL molecular dynamics package uses the truncation method 
for van-der-Waals interactions with the typical value of a=9 Å. The ratio 
VLJ(r=a)/VLJ(r=rmin) (where rmin is the location of minimum in Lennard-Jones potential) 
for OPLS force field used in MOIL is about 0.03 for a=9Å (assuming the interactions 
between Cβ  carbons).  
 
Switching function: One can use a smooth function, which gradually brings the potential 
to zero in the interval (a,b). One possible choice for S(r) is 
 
 
S(r) = 1, r < a 
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S(r) = 0, r > b 
 
 
The first derivative of S(r) becomes zero at r=a and r=b. NAMD utilizes multistep 
integration, therefore the switching function in Eq. (2) is applied to modify van-der-
Waals forces (not the potentials itself). Because S(r) is a smooth function, it gradually 
reduces the amplitude of van-der-Waals interactions from “full strength” at r=a to zero at 
r=b. Similar to van-der-Waals interactions S(r) is applied to electrostatic forces and not 
to the potential itself. Using S(r) the electrostatic forces FEL in NAMD are partitioned 
into local and non-local contributions as 
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The first term in Eq. (3) represents the local part of electrostatic forces, and the second 
term gives the long-range part. The separation of electrostatic forces in NAMD is used in 
multistep algorithm.  Local part of FEL is computed every integration step, but the non-
local part is evaluated periodically using Ewald summation. The typical values for a and 
b are 8 and 12 Å. The switching functionality in NAMD is controlled by the keyword 
switching (see the NAMD configuration file in Box 1). The keywords switchdist and 
cutoff specify a and b values, respectively. It is important to remember that switching of 
electrostatic forces is performed in conjunction with the application of particle mesh 
Ewald technique (key word PME must be set on). If PME is off, then the keyword 
switching actually implies shifting procedure for electrostatic interactions.  
 
Even though the switching function S(r) is smooth, it still introduces a transient increase 
in the absolute value of the derivative of the potential function that leads to artificial 
forces. To minimize their impact the width of the switching interval b-a must be 
sufficiently large (e.g., > 4 Å). CHARMM uses the same switching function for both, 
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van-der-Waals and electrostatic interactions. In contrast, MOIL utilizes switching 
function only for partitioning the electrostatic interactions.   
 
Shift functions: As an alternative to switching functions, one may use shift functions, 
which slightly shift the potential in the entire range of r to intersect it with the x axis. The 
specific implementation of shift function differs for electrostatic and van-der-Waals 
interactions. For electrostatic interactions two shift functions are introduced 
 

( )
2

2

2

1 1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

b
rrS (r ≤ b)        (4) 

 
and 
 
 

( )
2

2 1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

b
rrS ( r ≤ b)        (5) 

 

For r > b both shift functions are zero. However, the force computed for S1(r) contains a 
term, which depends on r, whereas S2(r) adds a constant (independent on r) term to the 
force.  Both shifted potential functions and their first derivatives become zero at r=b. 
NAMD uses S1(r) function to shift electrostatic interactions, when Ewald method is not 
selected (PME off). In this case the keyword switching implies the application of shift 
function. CHARMM uses both S1(r) and S2(r) functions, while MOIL does not use any of 
the shift functions.  

Another form of shift function is used for van-der-Waals interactions. The potential is 
modified as 
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The coefficients Cij and Dij are chosen from the conditions VLJ(r=b)=0 and 0=
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These conditions result in . Note that 

when only a constant is added in Eq. (6), the derivative 
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would not become zero at 

r=b. Shifting of van-der-Waals interactions is not used in NAMD or MOIL, but is 
implemented in CHARMM.  
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II. Neighbor lists 
 
 
Cut-off methods alone do not save computational time, because they require calculation 
of the distances between all the pairs of atoms in order to make an appropriate 
modification of the non-bonded potential. Therefore, the computations still scale as N2. 
The additional, essentially bookkeeping technique, which significantly reduces the CPU 
time, is based on Verlet lists and consists of the following steps.  
 

1. For each particle i a list is generated, which includes all the particles that are 
found within the sphere rv > rc, where rc is the cut-off distance for non-bonded 
interactions. This list is called a Verlet list for a particle i. There are N Verlet lists 
created, and the positions of particles at the time of Verlet lists’ generation are 
saved.  

