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Experiments in which two specifically interacting protein

molecules are dissociated by external force have yielded new

insights into mechanisms involved in cell adhesion, leukocyte

rolling, regulation of integrin activity, antigen–antibody

interactions and other protein-mediated reactions contingent

upon molecular recognition. Another important aspect of

force-induced protein–protein unbinding studies is the new

information being gleaned about the thermodynamics and

kinetics of bond rupture.
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Abbreviations
AFM atomic force microscopy

BFP biomembrane force probe

ConA concanavalin A

ICAM-1 intercellular adhesion molecule-1

LFA-1 leukocyte function-associated antigen-1

LT laser tweezers

PSGL-1 P-selectin glycoprotein ligand-1

SGCT sodium glucose co-transporter
vWF von Willebrand factor

WASP Wiscott–Aldrich syndrome protein

Introduction
Protein–protein unbinding studies are a part of the major

field of investigation termed receptor–ligand interactions

or molecular recognition. During the past decade, impor-

tant new information about receptor–ligand interactions

at the single-molecule level has complemented con-

clusions based on conventional methods, which measure

the properties of large ensembles of molecules or observe

the behavior of whole cells. The main advantages of

studying individual receptor–ligand pairs are: minimized

cooperative and/or clustering effects; the possibility of

probing conformational transitions of individual mole-

cules, such as activation/inactivation; revealing the struc-

tural and functional heterogeneity of seemingly identical

molecules; knowing the number of molecules involved in

reactions; quantifying directly the magnitudes and work-

ing distances of forces in ligand–receptor interactions to

elucidate the relationships between molecular structure

and the thermodynamics of bond dissociation. Watching

individual events and distributions rather than observing

average values may reveal rare but physiologically impor-

tant functional fluctuations [1�,2].

The study of protein–protein interactions has been domi-

nated by a static viewpoint, such that the emphasis is on

molecules in solution under equilibrium conditions,

whereas their real-life biological interactions generally

occur on surfaces under nonequilibrium conditions; the

latter is the focus of the papers summarized in this review.

The study of the mechanics of protein interactions is

necessary to understand the many cellular functions and

properties, such as rolling, motility, adhesion, deform-

ability and so on, that are mediated by specific receptor

and ligand molecules, and controlled by mechanical

forces produced by either external (shear flow) or internal

(cytoskeletal rearrangement, motor proteins) sources. In

addition, the study of protein–protein unbinding by an

applied force has turned out to be a precise and unique

tool for analyzing protein structure and function, as well as

mechanisms of their regulatory changes [3].

Theory
The results of mechanical rupture (pulling) experiments

have been analyzed using two distinct theoretical meth-

ods [4]. The first, called the energy landscape model, is

based on Kramers’ rate theory and leads to general pre-

dictions about the distribution of rupture forces [5�]. In

this model, it is assumed that an applied load changes the

energy of the transition state as well as the equilibrium of

the bound and unbound states, thereby altering the

kinetics of association and dissociation [6]. An important

conclusion from the model is that the distribution of

rupture forces depends on the loading rate (i.e. the rate

that the applied force is increased) and that this depen-

dence provides information not obtained from equili-

brium experiments [7�]. Pulling experiments in which

the loading rate is changed over many orders of magni-

tude are called dynamic force spectroscopy. One impor-

tant open question is whether these force spectra can be

used to uniquely identify the dissociation mechanism

[8�]. A recent advance in nonequilibrium thermody-

namics [9�], based on an insight from Jarzynski [10],

further suggests that the complete free energy diagram

in the direction of the applied load can be inferred by

correctly averaging repeated traces of the force versus
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time (trajectories) acquired at constant pulling velocity.

Although the method has not yet been applied to protein–

protein interactions, it was verified for the mechanical

unfolding of RNA [11��].

The second method uses molecular dynamics simulations

to investigate the disruption of specific pairs of molecules

in atomic detail [12]. Ideally, this type of model provides

new insights into the mechanisms of protein–ligand inter-

actions [13�,14,15]. However, meaningful simulations

require complete X-ray crystal structures of the proteins

and huge computational resources. Even with the most

powerful current computers, the simulations only last

�10 ns, roughly three orders of magnitude less than

typical pulling experiments. One of Jarzynski’s predic-

tions is that his equality holds even very far from equili-

brium or at very high loading rates. Recent computational

and theoretical advances allow us to be more confident

that dynamic force spectroscopy may provide important

information on how proteins bind and unbind.

