
Computation of non-bonded interactions: Part 2  
  
 
I. Periodic boundary conditions  
  
 
In most cases the purpose of simulations is to study the properties of an infinite molecular 
system at a given concentration, temperature etc. The computational power of modern 
computers allows us to simulate the systems of up to about millions of degrees of 
freedom. Although this number is large, it is still well below the thermodynamic limit 
(~Avogadro number 10

23
), which would correspond to the bulk properties. Therefore, 

without using special tricks the simulation system would be confined to the finite volume, 
if the hard walls surround the system, or appear as a bubble of atoms in vacuum. In 
general, the fraction of atoms on the surface relative to the total number of atoms scales 
as N

-1/3
. Therefore, only for the system of 10

6
 atoms this fraction is of an order of 0.01.  

 
The walls confining the system lead to a number of so called finite size effects that distort 
bulk properties. For example, solvated protein in a cavity with inert walls would 
experience hydrophobic adsorption on the walls. The common way to avoid finite size 
effects is to consider periodic boundary conditions (PBC). Consider a molecular system 
(e.g., protein and solvent) in the cubic box with the dimensions LxLxL (Figure 3.2 in 
Frenkel and Smit book). Replicate the system and place its exact copies in all the 
directions to fill the entire 3D space. The original system is called unit cell, all other cells 
are called images. The atom in a unit cell may now interact with other atoms from the 
unit cell as well as the atoms from system’s images. The total non-bonded energy is given 
by  
  

( ),
2
1

,,
∑ +=

nji
ijtot LnrVE

r

rr  

 
where the sum is taken over all pairs of atoms i and j as well as all images. Each image is 
specified by the vector n  (with the integer components).   In practice, the cut-offs in the 
non-bonded interactions limit the sum over 

r

nr  to nearest images.   
  
There are few important rules that must be followed when using PBC for proteins:  
 

1. In order to prevent self-interaction of a protein (between protein copies in neighboring 
images), the sufficient number of water layers must be used. The number of water 
molecules between the protein and the unit cell boundary must be at least 3 (distance of 
~10 Å). This will create a minimum water buffer of about 20 Å between protein images.  

 
2. The size of the unit cell L must be more than twice the cut-off distance rc. This condition 

eliminates correlated fluctuations that atoms may experience due to simultaneous 
interactions with two images of a given particle.   
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The most common geometry of the unit cell is cubic, but more complicated shapes are 
also used, such as truncated octahedron, hexagonal prism etc. In general, the larger the 
number of facets and the closer the shape is to a spherical one, the more efficient 
salvation of a protein becomes. Note that the sphere itself cannot be used for a unit cell. It 
is also important to be aware that PBC introduce spurious correlated fluctuations with the 
wavelength of the order of L. Furthermore, the PBC lead to anisotropic radial 
distributions of densities, which are manifested in the radial correlation functions g(r).     
  
The example of a unit cell for solvated Aβ11-42 peptide dimer is displayed in Fig. 1.  
 
  

 
 
Fig. 1 Solvated Aβ11-42 peptide dimer in a large unit cell. The waters colored in blue solvate 
a peptide dimer shown in green, dark blue, yellow, and red. The dimensions of the unit 
cell are 57.8 Åx57.8 Åx57.8 Å. It contains 5957 molecules (mostly water)-18643 atoms.   
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The NAMD configuration file is shown in Box 1. Two keywords determine the set up of the unit 
cell. cellBasisVector1(2,3) are the components of the three basis vectors, which specify the 
geometry of the unit cell and its dimensions; cellOrigin is the position of the unit cell center.   
  
  
II. Ewald method for computation electrostatic interactions.   
 
  
Ewald method provides the opportunity to compute electrostatic interactions without 
using cut-off distances and still avoiding explicit enumeration of all atom pairs i and j. 
The general idea of the method and its implementation details are as follows. Consider 
the system of N point charges (net charge is zero) with periodic boundary conditions 
(assume cubic unit cell with the dimensions LxLxL). The electrostatic energy is given by  
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is the electrostatic potential created by the charges j distributed on all unit cell images 
(excluding the case i=j). It is known that such infinite series as in Eq. (2) are poorly 
converging. Ewald method gets around this problem by considering two sets of 
spherically symmetric charge clouds. The screening charge clouds have the signs 
opposite to the charges z

i
 and are centered at the position of the charges z

i
. The 

compensating charge clouds have exactly the same charge distribution as the screening 
ones do, but are assigned the opposite sign. For simplicity, the distributions are assumed 
to be narrow Gaussians. In this case, the screening clouds partially compensate the point 
charges at the point r and ensure fast decay of total electrostatic potential.  
 
