
Constraints in molecular dynamics simulations 
 
 
I. Lagrangian formulation of classical mechanics  
 
 
The laws of classical mechanics can be expressed using the so called Lagrangian 
formulation. This formalism is based on the notion of action S, which is defined as an 
integral over the trajectory fragment between the time moments t1 and t2 
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where )()(),( rErErrL potkin
r&r&rr −≡  is the Lagrangian. The Newton’s equations of motions 

can be derived for any actual trajectory followed in MD by requiring that S reaches 
extremum for the actual trajectory. This requirement results in the equation 
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from which the familiar Newton’s equation of motion follows. It follows from the 
Lagrangian approach that forces can be computed from the derivatives of the potential as 
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II. Incorporating constraints into molecular dynamics simulations 
 
 
Because fluctuations in bond lengths cannot be correctly described by classical physics, 
the bond potential is often replaced with the constraints, which maintain the constant 
bond lengths. Consider a polypeptide chain and set the requirement that all backbone 
bond lengths are equal to d. This is equivalent to introducing N-1 constraints 

. The Lagrangian, which takes into account the constraints, is 22
1, dr iik −= +σ
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The second term in Eq. (3) can be viewed as an additional potential due to the presence of 
constraints with unknown Lagrangian factors λj. By using Eq. (3) one can write the 
equations of motions as 
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Denote the additional forces (second term in Eq. (4)) as  
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Let us now consider a singe constraint for a single bond in a diatomic molecule. For the 

constraint )(
2
1 22 dr −=σ , the corresponding force (Eq. (5)) is a centripetal 

force rG rr
λ−= . In order to determine λ one can treat one of the constrained atoms as 

rotating on a circular orbit around the other one. From this analogy λ=mω2 (where ω is 
the angular frequency) and rmG rr

2ω−= . Note that the force G is the only force acting on 
the rotating atom (F=0). Applying the Verlet algorithm and assuming that the constraint 
is satisfied at t and t-Δt, one can show that the constraint at t+Δt is maintained with the 
accuracy 
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The computed trajectory will exponentially diverge from the circular orbit. Therefore, the 
constraints must be satisfied exactly (not simply within the accuracy of Verlet algorithm).  
 
Consider a polypeptide chain of N atoms and assume that N-1 bond lengths are 
constrained to the distance d.  Using Verlet algorithm one can write the coordinates of an 
atom i at t+Dt as 
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where is the kth constraint imposed between the atoms i and i+1. Let us 

assume that the deviation between unconstrained trajectory 

22
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and the one satisfying the constraint )( ttri Δ+
r  is small (prime indicates unconstrained 

trajectory). Using )(')( ttrttr ii Δ+−Δ+
rr as a small parameter we expand σk(t+Δt) keeping 

only linear terms as  
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Setting the requirement that the constraints must be satisfied at t+Δt , we rewrite Eq. (8) 
as  
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Eq. (9) is a set of N-1 linear equations with respect to unknown Lagrangian factors λl. 
Although these equations can be solved analytically, in practice inverting the matrix for 
the system of N-1 linear equations is computationally expensive and approximate 
methods should be used. For a small protein of about 50 amino acids, which contains 
roughly about 500 bonds, 500 λl factors must be determined.  
 
 
III. SHAKE algorithm 
 
 
To devise a numerical method for adjusting the conformations of protein to satisfy bond-
length constraints, assume that constraints are applied iteratively in order from k=1 to 
k=N-1. Consider a single constraint  and rewrite Eqs. (7,9) accordingly  22
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Therefore, the Lagrangian multiplier for the single constraint k is  
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Generally, because the kth constraint depends on the coordinates of atoms i and i+1, only 
two terms are present in the sum in the denominator of Eq. (12). The sign of λk is 
determined by the sign of σk‘(t+Δt), i.e, if the bond length is stretched, the force G is 
negative acting to reduce the bond length. Once λk is computed, the corrected positions of 
atoms i and i+1 at t+Δt are obtained using Eq. (10).  
 