Principles and methodology
Force-induced receptor–ligand unbinding studies are

always performed at an interface. Molecular binding

and rupture result from controlled touching and separa-

tion of two surfaces, one bearing receptors and another

coated with ligand. The different techniques used to

perform these kinds of experiments differ from each

other mainly by the surfaces to which the proteins are

bound, as well as by the methods of generating, sensing

and measuring mechanical forces. The techniques used

during the past several years for studies of single-protein

molecular mechanics are: atomic force microscopy

(AFM), also termed scanning force microscopy (SFM)

[16]; laser tweezers (LT) [17]; biomembrane force probe

(BFP) with pipette suction [18]; and hydrodynamic meth-

ods [19�]. The forces generated and sensed during single-

molecule experiments are in the range of several pico-

newtons (1 pN ¼ 10�12 N) to about one nanonewton

(1 nN ¼ 10�9 N), although no single instrument can ade-

quately cover the entire range of forces. The magnitudes

of these forces correspond to the range of noncovalent

interactions, but they are insufficient to break a covalent

bond [20].

The interacting receptor and ligand molecules both have

to be firmly bound to their underlying surfaces to ensure

that the measured forces reflect protein–protein unbind-

ing rather than the detachment of molecules from the

surface [21]. When experiments are performed with pur-

ified proteins, they should be coupled to surfaces either

covalently or at least via biotin–(strept)avidin interac-

tions, which are stronger than any known noncovalent

protein–protein adhesion. Covalent linkages are made

either directly using bifunctional reagents [22��,23] or

via spacer molecules [24�,25], which is seemingly prefer-

able because of the higher flexibility and better spatial

orientation of surface-bound proteins. However, stretch-

ing of polymeric linkers changes the unbinding profile by

giving rise to delayed nonlinear receptor–ligand rupture

force signals [24�].

As in ensemble experiments, discrimination between

specific and nonspecific interactions is a major concern,

requiring carefully chosen control experiments. Two

important control experiments are replacing one of the

reacting partners with an inert protein (e.g. albumin) or

applying specific inhibitors that abolish the interaction in

a dose-dependent manner. Irrespective of the origin of

nonspecific surface-to-surface attraction, several studies

have shown that nonspecific protein–protein adhesion

strength may reach the value of several tens of piconew-

tons, partly overlapping the forces produced by specific

receptor–ligand interactions (Figure 1) [26,27]. These

weaker nonspecific protein–protein interactions may

have physiological significance in cell adhesion in coop-

eration with the specific interactions [22��].

An important question that is difficult to answer unequi-

vocally is whether one or multiple pairs of molecules

interact during pulling experiments. Two pieces of evi-

dence, both based on statistics, are commonly used to

determine whether single-molecule interactions are

detected. The first requires that only a limited fraction

of touching cycles between the surfaces result in binding

[19�,27]. For example, when only ten IgG molecules were

bound per bead and the protein A surface density was also

very low, the probability of formation of more than one

IgG–protein A pair at a particular scanning velocity was

calculated to be at most 9% [27]. Secondly, histograms of

the distribution of rupture forces can show a series of

quantized peaks that are multiples of a single value

[23,28]. Although there are other important indirect cri-

teria supporting individual molecule interactions [29�],
reasonable conclusions must be substantiated by combi-

nations of data obtained independently.

Protein–protein unbinding studies performed on live cells

with exposed receptor molecules have several limitations

and uncertainties. One of them is the chance of uprooting

receptor molecules from the membrane, which depends on

pulling time and force as well as on membrane tension

[30,31]. A related problem is mechanical compliance and

membrane tethering, combined with interactions of recep-

tors with the cytoskeleton [30,32]. Receptor clustering also

can potentially affect quantification of single-molecule

receptor–ligand interactions, because it was shown that

chemical cross-linking of receptors led to increased ligand

binding strength as a result of receptor cooperativity

[33,34�]. Similarly, self-association of selectins led to

shear resistance and changed unbinding parameters for

P-selectin and its ligand, P-selectin glycoprotein ligand-1

(PSGL-1) [35]. Nevertheless, properly performed recep-

tor–ligand binding studies with proteins naturally residing
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on metabolically active cells are physiologically more rele-

vant and most promising.

