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Steady progress has been made in the field of ab initio protein
folding. A variety of methods now allow the prediction of
low-resolution structures of small proteins or protein fragments
up to approximately 100 amino acid residues in length. Such
low-resolution structures may be sufficient for the functional
annotation of protein sequences on a genome-wide scale.
Although no consistently reliable algorithm is currently
available, the essential challenges to developing a general
theory or approach to protein structure prediction are better
understood. The energy landscapes resulting from the
structure prediction algorithms are only partially funneled to the
native state of the protein. This review focuses on two areas of
recent advances in ab initio structure prediction — improvements
in the energy functions and strategies to search the caldera
region of the energy landscapes.
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Abbreviations
CASP Critical Assessment of Structure Prediction
PDB Protein Data Bank
rmsd root mean square deviation
UNRES united residue

Introduction
The prediction of a protein’s structure and folding
mechanism from knowledge only of its amino acid
sequence has been described as the determination of the
second half of the genetic code [1]. Because of its importance
for both practical and theoretical purposes, this challenge
has been steadily pursued for over a decade, a pursuit
that has yielded a wide variety of novel computational
techniques and much progress. The approaches used to
predict protein structure range from comparative modeling
using a homologous protein that already exists in the
structural databases to ab initio folding, which results in
a novel fold. In between these two extremes is the
technique of threading, a method of fold recognition
whereby one attempts to construct a model of the protein
using as a template the structure of a protein in the PDB
that has little or no obvious sequence relation to the target
protein. These definitions are somewhat vague and, in the
case of very low sequence identity, the distinction between
threading and ab initio folding becomes blurred as virtually
all successful ab initio methods utilize information from the
sequence and structural databases in some form. Indeed,
the development of techniques that make use of regions of

local similarity between globally dissimilar proteins is one of
the areas that has seen dramatic recent progress [2••,3,4•].

The three approaches mentioned above also define the
categories of the Critical Assessment of Structure
Prediction (CASP) experiments, which take place every
two years. These community-wide blind tests of prediction
methods are useful to gauge the progress of the field. To
date, the most successful method for structure prediction
is homology-based comparative modeling. Advances in
homology modeling and threading have been recently
reviewed [5]; we will concentrate here on the recent
progress in ab initio protein folding methods [6].

Often, the term ab initio is interpreted to mean to start
with potentials that are based entirely on physiochemical
interactions, such as the empirical potentials used in
CHARMM and AMBER. Although there has been
progress in the use of full-atom simulations with explicit
and implicit solvent models to predict the folding of small
peptides and to discriminate between the native state and
static decoy sets (van Gunsteren and co-workers, this issue,
pp 190–196; [7•]), a more practical use has been as an
adjunct to reduced-model ab initio protocols [8••]. As the
most successful prediction methods all use structural
information to some degree, in this review we will strictly
use the term ab initio to mean to start without knowledge
of globally similar folds and to produce a structure that has
a novel fold. With this more general definition, we include
both statistics- and physics-based energy functions, which
derive the parameters appearing in their potentials from
the structural databases. The results of CASP4, completed
this past summer, provide a snapshot of the current state of
the field. Compared to previous years, longer fragments of
proteins were predicted within 6 Å of the crystal structure.
Figure 1, a Hubbard plot [9,10] for one of the eight proteins
in the novel fold category, indicates that the methods of
several groups were able to predict long contiguous segments
of the protein [2••,3,4•,11,12•,13], with the best results
being obtained by the Rosetta statistics-based approach of
the Baker group [2••]. The striking feature of Figure 1 is that
many different methods were able to obtain comparable
results, but none were able to predict the structure of the
entire protein. One goal of this review is to examine what
common features of the methods were important in achieving
this improvement and to interpret these features in terms
of the effects they have on the energy landscape of the
prediction algorithm. Energy landscape theory describes
how the energy of the system changes with the geometry of
the protein; its usefulness as a framework to analyze protein
folding has been reviewed in many places [14,15].