The idea of the Ewald method is to compute the electrostatic energy as the sum of three 
components. The first is the interaction of point charges with the compensating charge 
clouds. Because the distribution of compensating charge clouds is periodic, this term is 
calculated using Fourier transform in k space. The second term is associated with the 
interaction of point charges with their own compensating charge clouds. The third term is 
the interactions of point charges with the other point charges partially screened by the 
screening charge clouds. The second and the third terms are computed in real space (no 
Fourier transform involved). Because the introduced charge clouds are narrow, all terms 
are converging. The final expression for E

EL
 takes on the form  
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where the Fourier part (interactions with compensating clouds)  
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the self-interaction term is  
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and the real-space term (interactions with partially screened charges) is  
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In Eqs. (4-6) α determines the width of Gaussian distribution of screening and 
compensating charge clouds, V is the volume of the unit cell.   
  
The value of α also determines the convergence of sums over nr  and k

r
in Eqs. (4,6). The 

larger α becomes, the faster real-space term converges (for large α only n=0 component 
survives). However, α has the opposite effect on Eq. (4). Large α causes slower 
convergence in the sum over k

r
. The accuracy of third term computation is determined by 

α and its typical compromise value is about (10/L)2. Also the trigonometric functions in 
Eq. (4) are usually computed using fast interpolation methods, which require the 
evaluation of the function on the grid points within the interval L, the total number of 
which should be equal to the product of small integer numbers (2, 3 or 5). The rule of 
thumb is to choose the grid in such a way that the interval between grid points is less than 
2 Å. For example, in Box 1 for L=57.8 Å the number of grid points is 2

5
, which gives the 

grid interval of L/2
5
 ≈1.8 Å. After proper selection of α and mesh interpolation the final 

scaling of Ewald method is N log N.   
  
NAMD offers Ewald method for computing electrostatic interactions. The basic 
keywords are as follows (Box 1). To turn on the Ewald sums the keyword PME must be 
set to on. The keyword PMETolerance sets the accuracy in the computation of real-
space term (Eq. (6)). The keywords PMEGridSizeX(Y,Z) specify the number of grid 
points in three directions. The keyword PMEInterpOrder determines the quality of 
function interpolation between grid points. In most cases, only PMEGridSizeX(Y,Z) 
should be adjusted depending on the system size, all other parameters may be set at their 
default values that should provide reasonable performance.   
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As described in the previous lecture the keyword switchdist and cutoff determine the 
interval, over which the direct computation of electrostatic interactions is replaced with 
Ewald sum.   
 
  

Box 1. Example of the NAMD configuration file for Aβ11-42 dimer 
  
 
 
# input system......  
structure  ab_m2_dimer_solv.psf                 
coordinates      ./output/ab_quench04149.coor    
bincoordinates   ./output/abi_quench04149.coor    
binvelocities     ./output/abi_quench04149.vel     
 
  
#..force field........................  
paratypecharmm on                      
parameters  par_all22_na.inp               
parameters  par_all22_prot.inp            
exclude  scaled1-4                 
1-4scaling       1.0                      
dielectric       1.0                      
switching  on                         
switchdist  8.0                    
cutoff  12.0              
pairlistdist 13.5                  
margin  0.0                    
stepspercycle 20                    
rigidBonds      all                   
rigidTolerance  0.00001              
rigidIterations 100  
 
  
# Ewald EL..........................  
PME             on                      #  turning on PME   
PMETolerance    0.000001            #  accuracy of computing real-space term  
PMEGridSizeX    32                   # grids for fast evaluation in Fourier sum     
PMEGridSizeY    32                   # note that 32=2

5

PMEGridSizeZ    32                   #  
  
  
#integrator ............  
timestep 1.0                               
fullElectFrequency  4                     
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#output....................  
outputenergies 1000                    
outputtiming 1000                     
binaryoutput no                      
outputname output/ab_quench04150     
restartname     output/abi_quench04150  
restartfreq     10000                        
binaryrestart   yes                            
DCDfile         output/ab_quench04150.dcd    
dcdfreq  1000                       
  
#MD protocol..............  
seed            32204150                   
numsteps        40000                   
#temperature 300                       
#rescaleFreq     1  
#rescaleTemp     runtemp  
#reassignFreq 1                        
#reassignTemp   300  
#reassignIncr 0.001                    
#reassignHold 300                       
  
# periodic boundary conditions......  
cellBasisVector1   57.8   0.0  0.0             # components of the unit cell basis 
vectors     
cellBasisVector2    0.0  57.8  0.0             #   
cellBasisVector3    0.0   0.0 57.8             #   
cellOrigin                0.0   0.0  0.0             # position of the unit cell center  
wrapWater          on  
  
  
  
  
Reference: Annual Review of Biophysics and Biomolecular Structure 28, 155 (1999).
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