Some recent results of enforced single-molecule protein–

protein unbinding, along with a partial description of the

experimental conditions, are summarized in Table 1. It

can be seen that the majority of peak rupture forces

measured over a wide range of loading rates are in the

interval from several tens up to �150 pN. The forces

measured at similar loading rates appear to be indepen-

dent of underlying surfaces, coating chemistry and mea-

suring techniques. However, there is an obvious

difference in the rupture forces for different protein–

protein pairs. These results imply that the different

rupture forces reflect multiple mechanisms of recep-

tor–ligand dissociation, rather than diversity of experi-

mental conditions.

Applications
The strength of cell attachment to substrata and/or to

another cell is a good example of how the mechanical

characteristics of single molecules determine cell func-

tion. That is why integrins, selectins and cadherins, which

mediate cellular interactions, were among the first pro-

teins studied at the single-molecule level using force-

induced unbinding methodology. Cell adhesion and

aggregation are strongly influenced by the mechanical

plasticity of cells, by the direction and rate of applied

external forces, and by the mutual accessibility of the

receptor and ligand molecules [4,36,37].

The regulation of binding-site exposure was directly

demonstrated in a study in which the interactions of

fibrinogen with the integrin aIIbb3 were studied on live

platelets with different degrees of activation [22��]. Using
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Raw data trace and force histogram for integrin–fibrinogen interactions as measured using LT [22��]. (a) A series of attachment events illustrating the

variability of the unbinding forces produced by the same individual integrin–fibrinogen pair. In each touching/separation cycle, the forces are displayed

as two peaks: a negative, compressive force between a receptor-coated surface and a ligand-coupled latex bead, and a positive, unbinding force

that increases linearly with time until the receptor–ligand bond is ruptured, after which the force rapidly returns to zero. If attachment does not occur,

the positive rupture force is absent. (b) Rupture forces following detachment of surfaces are collected and displayed as normalized force distribution

histograms. The results of many experiments under similar conditions are summed so that each histogram includes the many contacts needed

for representative statistics. Nonspecific protein–protein interactions may partly overlap the specific interactions.
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Table 1

Values of rupture forces required to separate individual protein molecules.

Receptor� and
receptor-bearing surface

Ligand� and
ligand-bearing surface

Measuring
technique

Reported loading
or shear rate/stress

Rupture
forces (pN)

References

Adhesion molecules
GPIIb-IIIa (aIIbb3) Fibrinogen Hydrodynamic 0.6–2.9 N/m2 70–150 (15.6%) [19�]
Covalently bound to latex beads Free in solution flow shear stress 150–230 (16%)

230–310 (17%)

aIIbb3 GSSSGRGDSPA AFM 12 nN/s �93 [28]

On native adherent platelets Covalently bound to tips

via glutaraldehyde

aIIbb3 Fibrinogen LT 20 nN/s 60–150, with a [22��]

On resting or activated native

adherent platelets

Covalently bound to latex

beads via carbodiimide

peak at 80–100

Covalently bound to modified

silica beads via glutaraldehyde

aVb3 GRGDSP AFM 30 nN/sy 42 � 4 [50]

a5b1 GRGDSP 32 � 2

aVb3 Osteopontin 50 � 2

aVb3 Echistatin 97 � 15

All on adherent osteoclasts partly

fixed with paraformaldehyde

All adsorbed on tips via

noncovalently bound PEG

GP Ib-IX (abIX) von Willebrand factor (vWF) LT Not reported 6.5 � 0.8 [51]

8.8 � 0.3

abIX Ultralarge vWF 11.4 � 2.1
abIX A1 domain of vWF 11.5

On native transfected CHO cells Adsorbed on latex beads

P-selectin PSGL-1 AFM 168 nN/sy 159 � 30 [52]

Bound to silanized glass cover

slips via biotin–avidin

Bound to silanized tips

via biotin–avidin

P-selectin PSGL-1 AFM 250 nN/sy 175 [44�]