All protein structure prediction techniques comprise a rep-
resentation of the protein, a force field commensurate with
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this representation, a technique for searching the resultant
energy landscape [16] and a method for evaluating the pre-
diction scheme [17••]. Most of the ab initio protein structure
prediction methods discussed here use reduced representa-
tions of the protein, at least in the initial stages. Interactions
are typically assigned between sites located at the Cα atom,
the Cβ atom, the peptide bond or at the center of mass of
the sidechains. For each representation, a corresponding set
of interaction potentials are developed and used to guide
the sampling of conformation space. In the construction of
the interaction potential, statistical information from the
sequence and structural databases is used to optimize the
weights assigned to the various interactions. The topology
of the optimized landscape is critical to the success of the
search procedure to find the best predicted structure [17••].
Even with the recent improvements in the ab initio energy
functions, the correlation between energy and measures of
similarity to the native state, such as rmsd, weakens as the
native state is approached [4•,8••,11,18••,19]; rather than
being funnel-like, the landscape resembles a caldera.
Searching such a landscape results in a large ensemble of
structures with similar energies and widely varying similar-
ities to the native state. To overcome the flattening of the
landscape, several groups have incorporated rather exten-
sive filtering and clustering techniques for the final stages
of the prediction process. This review focuses on two areas:
improvements in the energy functions and strategies for
searching the caldera region of the landscape.

Improvements in the energy functions
The essential requirement for protein folding, no less
for model proteins than for real ones, is the ability to 
efficiently search a rugged energy landscape for the 
(presumably) minimum energy native state. Bryngelson
and Wolynes [20] formulated this discrimination requirement
as the ‘principle of minimal frustration’. Parameterization
of the prediction energy functions must maximize the ratio
of the gap in energy between the folded state (En) and the
ensemble of unfolded (or non-native) states (<Eu>) to the
energetic variation of the unfolded states (∆E) generated
during the search process: (En – < Eu >)/∆E. Many schemes
for structure prediction directly optimize this dimensionless
measure of foldability [21,22•] or a related quantity [23].
In these cases, the optimization procedure requires the
generation of large decoy sets of non-native structures
containing a controlled amount of secondary structure. The
functional forms of the energy functions depend on the
features selected to distinguish folded native conformations
from the decoy conformations. Although the forms may
vary, the features usually occur in the scoring functions
with linear weights, so that optimization is a straightforward
task. Dill and co-workers [24] have recently suggested a
global optimization method to adjust the energy parameters
for any given search strategy that gives promising results
for simple models with few adjustable parameters.

Energy functions are conveniently categorized according
to the degree to which they make use of data from

experimentally determined structures. At one end of the
spectrum are models that explicitly score trial structures
according to their similarity to a database of known
structures. It is important to distinguish these approaches
from homology modeling, as databases for ab initio prediction
are not required to contain any proteins with global
structural similarity to the target. At the other end of the
spectrum are more physics-based approaches, which use
the sequence and structural databases merely to derive the
parameters occurring in their energy functions.

Statistics-based potentials
Early on, Go [25] observed that efficient folding requires
consistency between a protein’s tertiary structure and
the local conformational preferences of its sequence.

Figure 1

Ab initio structure prediction results. (a) Hubbard plot of ab initio
predictions for CASP4 entry t0106, a 128 amino acid secreted
frizzled protein from mouse [53]. Each group could submit up to five
ranked models, four of which are shown in blue to represent data from
our group, with dark blue corresponding to our highest ranked model.
(b) The contact distance map of the native structure and our best
predicted model in (a) indicates that most of the secondary units are
predicted correctly, but that their packing is not always correct, which
is shown by the presence of additional off-diagonal contacts in the
lower right-hand half of the map.
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Simons et al. [26] expanded on this observation by suggesting
that the collection of conformations in which a given
sequence fragment can be found in the database of known
structures approximates the ensemble of its local structural
preferences. This forms the basis of the successful Rosetta
program [26]. A predicted structure is built up from matching
segments in a fragment library via a Monte Carlo procedure
whose scoring function is the Bayesian probability of
structure/sequence matches. Recent improvements to this
program included the use of secondary structure prediction
to bias the selection of fragments and terms to favor the
assembly of strands into sheets and the burial of hydrophobic
residues [23,27]. In addition to modifications to the energy
function, the improved performance of this method is
attributed to a variety of post-Monte Carlo filters of the
ab initio structures, which are described below.