 
2. At each conformational update the check is made on whether a maximum 

displacement of any particle j (with respect to the stored position of the particle j 
at the time of Verlet list generation) exceeds rv -rc. If yes, one of the particles 
previously located outside the Verlet list may have moved within the cut-off 
distance rc of another particle. Note that this is necessary, but not sufficient 
condition for the appearance of a new particle in the sphere of rc radius around 
any other particle.  

 
As long as the displacement of particles remains small, the Verlet list is used to compute 
the pairwise interaction energy. Implementation of Verlet list is given in Algorithm 34 in 
Frenkel and Smit book. Note that the arrays nlist and xv contain the number of particles 
in the Verlet lists and the positions of particles at the time of generation of Verlet lists. 
The array list contains the particle indexes in the Verlet lists of all particles.   
 
The Verlet lists quickly become incomplete, because many particles enter or leave the 
buffer between the spheres of the radii rc and rv without triggering the new generation of 
the lists. However, the new lists are always created when a particle appears in the cut-off 
sphere of any other particle.  The computation of non-bonded interactions scales as N 
when Verlet lists are used and as N2 when new Verlet lists are created.  
 
In NAMD the generation of Verlet lists is performed periodically without computations 
of actual particle displacements.  The interval between Verlet lists generations is 
specified by the keyword stepspercycle. The default value is 20. The radius of the 
Verlet list sphere is given by pairlistdist (the default value is 13.5 Å). Therefore, NAMD 
tolerates certain inaccuracies in keeping track the particles in the cut-off spheres. To 
minimize these errors the optional pairlistspercycle parameter can used to force more 
frequent Verlet list generation.  
 
Another type of lists created to reduce N2 scaling in the computation of non-bonded 
interactions is the cell lists. The cell lists are generated by dividing the system into the 
cells of the size rn ≥ rc. For each cell the list of particles is made, which belong to a given 
cell. Then computation of non-bonded interactions for a particle i can be restricted only 
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to the particles in a given and immediately adjacent cells. Algorithm 37 in Frenkel and 
Smit book shows the generation of cell lists for one dimensional system (Box 3) and 
utilizes two arrays. The array hoc registers the last particle put into the list of particles for 
a given cell. The array ll (linked-list array) gives for a given particle the index of the 
previous particle that has been put into the list of the same cell. It is important to note that 
the generation of cell lists and the corresponding computation of non-bonded energies 
scale as N1 (Box 4).  
 
In practice, Verlet lists speed up the computations only if the number of particles in a 
Verlet list Nv << N, the total number of particles. For typical values of Lennard-Jones 
potential this condition is met for N exceeding approximately 100. The powerful 
approach is to create first cell lists and then generate Verlet lists based on existing cell 
lists that allows to reduce the overall scaling from N2 to N1. Practical implementation of 
cell and Verlet lists can use atom or group based approach. In atom based approach all 
atoms are treated individually, when they are assigned to lists. This approach potentially 
leads to instabilities, because atoms from the same group (e.g., belonging to the amide 
group, water molecule etc) may be assigned to different lists causing sudden force jumps. 
The group based approach takes into account the distribution of atoms over groups and 
allocates groups (not atoms) to cell or Verlet lists. In NAMD the groups are referred to as 
patches and hydrogens are always allocated to the same patch to which the donor atom is 
assigned. Note that CHARMM topology file top_all22_prot.inp defines the atom groups 
for each amino acid.  
 
The use of neighbor lists requires the application of interaction cut-offs. In NAMD 
neighbor lists are applied for short-range (van-der-Waals) non-bonded interactions, for 
which the scaling of computations becomes linear with N. For long-range (electrostatic) 
non-bonded interactions Ewald sums are typically used.  
 