Bound to cantilever as

Fc-chimera via anti-Fc-Ab

On intact neutrophils

PSGL-1 and other selectins’ ligands P-, E-, L-selectins or

peripheral node addressin

Hydrodynamic

flow

0.5–5.0 dyn/cm2

shear stress

37–250 [42]

On neutrophils Adsorbed on a plastic surface

L-selectin PSGL-1 BFP 0.01–100 nN/s 5–200 [39��]

Covalently bound to glass

spheres via PEG

Covalently bound to

glass spheres via PEG

LFA-1 (aLb1) ICAM-1 AFM 0.02–50 nN/s 20–320 [40��]

On murine T-cell hybridoma cells Expressed by fibroblasts FT

(3A9) coupled to cantilever via ConA 16.11 or adsorbed in

soluble form

b1-integrins Fibronectin LT 0.005–0.1 nN/s 13–28 [53]
On native mouse 3T3 fibroblasts Adsorbed on glass

a5b1 Fibronectin fragment 7-10 AFM 1.8–2.0 nN/s 69 � 15 [41��]

On K562 cells activated with mAb Adsorbed on tissue 93 � 1.5

TS2/16 and attached to

tips via ConA

culture dishes

VE-cadherin VE-cadherin AFM 6 nN/sy 33 [24�]

Covalently bound to Covalently bound to 24 nN/sy 40

SiOH plates via PEG tips via PEG 120 nN/sy 54

Glycoprotein csA csA AFM 12 nN/sy 23 � 8 [54]

On Dictyostelium discoideum On Dictyostelium discoideum

AX20214 strain cells attached

to tips via lectin

AX20214 strain cells spread

on polystyrene
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Table 1 Continued

Receptor� and
receptor-bearing surface

Ligand� and
ligand-bearing surface

Measuring
technique

Reported loading
or shear rate/stress

Rupture
forces (pN)

References

Mucin Mucin AFM 1–132 nN/sy 100–4000 [55]

Covalently bound to tips via

11-C spacer molecules

Mucin gel deposited on mica

Immunoglobulins
Anti-ferritin mouse mAb Ferritin AFM Not reported 49 � 10 [56]

Covalently bound to silicon

wafers via glutaraldehyde

Covalently bound to

tips via glutaraldehyde

Polyclonal anti-HSA Ab Human serum albumin (HSA) AFM 54 nN/sy 240 � 48 [57]

Covalently bound to tips via PEG Covalently bound to

mica via PEG

Anti ICAM-1 mouse mAb F10.2 ICAM-1 AFM 54–191 nN/sy 100 � 50 [26]

Covalently linked to tips via PEG Adsorbed on mica in a

soluble truncated form

(sICAM-1)

Ab against g-glutamyl-

transpeptidase (g-GT)

g-GT AFM 6 nN/sy 131 � 44 [45�]

Ab PAN3 against a segment of SGCT SGCT 100 � 47

Both covalently bound to
tips via PEG

Both on brush border
membrane vesicles

adsorbed on gold surfaces

Polyclonal antibodies #8 against RYR 1 AFM 2 nN/s 42 � 6 [58]

ryanodine receptor 1 (RYR 1) 6 nN/s 66 � 11

Covalently linked to tips via PEG Adsorbed on mica 9 nN/s 73 � 17

Mouse antibody against b subunit of bhCG AFM 43–140 nN/sy 132 � 16 [23]

human chorionic gonadotropin (bhCG)

Covalently bound to silicon

wafers via glutaraldehyde

Covalently bound to

tips via glutaraldehyde

Anti-b3 mAb (F11) aVb3 AFM 30–1500 nN/sy 127 � 16 [50]

Adsorbed on tips via

noncovalently bound PEG

On adherent osteoclasts

partly fixed with

paraformaldehyde

Rabbit anti-mouse IgG Staphylococcal protein A BFP 50–60 pN/s 19 � 1 [25]

Covalently linked to synthetic

resin beads via dextran

Covalently co-linked along

with lectin to synthetic resin

beads via dextran

Rabbit, mouse, bovine or goat IgG Protein A LT 0.4–5.3 nN/s 25–44 [27]