The work by Wolynes, Luthey-Schulten and co-workers
[28,29] addresses the protein folding problem as one of
information processing. The short-range interactions
between residues are treated as associative memory-like
potentials that learn sequence/structure associations from a
database of known structures. Residue pairs in the target
and memory proteins are associated by a sequence/structure
threading algorithm [30]. The theory of such energy
functions is quite advanced [31] and suggests that it should
be possible to construct an energy function that is funneled
to the correct native state even from a database that contains
only short, local regions of structural similarity. As there are
no globally similar folds in the memory proteins, the inter-
actions between residues distant in sequence are now
determined by a series of piecewise contact potentials
whose forms are chosen to roughly mimic the observed
behavior of pair correlations between distant pairs in
known structures [4•,22•]. As with many other methods, it
was found that the performance of the simulation is
improved when the parameters are separately optimized
for proteins belonging to different structural classes.
Correct β-sheet formation is promoted by the inclusion of
an explicit hydrogen bond potential [4•].

Skolnick, Kolinski and co-workers [3,32•,33] have developed
a hierarchical approach to ab initio folding on a high-
coordination lattice that uses a combination of multiple
sequence comparisons, threading, clustering and refinement.
The profiles obtained from the multiple sequence
alignments are used to construct pair distance restraints
and secondary structure biasing in the scoring function of
their threading algorithm [33]. In the prediction of novel
folds, the threading algorithm provides fragmentary
templates for starting lattice models. As threading is
limited by the inaccuracy of the scoring energy functions,
averaging over a set of homologous sequences can improve
the consistency and discrimination scores of these methods
[34,35]. Although groups have differed on the details of its
implementation [2••,17••], there is widespread agreement
that the use of information from multiple sequence
alignments invariably improves performance. The force

fields used in the lattice simulations also consist of statistical
potentials for pairwise and multibody sidechain interactions.
The conformational space is sampled by replica exchange
Monte Carlo, a technique that may be helpful in overcoming
the slow dynamics associated with rough energy landscapes.
The strength of this hierarchical prediction approach is
that it can be used with little modification for either fold
recognition or ab initio folding.

A number of other methods make use of predicted secondary
structure (predictions that themselves are derived from
propensities observed in the databases) to reduce the
prediction task to that of the assembly of preformed
elements [11,12•,36]. The potentials used in the assembly
phase have been parameterized on known structures.
Friesner and his co-workers [11] point out that there are
good reasons for separating the prediction problem into
separate parts for secondary and tertiary structure. To this
we would add the comment that, as schemes for secondary
structure prediction are now quite reliable, it is quite
natural to focus on the assembly problem as the most
urgent. Eyrich et al. [11] combine knowledge of predicted
secondary structure with a contact potential among
sidechain centroids and an excluded volume term fit to
observed pair distances in a set of known structures. They
have noted that it was important to modify the potential
function according to the size of the protein. Levitt and
colleagues [12•] also used predicted secondary structure,
but with the addition of two cooperative terms to their
energy function, one for hydrogen bonds and one to
confine hydrophilic residues to the protein surface. Yue
and Dill [37] have also developed a technique that seeks to
assemble secondary structure elements as rigid bodies
and have recently augmented the secondary structure
prediction with small homologous fragments taken from
a database that is similar to the ISITES library, as
implemented in Rosetta.