In practice, the iterative procedure, which adjusts the coordinates of atoms after each 
“unconstrained” iteration of Verlet algorithm consists of the following steps: 
 

1. Iterate equation of motions using Verlet algorithm to get the unconstrained 
coordinates )(' ttri Δ+

r for all atoms.  
2. Select kth constraint (acting on atoms i and i+1) and compute the factor λk using 

Eq. (12), then adjust the coordinates of atoms i and i+1 using Eq. (10).  
 
3. Select a new constraint k+1 (acting on the atoms i+1 and i+2) and use the 

coordinates   (step 2) and )(1 ttri Δ++

r )('2 ttri Δ++

r  to compute the factor λk+1. Both 
coordinates are considered as unconstrained by the k constraint. Adjust the 
positions of atoms i+1 and i+2 using Eq. (10).  
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4. Repeat the procedure for other constraints, considering one constraint at a time.  
5. Start a new iteration from the first constraint using the positions of atoms 

computed during the previous iteration (steps 2-4). Several iterations are usually 
needed, because each application of the k+1 constraint partially undoes the 
adjustment performed by the kth constraint.  

 
6. The number of iterations is determined by the desired accuracy in keeping the 

bond lengths constant.  
    
This iterative scheme is referred to as SHAKE algorithm developed by Berendsen and 
coworkers (J. Comp. Phys. 23, 327 (1977)). NAMD uses SHAKE algorithm to constrain 
bond lengths.  
 
The following keywords specify the performance of SHAKE (Box 1). If rigidBonds is 
set to all, all bonds involving light atoms (hydrogens) are constrained. The keyword 
rigidTolerance specifies the tolerance of bond length convergence (the default value is 
10-8 Å). If the difference between the bond length adjusted by SHAKE and the target 
length d is less than the tolerance, SHAKE iterations are stopped. The keyword 
rigidIterations (the default value is 100) determines the maximum number of SHAKE 
iterations. Typically SHAKE converges within about 10 iterations.  
 
An important advantage of using SHAKE is the possibility to select longer integration 
steps as compared to the molecular dynamics without constrained bonds.  
 
 

Box 1. Example of the NAMD configuration file for Aβ11-42 dimer  
 
# input system......  
structure  ab_m2_dimer_solv.psf                 
coordinates      ./output/ab_quench04149.coor    
bincoordinates   ./output/abi_quench04149.coor    
binvelocities     ./output/abi_quench04149.vel     
  
#..force field........................  
paratypecharmm on                      
parameters  par_all22_na.inp               
parameters  par_all22_prot.inp            
exclude  scaled1-4                 
1-4scaling       1.0                      
dielectric       1.0                      
switching  on                         
switchdist  8.0                    
cutoff  12.0              
pairlistdist 13.5                  
margin  0.0                    
stepspercycle 20                    
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rigidBonds      all                   # apply SHAKE to all hydrogens 
rigidTolerance  0.00001          # maximum difference between adjusted and 
assigned    
                                                # bond lengths in Å 
rigidIterations 100    # maximum number of SHAKE iterations 
  
# Ewald EL..........................  
PME             on                      #  turning on PME   
PMETolerance    0.000001            #  accuracy of computing real-space term  
PMEGridSizeX    32                   # grids for fast evaluation in Fourier sum     
PMEGridSizeY    32                   # note that 32=2

5

PMEGridSizeZ    32                   #  
  
#integrator ............  
timestep 1.0                               
fullElectFrequency  4                     
 
#output....................  
outputenergies 1000                    
outputtiming 1000                     
binaryoutput no                      
outputname output/ab_quench04150     
restartname     output/abi_quench04150  
restartfreq     10000                        
binaryrestart   yes                            
DCDfile         output/ab_quench04150.dcd    
dcdfreq  1000                       
  
#MD protocol..............  
seed            32204150                   
numsteps        40000                   
#temperature 300                       
#rescaleFreq     1  
#rescaleTemp     runtemp  
#reassignFreq 1                        
#reassignTemp   300  
#reassignIncr 0.001                    
#reassignHold 300                       
  
# periodic boundary conditions......  
cellBasisVector1   57.8   0.0  0.0             # components of the unit cell basis 
vectors     
cellBasisVector2    0.0  57.8  0.0             #   
cellBasisVector3    0.0   0.0 57.8             #   
cellOrigin                0.0   0.0  0.0             # position of the unit cell center  
wrapWater          on  
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