Covalently linked to latex beads Covalently linked to a

glass surface

Plant lectin from Ricinus commutis Asialofetuin AFM 3 nN/s 37 � 3 [59]

Plant lectin from Viscum album 43 � 5

Bovine galectin-1 65 � 9

IgG 45 � 6

All covalently linked either to

agarose beads directly or

to tips via amylose

Covalently linked either

to agarose beads directly

or to tips via amylose

Cytoskeletal and motor proteins
Actin from rabbit skeletal

white muscle

Heavy meromyosin

prepared from rabbit

skeletal white muscle myosin

LT 12 pN/s 9.2 � 4.4 [46�]

Attached to gelsolin-coated

latex beads

Adsorbed on glass

Bundles of actin from rabbit

skeletal muscle

Heavy meromyosin

prepared from rabbit

skeletal muscle myosin

AFM 	140 pN/sy 14.8 � 4.0 [60]

Adsorbed on positively

charged polyacrylamide beads

Attached to

polyacrylamide beads

via biotin–avidin

Single-molecule protein–protein interactions Weisel, Shuman and Litvinov 231

www.current-opinion.com Current Opinion in Structural Biology 2003, 13:227–235



receptor–ligand adhesion strength as a measure of single

receptor activity, it has been shown that aIIbb3 activation

is an all-or-none phenomenon, that is, each integrin

molecule resides on the platelet in an either completely

on or off conformation [22��]. The strength of fibrino-

gen–aIIbb3 binding was shown to be dependent on the

‘age’ of bonds; ‘young’ complexes formed within min-

utes were capable of dissociation under hydrodynamic

force, whereas ‘older’ complexes could not be ruptured

[19�]. Probing interactions of individual integrins on the

surface of live cells with ligands containing the RGD

(Arg-Gly-Asp) binding motif revealed a considerable

extension of the flexible membrane surface under load

[28], as well as a paradoxical increase in the number of

cells that remain adherent when larger pulling forces

were applied [34�].

The interaction of the platelet integrin GPIba with von

Willebrand factor (vWF) was shown to have kinetic

characteristics similar to those of binding reactions of

selectins [38�]. Dynamic force spectroscopy studies

revealed that the rupture forces of both integrins and

selectins with their protein ligands depend on applied

force loading rates. When the range of applied force

loading rates was wide enough and reached 104 pN/s or

more, two regimes were observed as different slopes in

the peak force versus logarithm of loading rate curves.

They were interpreted as reflecting two sequential

energy barriers along the unbinding pathway. Changing

experimental conditions revealed that these barriers had

different susceptibility to divalent cations [39��] and may

have different physiological significance [40��,41��]. The

first, inner barrier for the a5b1–fibronectin pair, observed

at high forces, was sensitive to RGD deletion, but not to

deletion in the synergy site of fibronectin. The second,

outer barrier, operating at lower, physiologically relevant

forces, was affected by both RGD and synergy binding

regions, and was characteristic of the site of integrin

activation [41��]. In a study of leukocyte function-asso-

ciated antigen-1 (LFA-1) and intercellular adhesion

molecule-1 (ICAM-1), it was shown that, in the slow

loading regime, Mg2þ, known to stabilize the LFA-1–

ICAM-1 interaction, increased the unbinding forces,

whereas the fast loading regime was susceptible to an

inhibitory effect of EDTA. Hence, the outer activation

barrier was attributed to an equilibrium dissociation con-

stant, whereas the inner barrier was thought to determine

resistance to pulling forces [40��]. These thermodynamic

characteristics, along with kinetic parameters and bond

elasticity, fully control the dynamic process of cell adhe-

sion and leukocyte rolling [13�,42,43�], and may account

for their impairment in pathologically altered cells [44�].