Box 1. Example of the NAMD configuration file 
 
# input system...... 
structure ala2_solv.psf  
coordinates ./output/ala2_quench0100.coor   
bincoordinates ./output/ala2i_quench0100.coor  
binvelocities ./output/ala2i_quench0100.vel 
 
#..force field........................ 
paratypecharmm on  
parameters par_all22_na.inp  
parameters par_all22_prot.inp  
exclude scaled1-4 
1-4scaling 1.0     #for EL1-4 only 
dielectric 1.0  
 
switching on 
switchdist 8.0    # =a 
cutoff 12.0      # =b, applies to both for VdW and EL 
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pairlistdist 13.5 
margin 0.0  
stepspercycle 20     # frequency of updating non-bonded list 
rigidBonds all     # shake all Hs 
rigidTolerance 0.00001    # default value  
rigidIterations 100 
 
 
# Ewald EL.......................... 
PME on      # turn on Ewald sum 
PMETolerance 0.000001    # default value  
PMEGridSizeX 32     # as in Moil 2^5 
PMEGridSizeY 32     # as in Moil 2^5 
PMEGridSizeZ 32     # as in Moil 2^5 
 
#...peptide CM restraint.... 
#constraints on 
 
 
#integrator ............ 
timestep 1.0  
fullElectFrequency 4  
 
#output.................... 
outputenergies 1000    # frequency of writing E to stdout 
outputtiming 1000     # frequency of writing time to stdout 
binaryoutput no     # don't use binary files for final output 
outputname output/ala2_quench0101  # where to save final coord andvel 
restartname output/ala2i_quench0101 
restartfreq 10000     # frequency of writing restart coord  
      # and vel out 
binaryrestart yes     # no binary files for restart 
DCDfile output/ala2_quench0101.dcd  # trajectory filename  
dcdfreq 1000     # frequency of writing to dcdfile 
 
#MD protocol.............. 
seed 3190101  
numsteps 1000000     #steps in simulations  
#temperature 300     # generate initial distr. of vel for T  
#rescaleFreq 1 
#rescaleTemp 300 
#reassignFreq 1     # frequency of reassigning of temp 
#reassignTemp 300 
#reassignIncr 0.001    # T increment  
#reassignHold 300     # final T after heating 
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# periodic boundary conditions...... 
cellBasisVector1 34.7 0.0 0.0  
cellBasisVector2 0.0 34.7 0.0  
cellBasisVector3 0.0 0.0 34.7  
cellOrigin 0.0 0.0 0.0  
wrapWater on  
 
 
 

Box 2. Generation of Verlet lists 
 
 
subroutine new_vlist 
do i=1,npart 
 nlist(i) = 0   #initializing the Verlet lists 
 xv(i) = x(i)   # storing the positions of particles in xv 
enddo 
do i=1,npart-1    # loop over all pairs of particles 
 do j=i+1,npart    #  
 xr = x(i)-x(j) 
 if(abs(xr) < rv)then  # determining if the particle j belongs to the  
  nlist(i) = nlist(i) + 1 # Verlet list of i and vice versa 
  nlist(j) = nlist(j) + 1 # advancing the counters in Verlet lists   
  list(i,nlist(i)) = j  # storing the particles i and j in 
respective 
  list(j,nlist(j)) = I  # Verlet lists  
 endif 
 enddo 
enddo 
return 
end subroutine 
 
 
Here, npart is the number of particles, and the array x contains the current positions of 
particles.  
 
 
 

Box 3. Generation of the cell lists 
 
 
subroutine new_nlist(rc) 
 
rn=box/int(box/rc)    # setting the size of cells to rn ≥ rc 
do icel=0,ncel-1 
 hoc(icel) = 0    # initializing hoc arrays 
enddo 
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do i=1,npart     # assigning the particles to cell lists 
 icel = int(x(i)/rn)   # based on hoc and linked-list array ll 
 ll(i)=hoc(icel) 
 hoc(icel)=i 
enddo 
return 
end subroutine  
 
 
Here, box is the system size, rc is the cut-off distance, ncel is the number of cells, and 
npart is the number of particles. 
 
 
 
 

Box 4. Calculation of energy using cell lists 
 
 
subroutine ennlist 
 
en=0 
icel = int(xi/rn)   # cell number for a particle i 
do ncel = 1, nneigh   # loop over adjacent cells 
 jcel = neigh(icel,ncel) # adjacent cell number from the list neigh() 
 j=hoc(jcel)   # first particle in the cell  
 do while (j > 0) 
  if(i/=j) en=en+enij(i,xi,j,xj) 
  j=ll(j)    # get a new partcle from the linked-list ll 
     enddo 
enddo 
return 
end subroutine 
 
 
 
 
Homework: User guide for NAMD is at  http://www.ks.uiuc.edu/Research/namd/current/ug/
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