Physics-based potentials
Scheraga and co-workers [38–40] have developed a physics-
based reduced model in which the interaction terms for
a united residue (UNRES) description are derived by
averaging over the neglected degrees of freedom in the
all-atom ECEPP/3 force field. The weights of the different
terms appearing in UNRES are determined by maximizing
the Z-score, a quantity similar to the foldability definition
above. Over the past two years, the authors continued to
improve their force fields with the aid of a cumulant
expansion to introduce more multibody terms important
for describing β-sheet formation [13,41•]. They obtain
low-resolution structures by using force fields optimized
for the various structural classes and, once the structures
are clustered, each model is then converted to an all-atom
structure and refined by the ECEPP/3 force field.

The method of Crivelli et al. [42•] is notable for its
extensive use of a modified all-atom AMBER5 force
field, rather than statistical potentials. Constraints derived
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from secondary structure prediction are used to smooth
the energy landscape and reduce the phase space
searched by their global optimization method. To
account for solvation effects in the optimization, the authors
add a hydrophobic contact potential to the AMBER
molecular mechanics potentials. Although the procedure
is computationally intensive, it performs well on small
α-helical proteins [10].

Searching the caldera
None of the methods detailed above yield an energy
surface that is funneled all the way to very native-like
structures. The most successful groups have implemented
some type of additional filtering or clustering procedure to
pick out native-like conformations from the energetically
degenerate ensemble of ab initio predictions. Searches
in the flat caldera region of the energy landscape are 
necessarily undertaken with energy functions that are 
sensitive to features either missing or poorly represented
in the ab initio functions.

Most of the scoring functions in this final stage of the
ab initio prediction require the positions of all the back-
bone and sidechain atoms. In models using reduced atomic
details, the missing atoms are typically generated using
either a homology modeling program such as Modeller [43]
or MaxSprout [44], or other hybrid knowledge- and
physics-based sidechain builders [45•]. Given the importance
of sidechain atoms in determining interactions for full-atom
potentials and surface accessibility, which is often used in
statistics-based potentials, the refinement will influence
the degree of discrimination that can be achieved by the
scoring functions. The most intriguing of these scoring
functions, because it holds out the promise of yielding very
high-resolution predictions (2.0–3.0 Å), is the use of full-
atom force fields with and without implicit solvent models
[7•,8••,46]. Most groups use some sort of clustering
[2••,11,18••] to reduce the ensemble of predicted structures
to a few structural families. Before clustering, the results of
the ab initio simulations can be filtered for β-sheet formation,
incorrect physical interactions and contact order, or they
can be ranked by a threading potential. Recently, Petrey
and Honig [47] have suggested using a simplified energy
function that combines a Coulomb term with a hydrophobic
contact term to differentiate the conformations. A measure
of how many different structures are to be expected in this
caldera region for any prediction scheme can be estimated
from a free energy analysis of the prediction energy function
using conventional multiple histogram sampling methods
[17••]. Such an analysis of the energy landscape will also
reveal the best structures to be expected from the given
energy function and, along with the foldability criterion,
provide a quantitative method to guide improvements to
the energy function.

Conclusions
The resolution of current ab initio structure prediction
techniques, although much improved during the past two

years, is clearly not yet good enough for detailed studies
such as docking and drug design. But even at the present
stage, the low-resolution structures that they generate
may be sufficient for genome annotation. Several authors
have begun to explore this application. Baker and co-workers
[48,49•] have demonstrated several cases in which a
structure-based comparison of their models to known
structures in the PDB found related proteins, yielding
information on function by analogy. Skolnick and
co-workers [50] have taken a more direct approach,
designing active site signatures, termed fuzzy-functional
forms, which can be used to assign function directly to a
predicted structure. By including knowledge from
structural and comparative genomics in the analysis of
local sequence/structure patterns [27,51,52], the statistics-
based energy functions in the ab initio approaches will
continue to improve.
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