The binding strength between antigen and antibody has

been used as a tool to probe conformational states of a

single protein molecule in several studies. AFM tips

functionalized with antibodies were used to produce

two images, the first, an adhesion image of individual

ICAM-1 molecules, compared to the second, topographi-

cal one [26]. In another AFM study, antibodies were used

to confirm proper membrane orientation in cell-derived

vesicles and to probe the conformational changes of an

Table 1 Continued

Receptor� and
receptor-bearing surface

Ligand� and
ligand-bearing surface

Measuring
technique

Reported loading
or shear rate/stress

Rupture
forces (pN)

References

Microtubules Two- or one-headed kinesin LT 5.0 � 1.68 pN/s 3.3–10 [49��]

Adsorbed to glass Covalently linked to

latex beads

Actin from rabbit muscle Bovine Arp2/3 complex

with VCA

LT 50.5 � 17.3 pN/s 6–7 [48�]

Attached to gelsolin-coated

latex beads

Arp2/3 adsorbed on a

VCA-coated surface

Various proteins
Bovine insulin Bovine insulin AFM 7.4 nN/sy 1340–1350 [61]

Covalently linked to

aminosilanized mica using

photoreactive azido groups

Covalently linked to

aminosilanized tips using

photoreactive azido groups

Chaperonin GroEL from E. coli Mutated (Gly!Ala) citrate

synthase from yeast

AFM 	6–60 nN/sy 420 � 100 [62]

Double mutated RTEM 240 � 70

(Cys!Ala) b-lactamase

Horseradish peroxidase 130 � 30

Bovine serum albumin (BSA) 570 � 60

Adsorbed on mica All covalently linked to tips

via glutaraldehyde

�The term ‘receptor’ is relevant by definition only to integrins and selectins, whereas other interacting proteins were named ‘receptor’ or ‘ligand’

arbitrarily. yCalculated from reported values of a transducer spring constant and retraction velocity.
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antibody-binding epitope of sodium glucose co-transpor-

ter (SGCT) during D-glucose transport [45�].

Direct measurement of the strength of rigor bonds

between actin and myosin [46�,47], studying detachment

of the actin–Arp2/3 complex from the VCA domain of

N-WASP (Wiscott–Aldrich syndrome protein) [48�] and

using binding strength in the molecular analysis of kine-

sin motility ([49��]; see also Update) are additional but not

the last examples (see Table 1) of diverse and important

biological applications of force-induced individual pro-

tein–protein unbinding studies.

Conclusions and perspectives
Most of the results of those experiments listed in Table 1

that were carefully designed and executed show that

rupture forces for adhesion proteins are characteristic of

each ligand–receptor pair. The usual range for typical

proteins appears to be �100 pN þ/� 50 pN, but there

may be exceptions. Although loading rates under most

physiological conditions have not been determined, it is

likely that these forces were measured with loading rates

that cells might really experience, for example in flowing

blood. It should be noted that the experiments described

in some papers listed here are incomplete, lacking impor-

tant controls or have problems with methodology or

interpretation, reflecting the difficulty of these studies.

The results of all single-molecule protein–protein

unbinding induced by force experiments still need to

be interpreted with caution. Future research in this field

should take into account the cautions presented in this

review.

Although studies of protein–protein unbinding induced

by force are still in their infancy, there have been impor-

tant theoretical and experimental breakthroughs, but

much remains unknown. The theory behind nonequili-

brium events needs to be further tested and related to

equilibrium processes. More studies will explore the

detailed events during unbinding and binding via simula-

tion of experimental data by molecular dynamics calcula-

tions, which need to be extended in time. The current

literature on prototypical purified protein–protein systems

will be expanded to include many other biologically

important molecules, especially adhesive proteins, but

much of the excitement in this field is likely to lie with

studies involving live cells. Specific mutations in func-

tionally important sites can be designed to elucidate

molecular mechanisms of ligand–receptor interactions.

More complex systems should be investigated, including

clustering of receptors in the membrane, interactions

between two different receptors and cytoskeletal interac-

tions. Studies in the future may involve the simultaneous

measurement of forces and other functional parameters,

such as phosphorylation or other biochemical activity,

distribution of GFP-labeled proteins, channel movement

or the behavior of other stress sensors. Single-molecule

studies of protein–protein unbinding address fundamental

questions on the origins of the specificity and dynamics of

cellular interactions. In the future, it may be possible to

relate single-molecule studies to whole cell interactions

and the changing protein–protein interactions that occur

during the development of the organism, and during

cellular physiological and pathological processes.

Update
Recently, Kawaguchi et al. [63��] have used unbinding

force distribution studies to reveal more mechanistic

details of kinesin motility.
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